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ABSTRACT

In the present note, we discuss the theoretical basis of models coupling Discrete Element Method (DEM) with Volume-Averaged
Navier-Stokes (VANS) equations. Starting from the classical equations derived in Anderson & Jackson (1), the different closures
for the total fluid stress tensor and the fluid-particle momentum transfer are discussed from a physical meaning point of view.
This allows to avoid to take into account two times the same effect and clarify the meaning of the different terms.
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1 Introduction
The goal of the present note is to detail the theoretical bases of models coupling Discrete Element Method (DEM) with
Volume-Averaged Navier-Stokes (VANS) equations. It is general and describes 3D DEM-3D VANS coupling. It will be used as
a basis for the description of YADE 1D vertical VANS fluid resolution in a subsequent note (12).

2 Fluid phase: Volume-Averaged Navier-Stokes equations
We start here from the equation of Jackson (10) and express the closures adopted consequently. Volume-averaging the
local incompressible Navier-Stokes equations, Anderson & Jackson (1) obtained the following equations for a fluid phase in
interactions with a particle phase:
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Where ρ f is the fluid density, ε = 1−φ is the fluid volume fraction, ui is the i-th component of the velocity, 〈•〉 f and 〈•〉p
denote the volume averaging with respect to the fluid and particle phase respectively, Si j is the total fluid stress tensor, gi is the

i-th component of the acceleration of gravity, and n
〈

f f
i

〉p
is the volume-averaged fluid-particle momentum transfer associated

with the hydrodynamic forces (e.g. drag, buoyancy...). The expressions adopted here are the exact same as the one described in
(10).
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3 Closures

This equation requires closures for the total fluid stress tensor S f
ik and the fluid-particle momentum transfer terms. The issues,

the physical meaning and the choices made here for these closures are detailed in this section.

3.1 Total fluid stress tensor
Following Jackson (9; 10), the total fluid stress tensor reads:
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where
〈
σi j
〉 f is the stress tensor volume-averaged over the fluid phase, and −ρ f ε

〈
u′iu
′
j

〉 f
is the cross velocity fluctuations

volume-averaged over the fluid phase, classically called the Reynolds stress tensor.

3.1.1 Origin of the different terms...
The terms 1, 2 and 3 of equation (3) come from the Taylor expansion of the fluid-particle interaction term. Indeed, when
volume-averaging the local Navier-Stokes equation on the fluid phase, it reads (9):
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The last term on the right hand side represents the momentum transfer from the fluid to the particles and is more complex than
it appears. Classically the fluid force on a single particle is given from the integral of the traction force ti = σi jn j on the surface
of the particle, i.e.,

f f
i =

∫
Sp

σi j(y) n j dSy. (5)

In order to link the last term on the right hand side of equation (4) to the expression of the momentum transfer associated to the
hydrodynamic forces, one needs to perform a Taylor expansion of the weighting function g(|x−y|) around the center of the
particle p. The latter expansion can be cut at second order thanks to the fact that the ratio between the radius of the particle, a,
and the width L of volume-averaging function g, is small: a/L << 1 (scale separation). From this, we obtain (9):
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where
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so that the momentum balance equation of the fluid (eq. 4) becomes:
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which corresponds exactly equation (2):

ρ
f
ε

(
∂ 〈ui〉 f

∂ t
+ 〈uk〉 f ∂

∂xk
〈ui〉 f

)
=

∂S f
ik

∂xk
+ρ

f
εgi−n

〈
f f
i

〉p
, (11)



3 Closures 3

with the totall fluid stress tensor detailed above in equation (3):
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Therefore, the terms 2 and 3 of the total fluid stress tensor corresponds to the perturbation of the fluid behavior due to the
presence of the particles. This means that the particles affect the fluid not only from the momentum transfer associated with the
fluid-particle force, but also from a rheological point of view, modifying the rheology by their presence in the fluid1. Jackson
(9) has shown that these two terms reduce to the classical Einstein correction of the viscosity due to the presence of the particles
in a fluid: µe f f = µ(1+5φ/2). For more general regime however, there does not exist simple determination of these terms.

