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ABSTRACT

In the present note, the volume-averaged Navier-Stokes (VANS) 1D fluid resolution performed in YADE is detailed. Starting
from unidirectional VANS equation, the closures considered are detailed in order to obtain the equation to solve. The equation
is then discretized in time and space following an upwind staggered grid resolution scheme, and written as a simple matricial
system to solve. The numerical scheme is then detailed at the boundary and the implementation in YADE is fully explicited.

Keywords: fluid-DEM coupling; 1D VANS; numerical resolution; turbulent bedload transport

1 Introduction
The goal of the present note is to detail the volume-averaged Navier-Stokes (VANS) 1D fluid resolution performed in YADE
(15), and which can be coupled with the DEM part. The theoretical basis of the momentum balance equation solved and the
practical details of the coupling with the DEM in YADE can be found respectively in refs (8) and (9). The coupling presented
here has been validated with classical configuration and fine experiments in (10).

The fluid code has been adapted by Raphael Maurin (IMFT) (7; 11) from the two-phase continuous code of Julien Chauchat
(LEGI) (1; 2; 14); translating it from fortran77 to c++ with the help of Julien Chauchat, and adapting the coupling with the
DEM granular phase instead of the continuous one.

This document deals with the practical details of the fluid resolution, i.e. the closures adopted for the fluid momentum balance
equation, its discretization, its matricial form and its resolution.

2 1D fluid momentum balance equation
2.1 Fluid equations
As shown previously in a document about the theoretical bases of volume-averaged fluid resolution (9), the 3D volume-averaged
momentum balance for a fluid in interaction with a particle phase reads:

ρ
f
ε

(
∂ 〈ui〉 f

∂ t
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∂xk
〈ui〉 f

)
=

∂
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e f f
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f f
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Where ρ f is the fluid density, ε = 1−φ is the fluid volume fraction, ui is the i-th component of the velocity, 〈•〉 f and 〈•〉p

denote the volume averaging with respect to the fluid and particle phase respectively, σ
e f f
i j is the effective fluid stress tensor,

R f
i j is the Reynolds stress tensor, gi is the i-th component of the acceleration of gravity, and n

〈
f f
i

〉p
is the volume-averaged

fluid-particle momentum transfer associated with the hydrodynamic forces.
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In the case of steady uniform bedload transport, the problem is unidirectional so that the fluid velocity depends only on
the wall-normal component z and is aligned with the streamwise direction (see figure 1), 〈u〉 f (x) = 〈ux〉 f (z)ex. Therefore,
equations (1) simplifies into a 1D vertical momentum balance (11):
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(2)

Figure 1. Scheme of the bedload transport configuration considered and its equivalent average unidirectional picture with
typical fluid velocity

〈
u f
〉
=
〈

u f
x

〉
(z) ex, solid volume fraction φ , and solid velocity 〈vp〉s =

〈
vp

x
〉s
(z) ex depth profiles. After

(12; 13).

2.2 Closures adopted in YADE
Considering the effective fluid stress tensor to be characterized by an effective viscosity νe, it reads:

σ
e f f
xz = ρ

f
ν

e ∂ 〈ux〉 f

∂ z
. (3)

The effective viscosity adopted can be taken either as the Einstein effective viscosity νe = ν(1+2.5φ), or as clear fluid νe = ν

(no effect of the particles on the fluid rheology).

The Reynolds stress tensor is closed using an eddy viscosity formulation with a mixing length approach:

R f
xz = ρ

f
ν
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∂ z
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m
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∣∣∣∣∣ , (4)

in which the mixing length lm formulation proposed by (6) is used:

lm(z) = κ

∫ z

0

φ max−φ(ζ )

φ max dζ , (5)

where κ = 0.41 represents the von Karman constant.

