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ABSTRACT
Various  forms  of  discrete  models,  such  as  lattice  or 
particle models, are becoming increasingly popular in 
applications  to  highly  nonlinear problems  with  large 
changes of the initial geometry. Such models consist of 
a  finite  number  of  “discrete  elements”  connected  by 
links  capturing  all  deformation  processes,  which  are 
described by suitable constitutive equations formulated 
on  the  microscopic  level.  Parameters  of  these 
equations must be calibrated such that the entire model 
exhibits a realistic behavior on the macroscopic scale.

In this contribution, the relation between the elastic 
parameters governing the behavior of a single link and 
the resulting macroscopic elastic properties of particle 
models is investigated. The model considered here is 
three-dimensional, consisting of spherical rigid particles 
connected by interfaces that can transmit normal and 
shear stress. Calibration of the constitutive equations is 
simplified  by  dimensional  analysis  and  is  based  on 
numerical  simulations  of  a  representative  cell  with 
periodic boundary conditions.
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INTRODUCTION
Although the finite element method (FEM) is the most 
widely  used  tool  for  numerical  analysis  and 
computations  across all  engineering branches,   other 
computational  approaches  (e.g.  discrete  models)  can 
be useful in special cases.

Discrete  models  were  originally  developed  for  soil 
mechanics to simulate granular assemblies (Cundall and 
Strack,  1979),  with  individual  grains  modeled  by 
particles.  Since  then,  many  different  concepts  and 
extensions  of  particle  models  appeared,  e.g.  beam-
based lattice models (Schlangen and Garboczi,  1996), 
the discrete element method - DEM (Kun and Herrmann, 
1996;  Tavarez  and  Plesha,  2007),  as  well  as  their 
applications, for example in simulations of fluid flow or 
analysis  of  macroscopically  continuous  cohesive-
frictional materials like concrete.

In general, discrete models are composed of certain 
elementary  units  (building  blocs,  discrete  elements) 
connected by deformable links. The elementary units can 
have the form of material points (with or without mass 
and inertia) or particles of finite size and specific shape, 
and  are  usually  considered  as  perfectly  rigid.  All 

deformation  processes are then captured by  the  links 
(connections,  interfaces)  and  depend  on  mutual 
displacement (or rotation) of connected elementary units. 
Using an appropriate constitutive law, the internal forces 
transmitted by each link are evaluated. According to the 
type of analysis, static equilibrium equations are solved 
(in static problems), or total forces acting on particles are 
evaluated and the equations of motion are integrated (in 
dynamic problems).

The constitutive laws can take various forms, from 
basic  linear  elasticity  to  linear  or  nonlinear  viscosity, 
plasticity,  damage etc.  By  their  nature  (modeling  of  a 
discontinuum),  discrete  models  are  suitable  for  highly 
discontinuous  problems,  such  as  crushing,  massive 
cracking, impact problems etc. (Sawamoto et al., 1998; 
Liu et al., 2004).

CONSIDERED PARTICLE MODEL
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Fig. 1. 2D representation of contact stiffness (left) and 
contact displacement (right).

Brief Description
The particle model investigated in this paper consists of 
rigid spheres with uniform radius R connected by links 
that can transmit normal stress and shear stress. The 
links  connect  centers of  particles  and  can  be 
represented by  bars  with  length  L and cross  section 
area 

A=R2   (1)

Each  particle  possesses  six  degrees  of  freedom, 
three  translations  and  three  rotations.  From  the 
displacements of a connected couple of particles
u = {u1, v1, w1, φ1x, φ1y, φ1z, u2, v2, w2, φ2x, φ2y, φ2}T

the relative contact displacements  ∆LN and ∆LS and the 
equivalents strains



ε = {εN, εS}T = {∆LN, ∆LS1, ∆LS2}T/L can be evaluated. This 
kinematic relation is written in matrix form  

ε = Bu,   (2)

where B is the strain-displacement matrix.
The normal  and shear  contact  (internal)  forces  FN 

and  FS are  related  to  the  normal  and shear  contact 
displacements  ∆LN and  ∆LS through  the  elastic 
constitutive contact laws

FN=
AkN

L
 LN   (3)

FS=
Ak S

L
LS   (4)

in which   kN and kS  are the normal and shear contact 
stiffnesses; see Figure 1 for illustration.