3.1.2 ...and closures
Volume-averaged fluid stress tensor The averaged fluid stress tensor can be directly linked to the volume-averaged pressure
and shear rate. Indeed, the averaged fluid stress tensor expression reads from the definition of the average:〈

σi j
〉 f

=
1
ε

∫
V f

σi j(y)g(|x−y|)dVy, (13)

where the integral is over V f , the whole volume occupied by the fluid. Considering a newtonian fluid, we can express the fluid
stress tensor in this region:〈
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where the expression of the averaged fluid pressure has been identified. In order to relate the expression of the second term on
the right hand side of the equation to the averaged fluid velocity, one would like to exchange the integral and derivative sign.
However, the volume occupied by the fluid is changing with space. Noting that the particles are considered rigid, the strain rate
is null inside the volume occupied by the particles. We can then switch the integral from the volume occupied by the fluid V f ,
to the total volume V :〈

σi j
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)
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The latter does not vary so that we can exchange the integral sign and the derivative. This gives a rigourous closure for the
volume-averaged fluid stress tensor:
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where 〈ui〉 is the averaged velocity defined as:

〈ui〉= ε 〈ui〉 f +φ 〈ui〉s . (17)

This expression should not be confused with the more classical mixture velocity used in (10), which has a similar expression
but is a density-weighted averaged.

Influence of the particles As already mentionned, Jackson (9) derived the expression of the terms 2 and 3 of equation (3)
representing the influence of the particles on the fluid rheology, in the limit of dilute Stokesian particles (St = 0, Rep = 0). In
this case, it can be shown (see appendix A) that the terms n

〈
si j
〉p and n

〈
si jk
〉p reduce to the classical Einstein correction so

that the total fluid stress tensor becomes:
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Therefore, one could see the terms n
〈
si j
〉p and n

〈
si jk
〉p as a modification of the viscosity due to the presence of the particles.

Even though the different assumptions made for the derivation of this expression are valid only for dilute stokesian suspension,
1This can be seen as the stresslet in suspension
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we will consider that the effect of these terms are restricted to the modification of the viscosity of the volume-averaged fluid
stress tensor. This is not strictly valid but this is consistent in the dilute stokesian limit and there exists today no real alternative.
Therefore, the total stress tensor will be taken as:
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, (19)
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)
, (20)

the effective fluid stress tensor accounting for the effect of the particles on the fluid rheology. Typical function for f (φ) are the
first order Einstein’s correction (5) or the second order Batchelor’s correction (2). This function reprensents the influence of the
particles on the fluid rheology, and not on the mixture rheology. Therefore, no contribution from contact-contact interactions
should be included in the function f , which does not present any divergence at solid packing fraction. Typical expressions of
suspension viscosity - which considers the viscosity of the mixture - such as Krieger-Dougherty viscosity are therefore not
adapted.
In YADE, only Einstein’s correction and clear fluid are implemented for now.

Reynolds stresses The last closure required to express the total fluid stress tensor, S f
i j, is the volume-averaged fluid velocity

fluctuations, ρ f ε

〈
u′iu
′
j
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. In a classical Reynolds Averaged Navier-Stokes (RANS) fluid resolution, the Reynolds stress tensor

is the average over time of the fluid velocity fluctuations: R f
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′
j. In the present case of two different phases in

interaction, the average is made over space. Therefore, as done classically in the literature (3; 4; 8; 13; 15) we can adopt the
classical closure for the Reynolds stress tensor such as mixing length, k− ε or k−ω . The volume-averaged fluid velocity

fluctuation term will therefore be refered as the Reynolds stress tensor, R f
i j =−ρ f
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, and the total fluid stress tensor
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so that the fluid momentum balance equation (eq. 2) can be rewritten:

ρ
f
ε

(
∂ 〈ui〉 f

∂ t
+ 〈uk〉 f ∂

∂xk
〈ui〉 f

)
=

∂

∂xk

(
σ

e f f
ik + εR f

i j

)
+ρ

f
εgi−n

〈
f f
i

〉p
(22)

3.2 Momentum transfer associated to fluid-particle hydrodynamic force
The most obvious influence of the particles on the fluid momentum balance is the momentum transfered by the fluid phase
to each individual particle through the classical hydrodynamic forces (e.g. drag, buoyancy, added mass...). The sum of the
particles contributions is represented by n

〈
f f
i

〉p
in the fluid momentum balance (eq. 2). The latter corresponds to the particle

number density n, multiplied by the hydrodynamic force volume-averaged over the particle phase
〈

f f
i

〉p
. Therefore, one only

needs to volume-average the fluid forces on the particles. However, the exact formulation of the force that a general fluid flow
applies on a particle is not known. The exact derivation of this expression is possible only in the limit where the particle is
isolated and particle Reynolds number tends to zero or to infinity (inviscid flows). This has been done in particular by Maxey
and Riley (14) for the low particle Reynolds number case and by Schmeeckle et al. (17) in the inviscid flow limit.