Lastly, the fluid-particle interaction term is restricted to drag and buoyancy, f f = f f
D + f f

b . Following refs. (5) and (13), the
buoyancy f f

b,i is taken as the generalized Archimedes force:

n
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As a consequence, equation (1) is modified:

ερ
f ∂ 〈ux〉 f

∂ t
= (1−φ)

∂σ
e f f
xz

∂ z
+

∂ (εR f
xz)

∂ z
+ ερ

f g sinα−n
〈

f f
D,i

〉p
. (7)



3 Numerical resolution 3

The drag term is evaluated in the DEM simulations from averaging of the drag force applied to each particle. The average term
is therefore expressed as1:

n〈 fD,x〉= β

(
〈ux〉 f −〈vp

x 〉
s
)
, (8)

with β evaluated from the DEM, as well as the average granular velocity,
〈
vp

x
〉s.

These different closures, altogether reported in equation (1) lead to the following 1D fluid equation to solve:
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(9)

3 Numerical resolution
This 1D equation is to be solved on a vertical grid at different vertical points. The fluid resolution is based on an implicit first
order Euler time scheme, together with an upwind scheme on a staggered grid. The scheme presented in figure 2 gives an
overview of the variables definitions and position. The regular mesh defines nodes in between which the equations are solved.
At these nodes, the scalar variables such as the solid volume fraction are defined. The velocities are defined in between to
allow for a better precision of the numerical scheme, so that the spatial derivatives of the velocity are defined at the node and
the second spatial derivative are defined in between the node (staggered grid). The fluid momentum balance equation (9) is
expressed in terms of velocity and second derivative of the velocity so that it is solved at the velocity nodes, i.e. at position i+1/2.

i-1

i

i+1

i+2

i-2

i+1/2

i+3/2

i-1/2

Quantities evaluated
in the DEM

Figure 2. Schematical picture of the numerical fluid resolution and variables definition with a regular mesh. All the
definitions still holds for a mesh with variable spatial step.

3.1 Time and space discretization
The time derivative can then be written as (implicit first order Euler time scheme):

∂u
∂ t

∣∣∣∣n = un−un−1

∆t
, (10)

1Therefore, the consequence of this formulation is that beta is explicit while the rest is implicit. The longer the fluid resolution without updating the granular
phase, the larger the associated error with this assumption.
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where for simplicity the averaged streamwise fluid velocity is written u, and un denotes the (unknown) velocity at the present
time step, while un−1 denotes the (known) velocity at the previous time step. The equation should also be discretized spatially,
and the spatial derivative reads for an upwind scheme on a staggered grid:

∂u
∂ z

∣∣∣∣n
i
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i−1/2

∆zi
. (11)

Where ∆zi is the space between the two velocity un
i+1/2 and un

i/2. With these expressions, equation (9) expressed at the velocity
node i+1/2 reads:
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The first term on the left hand side can be expanded as:
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For the first term on the right hand side, the equations are solved at the velocity node so that the full derived term should be
evaluated at i+1/2. This way, it can be expanded (upwind scheme):
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where dzi is the space between node i and i+1 defined by the adopted mesh, and ∆zi is the space between the velocity positions
defined by (see figure 2):

∆zi =
dzi +dzi−1

2
. (15)

This distinction might seem secondary when considering a regular grid. However, it will appear to play a (non-negligible) role
when considering the boundaries. Considering a similar logic we obtain for the second term on the right hand side of equation
(12):
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With this expansion and considering a similar logic for the second term on the right hand side, equation (12) can be rewritten:
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. (17)

The last thing is now to express the effective and turbulent viscosities in this frame. Recalling the formulation of the
turbulent viscosity (equation 4) and assuming a linearly dependant Einstein’s (4) effective viscosity we get:

ν
e|ni = ν

f (1+2.5φ)
∣∣n
i = ν

f (1+2.5φ
n
i ) (18)

