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� Engineering materials such as sand, 
concrete, rock, ceramics and 
polymers have common properites:

� heterogenity

� anizotropy

� discrete structure

� nonlinear behaviour

� Two kinds of numerical models are 
commonly used:

� continuum models (within 
fracture, damage, softening 
plasticity mechanics),

� discrete models (molecular 
dynamics, discrete element 
method, lattice models).

Structure of concrete



Aim

� The goal is to create a three dimensional 
discrete lattice model to describe the behavior of 
quasi-brittle materials.

� Investigate the effect of aggregates and 
interfacial zones on the 3D fracture process.

� Investigate the size effect on 3D speciemens 
subject to uniaxial tension



To describe the fracture process in 
concrete on the scale of cement matrix 
and aggregates (meso scale) a lattice 

model was applied.



Original lattice model
(Vervuut et al. 1994)

The body is discretized into a 
mesh of discrete beams. 

matrix

bond

aggregate

Fuller
distribution

Different stiffness and strengths are 
assigned to various phases.

Implicit FEM method is used

aggregate

bond matrix



� Own model – the idea of truss lattice was enchanced by 
angular stiffnesses that control the rigidity of nodes 
(bending, shearing and torsion).

� It is an approach between a truss (nodes not fixed) and 
a frame (fixed nodes). The rods that connect nodes do 
not bend, they are connected by angular springs 
instead.

� Elements are removed when critical tensile εmin strain is 
exceeded

Connection of rods at the node



Displacement and rotation(2D)

∆W – movement, ∆R– rotation, 
∆D – change of length due to longitudinal stiffness (kl), 
∆B – rotation due to bending stiffness (kb)



Calculating node displacement

summation over rod index ‘i’

idinit – initial length of rod‘i’

jnsum – total number of rods connected with the node ‘j’

∆W – movement, 
∆R – rotation, 
∆T – torsional rotation due to torsional stiffness (kt),
∆D – change of length due to longitudinal stiffness (kl), 
∆B – rotation due to bending stiffness (kb)



Calculation of strain, stress and force

Shear angle→ Shear stress

Bending angle→ Cosserat bending stress

Strain → Stress

E – Young’s modulus        
G – Shear modulus   

id – element length         

ikl – longitudinal stiffness     

ikb – bending stiffness                              
i – element index

Calculation of section force (ε andγ are 
projected on normal direction of cross-

section plane A)



Mesh generation method

a)                         b)                          c)       d)

Mesh generation parameters:
g - cell size [m]
rmax - max beam length [m]
a -min angle between beams [rad]
s -mesh irregularity [m]

a) s = 0
b) s = 0.3
c) s = 0.6
d) s = 0.6, Delaunay



Parameters used to describe the model

mesh irregularity [m]s

Mesh generation parametersGroup 3

cell size [m]g

max beam length [m]*rmax

min angle between beams [rad]*α

critical tensile strain [-]εmin

Fracture parametersGroup 2

torsional stiffness [-]kt

bending stiffness [-]kb

longitudinal stiffness [-]kl

Stiffness parametersGroup 1

* parameters used only with non-Delaunay generation method 



Effect of mesh irregularity

Effect of mesh irregularity 
parameter ‘s’ on the stress-
strain curve and crack pattern.

α=20°, rmax=2g, kb / kl =0.6 
elements removed when 
εmin=0.02%

a) b) c)

a) s = 0

b) s = 0.3

c) s = 0.6



Influence of kb on Poisson’s ratio

Ratio between bending and longitudinal stiffnessp=kb/kl determines the 
Poisson’s ratio of the lattice mesh



Uniaxial compression(single phase)

Effect of stiffness ratio p=kb/kl on 
stress-strain curve in uniaxial 
compression with smooth edges 
(elements removed when εmin=0.02%)

b) p=0.001

a) p=0.3

Effect of p on fracture pattern



Effect of aggregates– three phases 2D (25%)

Uniaxial extension – 2 different sieve curves

Interfacial zone: kl=0.7, kb=0.5, εεεεmin=0.005%,

Cement matrix: kl=1.0, kb=0.7, εmin=0.02%

Aggregate: kl=3.0, kb=2.1, εmin=0.0133%



Effect of aggregates – three phases 2D (50%)

Uniaxial extension – 2 different sieve curves

Interfacial zone:  kl=0.7, kb=0.5, εεεεmin=0.005%,

Cement matrix: kl=1.0, kb=0.7, εmin=0.02%

Aggregate: kl=3.0, kb=2.1, εmin=0.0133%



Effect of aggregates – three phases 2D / 3D (25% / 50%)

Uniaxial extension – 25% and 50% of aggregate volume/area

Interfacial zone:  kl=0.7, kb=0.5, εεεεmin=0.005%,

Cement matrix: kl=1.0, kb=0.7, εmin=0.02%

Aggregate: kl=3.0, kb=2.1, εmin=0.0133%



Nooru-Mohamed test (propagation of curved crack)
three phase material, 2D

Experimantal                
fracture pattern                          

(Nooru-Mohamed 1992) Crack propagation in numerical results



Size effect in numerical results(three phases 2D)

Stress-strain curve for 2D specimens with 
different sizes subject to uniaxial 

extension with smooth edges

Fracture propagation:
small specimen: 10× 10 cm2

large specimen: 20× 20 cm2

Interfacial zone:  kl=0.7, kb=0.5, εεεεmin=0.005%,

Cement matrix: kl=1.0, kb=0.7, εmin=0.02%

Aggregate: kl=3.0, kb=2.1, εmin=0.0133%



Size effect in numerical results(three phases 3D)

Stress-strain curve for3D specimens with 
different sizes subject to uniaxial extension 

with smooth edges

large specimen: 10 × 10 × 10 cm3

small specimen: 5 × 5 × 5 cm3

Assuming kt=kb

Interfacial zone:  kl=0.7, kb=0.5, εεεεmin=0.005%,

Cement matrix: kl=1.0, kb=0.7, εmin=0.02%

Aggregate: kl=3.0, kb=2.1, εmin=0.0133%



Conclusions

� Lattice model allows to study fracture propagation on 
the scale of cement matrix and aggregates.

� The peak-load decreases with increasing particle 
density.

� Ductility increases with increasing aggregate size and 
density.

� Small particle density leads to non-linearity in the pre-
peak regime. High particle density leads to straight pre-
peak stress-strain behaviour.