We will not discuss here the expression of the force a particle undergoes in a fluid, but only point out the difficulty of it and
the necessity to make choices and validate with experiments. The expression of the fluid force on a particle is therefore not
known in intermediated particle Reynolds number regimes, which corresponds to the main applications of fluid-particle flows.
This regime is therefore classically parametrized from empirical correlation in particular fluid flows, leading to a number
of different formulations which can become increasingly complicated as for example for the drag force where some people
considers power-laws of particle Reynolds number. In addition, the closures are usually determined for isolated particles, while
real configurations such as fluidized bed, sediment transport, or immersed granular collapse for examples, include variation of
particle concentration from isolated to densly packed. It is well known that the expression of the fluid-particle force adopted are
drastically modified by the influence of the surrounding particles. For example, the drag force is known to be increased by the
presence of other particles through the so-called hindrance effect, which has been related in the literature to the solid volume
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fraction (6; 16).

More generally, the complexity of fluid-particle flows and the multiplicity of approximated closures is such that DEM-VANS
models are by essence approximative. As a consequence, adopting all the most complex closures for the fluid-particle do
not guarantee to obtain physical results. Therefore and in order to understand the physical mechanisms at play, a simple and
clear approach is to consider only the main fluid-particle forces at play and adopt simple empirical expressions for these
forces. Doing so, it is then necessary to compare the model results to experiment in order to ensure that the closures and the
fluid-particle forces adopted reproduce accurately the physics of the problem considered.
For example, considering the case of bedload transport, in the model developed by the author (13), the main forces at play are
the drag, the buoyancy and the lift forces (11). However, the actual expression of the lift force is controversial and has been
shown to be not well adapted to the case of bedload transport (17). Therefore, we have chosen to restricts ourselves to drag and
buoyancy forces. The comparison of the model with the particle-scale experiments of Frey (7) has shown that the forces and
closures adopted allows to reproduce very finely the granular behavior (13), validating the choices made. This, of course,
restricts the range of possible applications of the model, but corresponds to my opinion to the appropriate approach considering
the actual limited state of knowledge on fluid-particle forces expression and more generally considering all the closures of
VANS model.

A Influence of the particles on the rheology: example of a stokesian dilute suspension
In the case of Stokesian dilute suspension, Jackson (9) has derived the expression of the influence of the particles on the fluid
rheology (terms 2 and 3 of eq. 3). The goal of the present appendix is to reproduce this derivation, in order to understand the
physical meaning of these terms.
Starting from the momentum balance of a fluid in interaction with a particle phase (equation 2):
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and considering the expression of the traction force at the surface of the particle from (9), one can calculate explicitely n
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(9):
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where Cabc
i jk ”represents a sum of various second derivatives of the fluid-phase average velocity”, which are of order a2/L2

with respect to the other second derivative at play in the momentum balances of the fluid and of the mixture. Neglecting the
Reynolds stress tensor terms (as the suspension is dilute and stokesian, see the discussion p. 8 of (9)) and the terms of order
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greater than a2/L2, equation (23) becomes:
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The volume-averaged fluid stress tensor reads (see section 3.1.2):
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In addition, when considering dilute stokesian suspension, the fluid-particle velocity slip is negligible and the antisymetric part
of the stress tensor is negligible. Therefore, the equation can be rewritten:
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(28)

In the case of stokesian suspension, the slip velocity is negligible so that:

〈ui〉= ε 〈ui〉 f +φ 〈ui〉p = 〈ui〉 f +φ

(
〈ui〉p−〈ui〉 f

)
' 〈ui〉 f . (29)

As a consequence and adding the two pressure terms, we obtain the following equation for the fluid momentum balance:
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This equation is established for a dilute case with Stokesian particles. It shows that in this case, the presence of the particles
affects the fluid through both the momentum transfer associated to hydrodynamic forces and the influence of the particles on
the effective fluid rheology. The presence of the particles modifies the pressure terms - which is not anymore multiplied by the
fluid solid volume fraction - and the viscosity - which accounts for Einstein’s correction (5) . In addition, the strain rate tensor
is not the one of the fluid but of the combination of fluid and particles.

In the following, the effective fluid stress tensor accounting for both the fluid contribution and the effect of the particle on
the fluid rheology:

σ
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will be taken as:

σ
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+
∂
〈
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〉

∂xi

)
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in order to recover the right limit when considering stokesian dilute suspensions.
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