ν
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with

lm|ni = κ

i

∑
j=0

φ max−φ n
j−1/2

φ max dz j−1 (20)

and φ n
j−1/2 the solid volume fraction defined between node j−1 and j, and dz j−1 the space between node j−1 and j.
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3.2 Matricial system to solve
From equations (17) to (20), we can form a matricial system to solve the new fluid velocity profile. Indeed, gathering first the
element by indices, it gives:
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)
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)
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Multiplying by ∆t, dividing by ρ f , moving all the terms at time n to the left and the rest to the right, we obtain:
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n
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)
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n
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n
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And in order to respect the formulation at the boundaries (see below), we can write it as:

a[i+1] un
i−1/2 +b[i+1] un

i+1/2 + c[i+1] un
i+3/2 = s[i+1] (23)

with

a[i+1] =−
∆t εn

i+1/2

dzi

νe|ni
∆zi
− ∆t

dzi

εn
i ν t |ni
∆zi

(24)

b[i+1] =
∆t εn

i+1/2

dzi

νe|ni+1

∆zi+1
+

∆t εn
i+1/2

dzi

νe|ni
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+
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dzi
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i+1ν t |ni+1

∆zi+1
+

∆t
dzi

εn
i ν t |ni
∆zi

+ ε
n
i+1/2 +

∆t
ρ f β

n
i+1/2 (25)

c[i+1] =−
∆t εn

i+1/2

dzi

νe|ni+1

∆zi+1
− ∆t

dzi

εn
i+1ν t |ni+1
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s[i+1] = un−1
i+1/2 ε

n
i+1/2 + ε

n
i+1/2∆t g sinα +

∆t
ρ f β

n
i+1/2 vn

i+1/2 (27)

This system can be written in a matricial form

MUn = S, (28)

Where M is a (ndimz+1) x (ndimz+1) tri-diagonal matrix formed by:

M =


a[0] b[0] c[0] 0 0 0 0 ... 0

0 a[1] b[1] c[1] 0 0 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... 0 a[i] b[i] c[i] 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... 0 0 0 0 a[ndimz] b[ndimz] c[ndimz]

 (29)
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and Un the (unknown) fluid velocity vector of size ndimz+1

Un = (Un
0 ,U

n
1 ,U

n
2 , ...,U

n
i−1,U

n
i ,U

n
i+1, ...,U

n
ndimz−1,U

n
ndimz)

= (un
0,u

n
1/2,u

n
1+1/2, ...u

n
i−1/2,u

n
i+1/2,u

n
i+3/2, ...u

n
ndimz−1/2,u

n
ndimz) (30)

S = (S0,S1,S2, ...,Si−1,Si,Si+1, ...,Sndimz−1,Sndimz)

= (s[0],s[1],s[2], ...,s[i−1],s[i],s[i+1], ...,s[ndimz−1],s[ndimz]) (31)

Where ndimz+1 is the number of mesh points, and 0 and ndimz denotes the bottom and top boundary conditions respectively.
From equation (28), we can deduce the fluid velocity by inverting the tri-diagonal matrix M and evaluating:

Un = M−1S. (32)

The inversion of a tri-diagonal matrix is rather simple and is done in YADE with a double-sweep algorithm (3).

3.3 Boundaries and boundary conditions
The velocities are defined in between the nodes; however, at the boundaries, the velocity needs to be defined at the nodes to
prescribe boundary conditions (see figure 3). Therefore as can be seen on figure 3 for a regular mesh, the formulation of ∆zi is
changing for 0 and ndimz -1:

∆z0 =
dz0

2
, (33)

∆zndimz−1 =
dzndimz−2

2
. (34)

1

2

3

0

1+1/2

2+1/2

1/2

Bottom Top

ndimz-1

ndimz-1/2

ndimz-2

Figure 3. Schematical picture of the numerical fluid resolution and variables definition at the boundaries with a regular mesh.
All the definitions still holds for a mesh with variable spatial step.

