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of Soil-Inclusion Problems
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Abstract: Discrete element method®EMSs) provide new numerical means to study the behavior of soil-inclusion systems. In some

cases, however, the classic DEM fails to model specific aspects of the inclusions. That is why a model based on spar elements |
introduced, designed specifically for inclusions. In this model, the movement of the inclusion is considered as a dynamic process and i
computed step by step in the same way as in the DEM. The model can be coupled with a DEM code, thus enabling one to simulate th
interaction between an inclusion and a disk assembly. Contact laws at the contacts between disks and spar elements describe the interf
constitutive behavior. Finally, the results obtained by simulating a geosynthetic anchorage in two different ways are reported. In the first
case the inclusion is represented by disks, while in the last case it is represented by spar elements. The comparison shows that sy

elements are much more versatile and can simplify the calibration of the discrete models used to simulate soil-inclusion systems.
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Introduction geosynthetic in tension being related to the tensile strength and
tensile stiffness of the contacts between the disks. Although the

In the fields of civil and geotechnical engineering, the construc- results obtained with this approach were valuable, this modeling
tion techniques are getting more and more sophisticated and ofterpresents two important limitations. First, a roughness related to
include composite systems. Particularly, many techniques associthe size of the disks is inherent in the model. It implies a very
ate a granular matrixsoil, concretg with linear or planar inclu- complex constitutive behavior of the interface and prevents the
sions(geosynthetics, fibers, piles, steel rodslodeling the me- model from applying to even-faced inclusions. Second, the axial
chanical behavior of such systems is generally complex since thestrain must remain very small or significant voids would be cre-
geometry and governing mechanisms are strongly discontinuousated at each contact between the disks.

Traditional finite-element methods, rooted in the concepts of con-  The objective of this paper is to propose a model based on spar
tinuum mechanics, may be unsuited in such cas@krrd et al. elementdFig. 1(b)], adapted to the specific aspects of inclusions,
2002. At the same time, significant advances in discrete model- and then to couple it with a DEM code, which simulates granular
ing methods offer some opportunities for the numerical simula- matters. The two models will interact with respect to a given
tion of different types of composite systerffdohammadi et al.  interface constitutive behavior. It is expected that this coupling
1998; Hentz et al. 2003Those methods can be used to simulate will provide a valid numerical tool for much research on soil-
soil-inclusion systems with respect to their discontinuous nature. jnclusion systems.

In Chareyre et al.(2002, soil-geosynthetic systems were In the first part, the most important aspects of the DEM code
simulated using the two-dimensional cod&~C2D (PFC2D used will be set out. In the second part, the model proposed for
1997. This program models bidimensional assemblies of disks he inclusions will be presented: it is denoted as the DSEM for the
with the distinct element metho@EM). In Chareyre et al.  gynamic spar element model. Finally, the results obtained by

(2,002)’ the geosynthe?ic inclusion was simulateq by a chain of simulating geosynthetic anchorages in soil will be reported. They
disks, as shown in Fig. (&), the strength and stiffness of the \;are optained by modeling the inclusion with each of the con-
cepts in Fig. 1 to provide a comparison.
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Fig. 1. Two different concepts to model soil-inclusion systems with ®  rotational spring

the distinct element methodDEM): (a) ful-DEM modeling or [ ] lumped mass (b)

(b) DEM-dynamic spar element model modeling. The disks in white

represent the soil. Fig. 3. Notation of (a) the nodes and spar elements ail the
rheological model for a five-noded inclusion

Contact Model

The contact model relates the relative displacement to the force [Yilteat = Lyid + [Yidesawz X At (5)

acting at the contact between two disks. In this study, the contact

model consists of a linear stiffness model and a Coulomb-like slip [03)ient =[03); +103hay2 X At (6)

model(Fig. 2). The stiffness model is defined by two parameters: - )

normal stiffness, and tangential stiffness . The normal and the When all positions are calculated for tine At, contact forces

tangential components of the contact force are proportional, re-May be calculated for the next calculation cycle..

spectively, to the overlap between two disks in contact and to the . Setting the value oAt in Egs.(3)(6) and damping the equa-

tangential displacement at contact. The tangential component oftions of motion are two essential issues of the DEM. For the case

the contact force is limited in magnitude with respect to the Of @ disk assembly, those aspects are detaile@RE2D (1997

Coulomb-like slip model, with friction anglg.". and will not be developed in this paper. However, modeling with

dynamic spar elements raises similar questions. The methods pro-

] posed below for settindt and damping the equations of motion

Motion in the DSEM can give an overview of what is done for disks.

