Simulations of fracture process in concrete using a 3D lattice model

J. Kozicki, J. Tejchman Laboratoire 3S – R, Grenoble Universities & Faculty of Civil and Environmental Engineering, Gdańsk University of Technology

- Engineering materials such as sand, concrete, rock, ceramics and polymers have common properites:
 - heterogenity
 - anizotropy
 - discrete structure
 - nonlinear behaviour
- Two kinds of numerical models are commonly used:
 - continuum models (within fracture, damage, softening plasticity mechanics),
 - discrete models (molecular dynamics, discrete element method, <u>lattice models</u>).

Structure of concrete

Aim

- The goal is to create a three dimensional discrete lattice model to describe the behavior of quasi-brittle materials.
- Investigate the effect of aggregates and interfacial zones on the 3D fracture process.
- Investigate the size effect on 3D speciemens subject to uniaxial tension

To describe the fracture process in concrete on the scale of cement matrix and aggregates (meso scale) a lattice model was applied.

Original lattice model (Vervuut et al. 1994)

matrix

The body is discretized into a mesh of discrete beams.

Implicit FEM method is used

Different stiffness and strengths are assigned to various phases.

- Own model the idea of truss lattice was enchanced by angular stiffnesses that control the rigidity of nodes (bending, shearing and torsion).
- It is an approach between a truss (nodes not fixed) and a frame (fixed nodes). The rods that connect nodes do not bend, they are connected by angular springs instead.

Connection of rods at the node

• Elements are removed when critical tensile \mathcal{E}_{min} strain is exceeded

Displacement and rotation (2D)

- ΔW movement, ΔR rotation,
- ΔD change of length due to longitudinal stiffness (k_l),
- ΔB rotation due to bending stiffness (k_b)

Calculating node displacement

$${}^{j}\Delta\vec{X} = \sum_{i} \frac{i\Delta\vec{W} + i\Delta\vec{R}}{j_{n_{sum}}} + \frac{\sum_{i} \frac{1}{id_{init}} \left(i\Delta\vec{D}_{i}k_{l} + i\Delta\vec{B}_{i}k_{b} + i\Delta\vec{T}_{i}k_{t}\right)}{\sum_{i} \frac{1}{id_{init}} \left(ik_{l} + ik_{b} + ik_{t}\right)}$$

summation over rod index 'i'

 $_{i}d_{init}$ – initial length of rod 'i'

 $^{j}n_{sum}$ – total number of rods connected with the node 'j'

- ΔW movement,
- ΔR rotation,
- ΔT torsional rotation due to torsional stiffness (k_t),
- ΔD change of length due to longitudinal stiffness (k_l),
- ΔB rotation due to bending stiffness (k_b)

Calculation of strain, stress and force

Strain \rightarrow Stress

$$_{i}\varepsilon = \frac{_{i}d - _{i}d_{init}}{_{i}d_{init}}$$
 $_{i}\sigma = _{i}\varepsilon E_{i}k_{l}$

Shear angle \rightarrow Shear stress

$$_{i}\gamma = \frac{\stackrel{A}{i}\alpha + \stackrel{B}{i}\alpha}{2} \quad _{i}\tau = _{i}\gamma G_{i}k_{b}$$

Bending angle \rightarrow Cosserat bending stress

$$_{i}\chi = \frac{\stackrel{A}{i}\alpha - \stackrel{B}{i}\alpha}{2} \quad _{i}m = {}_{i}\chi G_{i}d^{2}{}_{i}k_{b}$$

Calculation of section force (ε and γ are projected on normal direction of cross-section plane A)

$$F = A \sum \left(\varepsilon k_l E + \gamma k_b G\right)$$

- E Young's modulus
- G Shear modulus
- d_{i} element length
- $_{i}k_{l}$ longitudinal stiffness
- $_{i}k_{b}$ bending stiffness
- element index

Mesh generation method

Mesh generation parameters:

- g cell size [m]
- r_{max} max beam length [m]
- a min angle between beams [rad]
- s mesh irregularity [m]
 - a) s = 0
 - b) s = 0.3
 - c) s = 0.6
 - d) s = 0.6, Delaunay

Parameters used to describe the model

Group 1	Stiffness parameters	
	k _l	longitudinal stiffness [-]
	k_b	bending stiffness [-]
	k_t	torsional stiffness [-]
Group 2	Fracture parameters	
	\mathcal{E}_{min}	critical tensile strain [-]
Group 3	Mesh generation parameters	
	8	cell size [m]
	r _{max}	max beam length [m]*
	α	min angle between beams [rad]*
	S	mesh irregularity [m]

* parameters used only with non-Delaunay generation method

Effect of mesh irregularity

Effect of mesh irregularity parameter 's' on the stressstrain curve and crack pattern.

 $\alpha = 20^{\circ}, r_{max} = 2g, k_b / k_l = 0.6$ elements removed when $\varepsilon_{min} = 0.02\%$

Influence of k_b on Poisson's ratio

Ratio between bending and longitudinal stiffness $p=k_b/k_l$ determines the Poisson's ratio of the lattice mesh

Uniaxial compression (single phase)

Effect of stiffness ratio $p = k_b/k_l$ on stress-strain curve in uniaxial compression with smooth edges (elements removed when $\varepsilon_{min} = 0.02\%$)

Effect of p on fracture pattern

Effect of aggregates – three phases 2D (25%)

Effect of aggregates – three phases 2D(50%)

Effect of aggregates – three phases 2D / 3D (25% / 50%)

Uniaxial extension – 25% and 50% of aggregate volume/area

Nooru-Mohamed test (propagation of curved crack) three phase material, 2D

Size effect in numerical results (three phases 2D)

Interfacial zone: $k_1 = 0.7, k_b = 0.5, \epsilon_{min} = 0.005\%$,

Cement matrix:

Aggregate:

 $k_l = 0.01, k_b = 0.02, \quad \mathcal{E}_{min} = 0.000070,$ $k_l = 1.0, k_b = 0.7, \quad \mathcal{E}_{min} = 0.02\%$ $k_l = 3.0, k_b = 2.1, \quad \mathcal{E}_{min} = 0.0133\%$

Fracture propagation: small specimen: $10 \times 10 \text{ cm}^2$ large specimen: $20 \times 20 \text{ cm}^2$ Stress-strain curve for **2D** specimens with different sizes subject to uniaxial extension with smooth edges

Size effect in numerical results (three phases 3D)

Interfacial zone: $k_l = 0.7, k_b = 0.5, \quad \mathcal{E}_{min} = 0.005\%,$ Cement matrix: $k_l = 1.0, k_b = 0.7, \quad \mathcal{E}_{min} = 0.02\%$ Aggregate: $k_l = 3.0, k_b = 2.1, \quad \mathcal{E}_{min} = 0.0133\%$

Assuming $k_t = k_b$

Stress-strain curve for **3D** specimens with different sizes subject to uniaxial extension with smooth edges

large specimen: $10 \times 10 \times 10 \text{ cm}^3$ small specimen: $5 \times 5 \times 5 \text{ cm}^3$

Conclusions

- Lattice model allows to study fracture propagation on the scale of cement matrix and aggregates.
- The peak-load decreases with increasing particle density.
- Ductility increases with increasing aggregate size and density.
- Small particle density leads to non-linearity in the prepeak regime. High particle density leads to straight prepeak stress-strain behaviour.