In addition, at the bottom, the matrical equation becomes:

a[0] Un
−3/2 +b[0] Un

−1/2 + c[0] Un
1/2 = s[0], (35)
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which can be rewritten by identifying Un
−1/2 =Un

0 :

a[0] Un
−3/2 +b[0] Un

0 + c[0] Un
1/2 = s[0], (36)

where a[0] should be kept to zero in order to remove the non-existing term in −3/2. Similarly, we have at the top:

a[ndimz] Un
ndimz−1/2 +b[ndimz] Un

ndimz + c[ndimz] Un
ndimz+3/2 = s[ndimz], (37)

with the condition c[ndimz] = 0. In order to impose either a velocity (Dirichlet, fixed) or zero velocity-gradient (Neumann,
free-surface) at the boundaries , we need to have:

Un
0 =Ubot

imposed or Un
0 =Un

1/2 at the bottom, (38)

Un
ndimz−1 =U top

imposed or Un
ndimz−1 =Un

ndimz−2 at the top. (39)

In terms of matricial form, this means for the bottom

a[0] = 0 , b[0] = 1 , c[0] = 0 and s[0] =Ubot
imposed , (40)

for an imposed velocity, or

a[0] = 0 , b[0] = 1 , c[0] =−1 and s[0] = 0, (41)

for a zero velocity gradient. Similarly, we can impose a velocity at the top by setting

a[ndimz] = 0 , b[ndimz] = 1 , c[ndimz] = 0 and s[ndimz] =U top
imposed , (42)

or impose the velocity gradient to be zero by setting

a[ndimz] = 1 , b[ndimz] =−1 , c[ndimz] = 0 and s[ndimz] = 0. (43)

Application example Commonly, we use a no-slip boundary condition at the bottom, and a free-surface one at the top. In
this case, let us express the equations at the top and at the bottom, in order to image clearly the resolution. At the bottom, we
have for i = 0:

a[0]Un
−3/2 +b[0]Un

0 + c[0]Un
1/2 = s[0] (44)

with

a[0] = 0 , b[0] = 1 , c[0] = 0 and s[0] =Ubot
imposed , (45)

For i = 1,

a[1]Un
0 +b[1]Un

1/2 + c[1]Un
3/2 = s[1], (46)

with a[1], b[1], c[1], s[1] given by equation 54-57 with i = 0, reading :

a[1] =−
∆t εn

1/2

dz0

νe|n0
∆z0
− ∆t

dz0

εn
0 ν t |n0
∆z0

(47)

b[1] =
∆t εn

1/2

dz0

νe|n1
∆z1

+
∆t εn

1/2

dz0

νe|n0
∆z0

+
∆t
dz0

εn
1 ν t |n1
∆z1

+
∆t
dz0

εn
0 ν t |n0
∆z0

+ ε
n
1/2 +

∆t
ρ f β

n
1/2 (48)

c[1] =−
∆t εn

1/2

dz0

νe|n1
∆z1
− ∆t

dz0

εn
1 ν t |n1
∆z1

(49)
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s[1] = un−1
1/2 ε

n
1/2 + ε

n
1/2∆t g sinα +

∆t
ρ f β

n
1/2 vn

1/2 (50)

In which the value of ∆z0 should be taken as dz0/2, and the evaluation of φ n
0 at the node 0 should be made in order to determine

εn
0 and νe|n0. In the latter two cases, φ n

0 is taken equal to φ n
1/2, and all the expressions can be evaluated. At step i = 2, there are

no more differences with respect to the classical evaluation of the matrices, as no terms in 0 appears. At the top of the sample,
the last equation is performed on node ndimz−1, i.e.
for i = ndimz−1:

a[ndimz] un
ndimz−3/2 +b[ndimz] un

ndimz−1/2 + c[i+1] un
ndimz+1/2 = s[ndimz], (51)

i.e.,

a[ndimz] un
ndimz−3/2 +b[ndimz] un

ndimz−1 + c[ndimz] un
ndimz+1/2 = s[ndimz]. (52)

where we impose a free-surface by setting a[ndimz] = 1, b[ndimz] =−1, c[ndimz] = 0, s[ndimz] = 0.