The disks interact with each other via contact forces. The method

to calculate the displacement from the resultant force and torque

acting on a disk is summarized below. The angle of rotation of the Dynamic Spar Element Model

disk is denoted a$;. y; represents the position vector of the

center of the disk. Newton's second law of motion relates the This section is dedicated to the presentation of the dynamic spar

translational and rotational accelerations to the resultant force andelement model and the coupling with the DEM code. The DSEM
torque,f; and M, was initially designed specifically for the modeling of geosyn-

thetic sheets, which have generally no bending strength. How-

yi=Filmp (1) ever, it is believed that the DSEM could equally apply to other

types of inclusions. In this perspective, the formulation proposed
05= M/l 2) here can handle problems in which the bending strength has to be

) considered.

Here,mp and I, denote, respectively, the mass and moment of |, the DSEM, the motion of the spar elements is determined in
inertia of the disk. During a simulation, the movemeqt of each the same manner as in the DEM, and the soft contact approach is
disk is traced step-by-step, at time intervdls y; and 65 are adopted for the interaction between the disks and the inclusion.
integrated ovent following an explicit centered finite-difference  Consequently, the DSEM may be viewed as an implementation of

scheme, as in the set of equations beldqgs. (3)—(6)]. In the the DEM, and the formulation detailed in this section is partly
equations, a subscript after a bracket denotes the time step wittbased on the concepts developed in the DEM-related publications

respect to which the expression is considered. of P. A. Cundall. For the sake of simplicity, however, it will be
. . . considered in this paper that the DEM and DSEM are two differ-
[Yiksawz = Yil-av2 + %) X At ) ent numerical models. The DSEM'’s specificities are mainly due to
. . ) the shape and the deformability of the elements, the type of con-
[03)sat2 =[03h-ag2 +103) X At (4) nexion between them, and the inertial model.
Discretization

The inclusion is represented by a set of spar elements connected

I spring : &,
pormalspring - & by nodes, as in Fig.(8). The length of the elements is considered

/tangenﬁal spring : &/ variable, the axial deformation being accounted for by a variation

ho-tension joim/"l‘_/— of the distances betvyeen the nodes; the flexion of the |nclu5|qn is
T represented by rotations at the nodes; and the flexion of an indi-

Slider : g° vidual element is not considered. In the next part, the length of

the elements will be related to the axial forces, and the rotation at
nodes to the bending moments. From the inertial viewpoint, the

Fig. 2. Contact model inclusion is treated as a set of lumped masses coinciding with the
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Fig. 5. Types of load participating in the resultant force acting
on nodexd

Fig. 4. Geometry and notations

Damping

If the behavior is assumed to be of the elastic type, the energy

supplied to the inclusion may not dissipate. Therefore damping

treated with the soft contact approach. It implies that the disks the equa}tions of motion may bg necessary in SOME cases to ar.rive

and the spar elements will be allowed to overlap with one another &t @ static or steady state SOIu_t'On: T_he local nonviscous d_amplng

at contact points. Hence it is necessary to consider the thickness proposed for spar elelments IS S|m|I_ar. to the one descr!bed n

of the spar elements, otherwise two disks could get in contact andCund§II(19z_37). A dampm_g _force term |s_|ntroduced in B) via

overlap with one another across the inclusion. In the case of thelN® dimensionless coefficient of damping The damped accel-

flexion at a node, the evenness of the convex side is ensured witheratIon in directioni 1S calculated in Eq(10), v_vhereX lies be-

a circular arc centered on the node and of ragil&s(see Fig. 4. tween zerono damping and one(no acceleration

Following the same principle, the shape of the ends of the inclu-

sion is defined by semicircles. x4y =IRY) = x - R - sgrix)) Jym* (10
Some notations used in the rest of the paper are defined in

Figs. 3 and 4. An inclusion is represented I8y elements. The

nodes. This rheological model is illustrated in Figb)3 The in-
teraction between the inclusion and the granular matter will be

elements are denoted &%, ... ,bNb}, the nodes aé<d, ... ,XNb+1}, Calculating the Resultant Forces Applied on Nodes

. . b
and their respective massfs’, ... ,m"*1}. x{ represents the co-  As stated in Fig. 5, several types of loads contribute to the result-
ordinate vector of nodg” and|® the distance fronx? to x*** (with ant force vectoRY acting on nodex®. The contributions due to
1=<q=<NP). The orientation of an element is defined ty the internal loads will be distinguished from those due to external

unit vector pointing fromx? to x***. ufl is introduced as obtained  loads. The internal loads are the axial ford@s® and T¢ in the

by an anticlockwise rotation off through 90°. The rotation at  adjacent elements, the bending momess' and BI"* at nodes

nodexd (x3*1 in Fig. 4), denoted a$? (39*Y), is defined by the x4l and x4*%, and the gravitational force. The contributions of

angle betweer{ andtf**. those loadings to force vect® are denoted, respectiveRf",
RI™ and R*®. External loads are those generated at the con-