Another important parameter of the model is the so-
called interaction radius Rint that defines which particles 
are connected by links. The link between two particles 
is introduced if  the distance between their centers,  L, 
does not exceed  2Rint. For  Rint  =R, only particles that 
are in direct contact are connected, which results into a 
rather loose internal structure.

Micro-macro relationship of material parameters
In a cube of dimension C and volume V=C3 consider a 
random,  densely  packed  assembly  of  spherical 
particles with radius  R. If the number of particles  N is 
high  enough,  the  assembly  behaves  macroscopically 
as an isotropic material. The elastic properties of that 
material are determined by two material constants, for 
example Young's modulus E and Poisson ratio ν.

In  a  very  general  case,  we  can  express  the 
macroscopic  material  properties  as  functions  of  all 
relevant variables: 

E = fE (kN, kS, R, Rint, C, N, A, L)   (5)
ν = fν (kN, kS, R, Rint, C, N, A, L).   (6)

Using  dimensional  analysis  we  can  identify  two 
dimensionally  independent  variables  (e.g.  kN and  R) 
and  one  dimensionless  variables  N.  Applying 
Buckingham  π theorem, we can rewrite equations (5) 
and (6) in terms of new dimensionless variables as

E
kN

=E k S

k N

, R2

A
, R
C

,
Rint

R
,N ,    (7)

=
 k S

kN

, R2

A
, R
C

,
R int

R
,N.   (8)

Based  on  physical  considerations,  most  of  the 
dimensionless variables on the right side of (7) and (8) 
can be eliminated.

In  principle,  the  number  of  particles  N could  be 
considered as independent of the relative particle size 
R/C.  However,  we  are  interested  in  the  behavior  of 
densely  packed  assemblies  of  particles,  which  are 
prepared by a simulated compaction process. It turns 
out  that,  for  large  values  of  N,  the  packing  fraction 
4πNR3/3C3  tends to a constant, approximately equal to 
0.625,  which  is  close  to  the  value  0.64  (theoretical 

maximum  packing  fraction  for  random close  packing 
(Torquato  et  al.,  2000));  see  Figure 2.  Therefore,  the 
ratio R/C for such dense assemblies can be determined 
from  N  and  does  not  need  to  be  considered  as  an 
independent variable.

Fig.  2.  Packing  fraction of  random  close  packed 
assemblies for varying N.

Furthermore, as N  tends to infinity, the macroscopic 
properties  approach  a  certain  limit,  which  represents 
the  effective  properties  of  an  equivalent  elastic 
continuum.  If  it  is  chosen  sufficiently  high,  the 
corresponding periodic cell is a representative volume 
element and its properties are close to the theoretical 
limit. Therefore, N does not need to be considered as a 
variable influencing the results, it just has to be chosen 
sufficiently high.

Fig.  3.  Relative  anisotropy  of  Young's  modulus  ∆E/E 
(see equation (25)) for Rint /R = 1.6 for varying N.

The ratio  R2/A is  taken as  constant,  according  to 
equation (1). Even if it was not, the dependence of the 
macroscopic  properties  on  this  ratio  would  be  very 
simple. Young's modulus (or any other elastic stiffness) 
would be inversely proportional to R2/A and the Poisson 
ratio would not depend on it at all.