For i = ndimz−2, we have then:

a[ndimz−1] un
ndimz−5/2 +b[ndimz−1] un

ndimz−3/2 + c[ndimz−1] un
ndimz−1 = s[ndimz−1], (53)

with

a[ndimz−1] =−
∆t εn

ndimz−3/2

dzndimz−2

νe|nndimz−2

∆zndimz−2
− ∆t

dzndimz−2

εn
ndimz−2ν t |nndimz−2

∆zndimz−2
(54)

b[ndimz−1] =
∆t εn

ndimz−3/2

dzndimz−2

νe|nndimz−1

∆zndimz−1
+

∆t εn
ndimz−3/2

dzndimz−2

νe|ni
∆zi

+
∆t

dzndimz−2

εn
ndimz−1ν t |nndimz−1

∆zndimz−1
+

∆t
dzndimz−2

εn
i ν t |ni
∆zi

+ ε
n
ndimz−3/2 +

∆t
ρ f β

n
ndimz−3/2 (55)

c[ndimz−1] =−
∆t εn

ndimz−3/2

dzndimz−2

νe|nndimz−1

∆zndimz−1
− ∆t

dzndimz−2

εn
ndimz−1ν t |nndimz−1

∆zndimz−1
(56)

s[ndimz−1] = un−1
ndimz−3/2 ε

n
ndimz−3/2 + ε

n
ndimz−3/2∆t g sinα +

∆t
ρ f β

n
ndimz−3/2 vn

ndimz−3/2 (57)

In which the value of ∆zndimz−1 should be taken as dzndimz−2/2 (see explanation above), and the evaluation of φ n
ndimz−1 at the

node ndimz−1 should be made in order to determine εn
ndimz−1 and νe|nndimz−1. In the latter two cases, φ n

ndimz−1 is taken equal to
φ n

ndimz−3/2, and all the expressions can be evaluated. At step i = ndimz−3, there are no more differences with respect to the
classical evaluation of the matrices, as no terms in ndimz−1 appears.

3.4 Implementation
In the formulation of the code, we have to be carefull with the size and the starting point of the different vectors we are dealing
with. In particular, the velocity is defined in between the nodes, but also at the boundaries, so that its length is ndimz+1, with
ndimz the number of scalar nodes. In comparison, the solid (or fluid) volume fraction is evaluated only at the velocity nodes so
that its length is ndimz−1. But more importantly, phi[ j] does not correspond to u f n[ j], as the velocity starts at zero while the
solid volume fraction starts at 1/2. To image this, we can write the solid volume fraction and velocity vectors

φ
n = (φ n

0 ,φ
n
1 ,φ

n
2 , ...,φ

n
i−1,φ

n
i ,φ

n
i+1, ...,φ

n
ndimz−2) = (φ n

1/2,φ
n
1+1/2, ...,φ

n
i+1/2,φ

n
i+3/2,φ

n
i+5/2, ...φ

n
ndimz−3/2) (58)

Un = (Un
0 ,U

n
1 ,U

n
2 , ...,U

n
i−1,U

n
i ,U

n
i+1, ...,U

n
ndimz−1,U

n
ndimz)

= (un
0,u

n
1/2,u

n
1+1/2, ...u

n
i−1/2,u

n
i+1/2,u

n
i+3/2, ...u

n
ndimz−1/2,u

n
ndimz) (59)
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We see clearly there that φ n
0 = φ n

1/2 while Un
0 = un

0, or in a more general form that, φ n
j = φ n

j+1/2 while Un
j = un

j−1/2. More
generally, all the quantities evaluated in the DEM, i.e. the solid volume fraction φ n, the averaged drag term β n, the solid
velocity vn, as well as the step definition vector (dsig in the code) are of size ndimz−1 and follow the same behavior as the
solid volume fraction presented here. Meanwhile, the fluid velocity at time step n and n+1 are of dimension ndimz+1 and
follows the pattern exposed above. In between, the scalar node position vector (called sig in the code) is of size ndimz, as well
as the turbulent and effective viscosity vectors. The latter are defined as