Motion tacts between disks and spar elements. Considering the set
{yL,y2, ... YNV of disks in interaction with noda?, RP~%© wil
Finite-Difference Scheme denote the contribution tR that is due to the forc&~9 applied

In the model, the features that have inertial effects are the lumpedby disk y? (with 1< p<N°).

masses added to the nodes only. The dynamic laws are applied to The method to calculate the contributions listed above is de-
them to calculate their motion. Due to the punctual nature of the tailed in this section. FinallyR? will be calculated by summing
distribution of mass, the rotation of the nodes has no inertial all terms in Eq.(11).

effects, the translational motion alone can be determined. Actu-

ally, it does not restrain any degrees of freedom. The rotation of a p=NC
spar element is allowed by different translational motions of its RI=RIM 4+ RIM 4 RAG) . N Rp—4(© (12)
nOdeS I 1 1 1 - 1

p=1

The position of each node is determined step-by-step at time
intervals At with a centered finite-difference scheme. Knowing
the resultant force vectd®{ acting on noded, Newton’s second
law gives its translational acceleration as

Internal Loads

Axial Load. The axial force in a spar element is calculated
from the distance between the nodes, with respect to the consti-
X' = Riy/m" (7) tutive behavior assumed. In the present work, spar elements are
aconsidered as tension-only features and a linear relation is as-
sumed between the tensidf and axial straire? in elementbq.

This relation is given in Eq(12), whereJ=stiffness of the inclu-
sion. &% is obtained as I(i9/13), wherel® andld=respectively, the
current length and the length at reposeb®fin Eq. (12), tensile
X av2 = [XiTh-av2 + KTk X At (8) forces are represented by positive values. This relation between
T9 ande%is not inherent in the method. Reaction to compression,
) nonlinear stiffness, or different stiffness values in charge and dis-
IXhsae = D6+ DX heayz X At 9 charge could equally well be assumed.

If the acceleration and velocity are assumed to be constant over
time step, the velocity at+At/2 is given by Eq.(8), and the
position att+At by Eq. (9).
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mode1 mode (@ =y ~ei2 -1 a7

The disk is considered effectively in contact whh if both con-
ditions are verified in the set of equatiofis8). This being the
case, the unit normal of the contact is introduced as the unit
vectorn; pointing fromy; to y;. Vectoru;, indicating the tangen-
tial direction, is taken as equal tf

0 < ti(y; —x) <1

(dy); <0 (19

As shown in Fig. 6, contacts of the second typeode I)) may
occur if the distance between the disk and a node is lessettfan

Fig. 6. Definition of the disk-inclusion contacts This condition is checked for nodé by calculating the algebraic
distance between the disk and the circle of ra@ils centered on
x4 as

Ta=maJ - £9;0| (12) (dy =1y = x{| —e2-r (19
The resultant force vectd®™"” acting on node< is the sum of Then, a contact in mode Il exists if
the tensile force vectors in elemert$* andbd, so that (dy)y <0 (20)
RIM = T9. 4 - Ta-1 . (a1 (13) If so, the unit normah; points fromx{ to y; and the tangential
1 1 1

direction is defined by the unit vectet, perpendicular tm; and
oriented as the numbering of the elements. Note that both mode |
Bending Moments. If it were assumed that a bending moment and mode ll[i.e., Egs.(18) and (20)] may be satisfied simulta-
BJ is generated by the rotatid@f at nodex, then it would result neously. Mode | is considered by default in that case.
in forces applied on noded™! andx¥**. The relation betweehd

and B§ may be defined as in Eq14), considering the joints Contact Laws. An expression of the contact force vectipor

between elements as rotational springs of stiffigssTo simu- applied by the disk on the inclusion is proposed now. It is as-

late a beam with moment of inertizand Young'’s modulug,, the sumed that before failure, the contact is equivalent to springs in

equivalent rotational stiffness would be taken equal to both directions defined in the previous paragraghandk; de-

2-Ey-|/(|g-1+|g) for nodexd. note, respectively, the normal and the tangential stiffness. The
normal component,, of the contact force is defined in E(Q1),