After  all  these considerations,  we can rewrite  the 
relationship between macro- and microscopic material 
parameters as

E
kN

=E k S

k N

,
Rint

R  ,   (9)

=
 k S

kN

,
R int

R . (10)

Theoretical analytical solution
In  analogy  to  microplane  models,  an  analytical 
derivation of tensor of macroscopic elastic stiffness  De 

presented by Kuhl et al. (2001) yields 



De=
1
V ∑c

ALc kN Nc⊗ Nck S T c
T⋅T c  , (11)

where  c is  a subscript  identifying individual  links,  the 
sum is  taken  over  all  links  in  the  cell. N and  T are 
projection tensors given by

N=n⊗n , (12)
T=n⋅IS−n⊗n⊗n , (13)

where n is a unit vector specifying the direction of the 
link,  IS is  the  symmetric  fourth-order  unit  tensor  (IS

ijkl  

=[δikδjl+δilδjk]/2),  δij is  the  Kronecker  delta. Under  the 
assumption that  the links are distributed with uniform 
probability  over  all  possible  directions,  the  following 
expression can be derived (see Kuhl et al.,  2001, for 
more details):

De=
A∑ c Lc

4V
∫


kN Nc⊗Nck S T c
T⋅T c d=

=
A∑ cLc

5V
kN−k S IV

A∑ c Lc

15V
2kN3kS IS , (14)

Here, IV is the fourth-order volumetric projection tensor 
(IV

ijkl =  1/3  δijδkl).  Comparing  equations  (14)  with  the 
elastic isotropic stiffness tensor

De=
3 E

11−2
IV

E
1

IS , (15)

we  can  write  the  final  relation  between  macroscopic 
material  properties  E  and  ν and microscopic  model 
parameters kN and kS as

=
kN−k S

4k Nk S
(16)

E
kN

=
A∑ c Lc

3V

23 k S

k N

4k S

k N

. (17)

NUMERICAL SIMULATIONS
Numerical analyses have been performed for a number 
of  randomly  generated  periodic  particle  assemblies. 
These  assemblies  have  been  prepared  by  a 
compaction process simulated using the open-source 
discrete element code YADE (Šmilauer, 2010). For the 
actual  analysis,  however,  the  finite  element  solver 
OOFEM  (Patzák  and  Bittnar,  2001)  has  been  used. 
This  code  allows  a  direct  solution  of  the  static 
equilibrium  equations,  which  is  faster  than  dynamic 
discrete element analysis  performed with  YADE,  with 
inertial  effects  gradually  removed  by  damping.  Even 
though OOFEM is  a framework for the finite  element 
method, discrete elements can be easily implemented 
as  a  “pseudo-truss”  structure,  in  which  particles  and 
links of the discrete model  are considered as special 
nodes  and  elements  of  the  finite  element  model.  Of 
course,  the  present  elastic  static  problem  is  not  a 
typical case in which DEM would be used. However, 
this  step  is  necessary  for  calibrating  the 
aforementioned microscopic parameters of the model, 
to be used in more complicated problems, for instance 
those that involve impact and fragmentation.

The  implementation  of  the  model  into  the  finite 
element  solver  OOFEM consisted  in  defining  special 
elements representing links. In this context, we would 
like  to  emphasize  the  advantages  provided  by  the 
object-oriented architecture of OOFEM.

The FEM analysis of such particle model is based 
on  equations  (2),  (3)  and  (4).  By  combining  these 
equations,  the  stiffness  matrix  of  element  number  e 
takes the form

Ke = LBTDB, (18)

where

D=[
kN 0 0
0 k S 0
0 0 k S

] . (19)

is the material stiffness matrix of the element.

Periodic boundary conditions

Fig. 4. 2D example of periodic cell and “periodic” links.

Numerical  simulations  have  been  done  on  a 
representative  cell  with  periodic  boundary  conditions. 
The implementation of the periodic boundary conditions 
is analogous to the implementation described by Grassl 
and Jirásek (2010). Elements crossing the boundary of 
the bounding cube (connecting one particle inside the 
cell with another particle physically located in one of the 
neighboring  cells)  is  modified   in  a  special  way. 
Consider such an element connecting particles J' and K 
and  a  corresponding  element  connecting  periodic 
images of  these particles,  denoted as  J  and  K' (see 
Figure 4). Both elements are real links of the structure, 
but for the analysis purposes only one of them is taken 
into account when setting up the equilibrium equations 
(in our example we chose link  JK'). Periodic boundary 
conditions  are  imposed  by  the  set  of  constraint 
equations that contain the components of macroscopic 
deformation E = {Ex, Ey, Ez, Eyz, Ezx, Exy}T:
 
uK' = uK + ExkxC + ExykyC
vK' = vK + EykyC + EyzkzC
wK' = wK + EzkzC + EzxkxC
φxK' = φxK (20)
φyK' = φyK

φzK' = φzK.