ν
n = (νn

0 ,ν
n
1 ,ν

n
2 , ...,ν

n
i−1,ν

n
i ,ν

n
i+1, ...,ν

n
ndimz−1) = (νn

0 ,ν
n
1 ,ν

n
2 , ...ν

n
i−1,ν

n
i ,ν

n
i+1, ...ν

n
ndimz−2,ν

n
ndimz−1) (60)

as they are defined at the nodes. Therefore, when considering the matricial formulation exposed above, a,b,c and s should be
implemented in the following way:

f o r ( j =1 ; j<nCe l l −2; j ++){
/ / g r i d s t e p and volume f r a c t i o n i n t e r p o l a t i o n ( s t a g g e r e d g r i d )
d e l t a z j = 0 . 5 * ( d s i g [ j ]+ d s i g [ j −1]) ;
d e l t a z j p 1 = 0 . 5 * ( d s i g [ j ]+ d s i g [ j + 1 ] ) ;
d z j = d s i g [ j ] ;
e p s i l o n n o d e j = 0 . 5 * ( e p s i l o n [ j ]+ e p s i l o n [ j −1]) ;
e p s i l o n n o d e j p 1 = 0 . 5 * ( e p s i l o n [ j ]+ e p s i l o n [ j + 1 ] ) ;

/ / I n t e r e s t i n g q u a n t i t i e s t o compute
t e r m e V i s c o j = d t * e p s i l o n [ j ] / d z j * v i s c o e f f [ j ] / d e l t a z j ;
t e r m e V i s c o j p 1 = d t * e p s i l o n [ j ] / d z j * v i s c o e f f [ j + 1 ] / d e l t a z j p 1 ;
t e r m e T u r b j = d t / d z j * e p s i l o n n o d e j * v i s c o f t [ j ] / d e l t a z j ;
t e r m e T u r b j p 1 = d t / d z j * e p s i l o n n o d e j p 1 * v i s c o f t [ j + 1 ] / d e l t a z j p 1 ;

a [ j +1] = − t e r m e V i s c o j − t e r m e T u r b j ; / / eq . 24
b [ j +1] = t e r m e V i s c o j p 1 + t e r m e V i s c o j + t e r m e T u r b j p 1 + t e r m e T u r b j

+ e p s i l o n [ j ] + d t * t a u f s i [ j ] ; / / eq . 25
c [ j +1] = − t e r m e V i s c o j p 1 − t e r m e T u r b j p 1 ; / / eq . 26
s [ j +1]= ufn [ j +1]* e p s i l o n [ j ] + e p s i l o n [ j ]* d t * s t d : : abs ( g r a v i t y [ 0 ] )

+ d t * t a u f s i [ j ]* us [ j ] ; / / eq . 27

excluding the two cases before the boundary j = 0 (corresponding to a[1],b[1],...) and j = nCell− 2 (corresponding to
a[nCell−1],b[nCell−1],...). In the former case, j−1 =−1) is not defined for any quantities so that epsilon node j is taken
as the value of epsilon at node 1/2 (epsilon[0]), and by definition (see figure 3) deltaz 0 = 0.5∗dsig[0]. Similarly at the top
( j = nCell−2), deltaz jp1 = 0.5∗dsig[nCell−2], and epsilon node jp1 = epsilon[nCell−2]

4 Conclusion
Building the matricial system from the 1D fluid momentum balance equation and solving it, we can obtain the volume-averaged
fluid velocity profile at the next time step. Therefore, this process can be performed over a given number of time step
to simulate the evolution of the fluid velocity profile over a given time. This is what is done in YADE when calling the
fluidResolution(tsimu,dt) of HydroForceEngine, which perform the described numerical fluid resolution N = tsimu/dt times with
a time step dt. The practical detail of the coupling with DEM using YADE and of the use of HydroForceEngine are detailed in
(8).
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