C is the dimension of the cubic periodic cell, constants 
k have values -1, 0 or 1 and specify the position of the 
particle outside the cell according to the relations

xK' = xk + kxC
yK' = yk + kyC (21)
zK' = zk + kzC.

Using  equations  (20)  and  (21),  the  displacement  of 
connected particles K and J' (periodic image of particle 
J)  can  be  written  in  terms  of  the  displacements  of 
particles J and K and the macroscopic deformation as

{uK

uJ '
}=T {

uK

uJ

E }. (22)

The upper block (first 12x12 components out of 18x12) 
of  the  transformation  matrix  T corresponds  to  the 
identity  matrix,  and the only  non-zero components  of 
the lower block are in rows 7-9 and in columns 13-18:

13 14 15 16 17 18

T7−9;13−18 =

7

8

9
[

k xC 0 0 0 0 k yC
0 k yC 0 k zC 0 0
0 0 k zC 0 k xC 0 ] (23)

Using the transformation matrix T, the modified stiffness 
matrix of the “periodic” elements (with 18 rows and 18 
columns) can be expressed in the form 

Ke = LTTBTDBT. (24)

The  components  of  macroscopic  deformation  E are 
therefore considered as global degrees of freedom. The 
corresponding “load” components are directly related to 
the  macroscopic  stress (they are equal  to  the  stress 
components multiplied by the volume of the cell).

To prevent displacement of the assembly as a rigid 
body, one particle need to be “supported” by setting its 
three displacements to zero.

Computations
Several  particle  assemblies  have been analyzed and 
the  macroscopic constants  E and  ν have  been 
evaluated for a number of values of the dimensionless 
ratios Rint /R and kS/kN.

For  each  assembly,  six  simulations  have  been 
performed. In each simulation, one component of  the 
macroscopic deformation  E has been set to one while 
all  the  others  have  been  prescribed  as  zeros.  The 
individual components of the macroscopic stress then 
represent  the  coefficients  in  one  column  of  the 
macroscopic stiffness matrix De.

The  resulting  material  is  first  considered  as 
orthotropic, with compliance matrix Ce (25), from which 
material parameters E1,  E2,  E3,  ν12,  ν21,  ν13,  ν31,  ν23,  ν32 

are easily extracted. In the ideal case of an isotropic 
material, all  Young's moduli and Poisson ratios would 
be identical.  To  verify  that  the  results  indeed closely 
correspond to an isotropic behavior is one of the goals 
of this paper.

Ce=De
−1=[

1
E1

−
21

E2

−
31

E 3

0 0 0

−
12

E1

1
E2

−
32

E 3

0 0 0

−
31

E1

−
32

E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

] (25)

To  introduce  an  objective  measure,  the  “relative 
anisotropy” of macroscopic Young's modulus

E /E=
max i {∣E i−Emean∣}

Emean
(26)

is defined. The dependence of the relative anisotropy 
on the number of particles (and thus on the size of the 
cell) is shown in Figure 3. As expected, with increasing 
number  of  particles  the  deviation  of  the  moduli  from 
isotropy diminishes. 

In a similar way, the relative anisotropy of Poisson 
ratio

/=
maxij {∣ij−mean∣}

mean

, (27)

and of the shear modulus

G/G=
maxi {∣Gi−Emean /21mean∣}

Emean /21mean
(28)

have been defined.  Also,  a measure of  the deviation 
of those components of the stiffness matrix that should 
vanish has been defined as 

/E=
maxij { Dij }

Emean

. (29)

RESULTS AND DISCUSSION
Firstly, macroscopic isotropy and stability of results for 
a variable number of particles N has been studied. The 
findings can be summarized as:
• The mean material  parameters  E  and  ν are almost 

independent on the number of particles, even for  N 
less  than  100.  For  more  than  200  particles  per 
periodic cell, the values of mean material parameters 
do not change for any type of simulation (I.e., for any 
ratio kS /kN and any interaction radius Rint).

• The  relative  anisotropy  of  Young's  modulus 
decreases with increasing number of particles. The 
convergence is faster for higher Rint /R and for higher 
kS /kN.

• The  relative  anisotropy  of  Poisson  ratio  ν has  a 
similar trend: for an increasing number of particles its 
relative anisotropy decreases. In contrast to the case 
of  Young's  modulus,  the  slowest  (or  even  no 
convergence at all) has been observed for ratio kS/kN 

close to 1. This is caused by the fact that for kS /kN=1 
the Poisson ratio ν has a theoretical value 0 and the 
relative error is therefore higher.



• The  theoretically  vanishing  components  of  the 
stiffness  matrix  of  the  macroscopic  material  are 
indeed almost zero, again for increasing N the error 
is  smaller.  Faster  convergence has  been observed 
on samples with higher Rint  /R and for kS /kN closer to 
1.

• The relative error of the formula  G = E/2(1+ν ) gets 
smaller for increasing  N. The convergence is faster 
for kS /kN closer to 1.

• All  of  the  general  trends  described  above  are 
consistent with our expectations.

Secondly,  the  relation  between  the  micro-  and 
macroscopic material  parameters has been observed. 
The mean values of parameters have been considered 
as  the  numerical  results.  The  numerical  relation 
between macro- and microscopic parameters has been 
constructed for several values of  Rint  /R and compared 
to  the  theoretical  values.  In  graphs,  points  represent 
numerically  obtained  data  and  lines  represent  the 
theoretical dependence.

Fig.  5.  Relation  between  macro-  and  microscopic 
parameters for  Rint /R= 1.05 (semilogarithmic plot).

As seen from the graphs, the agreement between 
theoretically and numerically obtained data is very good 
for higher   Rint  /R.  On the other hand, the theoretical 
formula  underestimates  the  actual  (numerically 
determined) values of  Poisson ratio and overestimates 
the actual values of Young's modulus for  Rint /R <1.3.

For all values of  Rint /R, the value of Poisson ratio in 
the limit case for  kS  /kN → ∞ (kN = 0) is  -1 (extreme 
theoretical value for Poisson ratio), while the maximum 
attainable  value  is  1/4  for  higher  Rint  /R,   which 
corresponds  to  equation  (16).  A higher  value,  up  to 
0.343, is obtained for Rint /R = 1.05.

Fig.  6.  Relation  between  macro-  and  microscopic 
parameters for  Rint /R= 1.3 (semilogarithmic plot).

Fig.  7.  Relation  between  macro-  and  microscopic 
parameters for  Rint /R= 1.6 (semilogarithmic plot).



Fig.  8.  Relation  between  macro-  and  microscopic 
parameters for  Rint /R= 5.0 (semilogarithmic plot).

                                                              Rint /R=1.05
                                                              Rint /R=1.3
                                                              Rint /R=1.6
                                 Rint /R=5.0   

Fig. 9. Relation between Poisson ratio and microscopic 
parameters for all investigated values Rint /R.

CONCLUSIONS
A  particle  model  consisting  of  randomly  placed  and 
densely packed  rigid spheres connected by deformable 
linear elastic links has been investigated in this paper. It 
has been proven that such a random assembly behaves 
macroscopically as an isotropic material and deviations 
from the isotropy  decrease with  increasing number of 
particles of the assembly. The convergence is faster for 
a higher interaction radius.

The relationship between microscopic parameters of 
individual  links  and  effective  properties  of  the 
macroscopic  material  has  been  investigated  both 
numerically and analytically. A good agreement between 
analytical and numerical results has been found for high 
interaction radii, while for  interaction radius less than 1.3 
times  the  particle  radius  the  theoretical  formula 
underestimates Poisson ratio and overestimates Young's 
modulus.
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