BI=-589-Kkj, (14) whered, representsd,), or (d,).
Finally, considering the bending moments at nog$ and x4+ fo=dy-ky (21)

this time, the resultant force vector acting on nofiés The shear componeffi of the shear force is incremented at each

time step on the base of the tangential displacement increment

Ad, at the contact. Assuming that the displacement of the inclu-

sion varies linearly between two nodesd, is obtained in Eq.
Body Forces Body forces, due gravitational acceleration, may (22 andf;in Eq. (23).

be considered. In this case, the gravitational force veRfé?’) T 1 0 cqtl o g a1

acting on noded is defined in Eq(16), wherem? is the mass of Ad=[(1 =&)X+ &- X" =y =031 - ]t X At

RIM) = BIL. yayyja-t 4 gg*L. y9yd (15)

the node andy; is the gravitational acceleration vector. ) ly/ /19 for contacts in mode | -
RIC = . g (16) o for contacts in mode Il
Af, =k - Ad, (23)

External Loads ) _ )
The shear strength of the contact is defined by a Coulomb-like
Detection of the Contacts To calculate external loads, the Slip model with friction anglq.. At each time step, the contact is
. . . . . H H™ H ax H
contacts existing between the disks and the inclusion must bechecked for slip condition by calculating™, the maximum al-
known. It is considered that a contact exists when a disk overlapslowable magnitude of,, and by comparing it to the suffp+Af,.
a part of the inclusion. In the algorithm, the list of contacts is That is done in Eq(24).
updated at each calculation cycle..The procgdure to test a co.ntact (Foer = SO (Fn + (Afn] X min[(F"®), 1| (Fn + (AT ]
and to calculate the contact force is summarized below, consider-

ing a general disk denoted as digkr denotes the radius of the fmax= |f | . tan (24)
disk andy; the position vector of its center. t n B

Two different types of contacts may exisee Fig. 8. First, let Finally the contact force vectdi is obtained as
us consider the contact between dys&nd spar elemert® (mode f=f o +f, (25)

). Introducing lineD which passes through noda&$ and x9*1,
and the coordinateg obtained after an orthogonal projection of When a slip occurs, it is possible for the disk to change the spar
y; on D, the algebraic distance betwegrandb?® is defined as element it is in contact witlior the mode of the contactThat is
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accounted for in the algorithm. The shear component of the con-
tact force is not affectedi.e., is not set to zepyp n; andv; are
simply updated with respect to the new configuration of the con-
tact. With this conditionf; is defined as a continuous function of
the relative displacement. Note that the simple laws that describe
the constitutive behavior of disk-inclusion contacts are not intrin-
sic to the method. More complex laws of behavior could replace
Egs.(21) and(23).

Distributing the Contact Forces on the Nodes Considering
the contact forcd; applied by the disk in contact with spar ele-
mentb® (mode ), it is assumed that the forces acting on noxfes
andx*! are as defined in the set of equatid@$). These equa-

Standard PFC calculation cycle
positions of the discs

I
Displacement of the discs
(from the Newton's second law
of motion)

[ 2

Contact forces
(from contact laws)

T T
external forces positions of the

discs

Calculation cycle for the
Inclusion model

positions of the nodes

.................................. >

Disc-inclusion contact forces
Axial forces in the bars
Bending moments at nodes

Displacement of the nodes
(from the Newton's second law
of motion)

[

resultant forces on the nodes

tions are based on the analogy with an elastic beam resting on tWosjg 7. coupling a distinct element method code and the distinct spar

supports. They also apply to mode &ls equal to 0 and; acts
directly on nodex® in that case.

element method: Calculation cycle

RI®=f(1-¢)

Riq+1(c) =f

s (26)
Critical Time Step
The time step has to be less than a critical value for a centered
finite-difference scheme to produce a stable solution. The critical
time step is related to the minimum eigenperiod of the total sys-
tem. It is estimated following the same procedure as in Hart et al.
(1988.

A value of the critical time step is found for each nadeby
applying Eq.(27) separately to each degrees of freedom and as-
suming that the degrees of freedom are uncoupled.

i = VmYKE,

In Eq. (27), Kf}) is the equivalent translational stiffness in direc-
tioni. It is computed as follows. First, consider the relation in Eq.
(28) between the force increment vectdR! acting on nodext
and the displacement increment vectdx!. In the equations
below, the superscrigi— g denotes variables related to the con-
tact between diskP and nodex‘.

Atd

C

(27)

p=N°

ARI= ARI™ + ARIM + ARY®) 4+ > ARP4©
p=1

(28)

with

q.9-1 S
AXT g JAXE

T —
ARiq()—_\J |q—l i Iq Jth
a0t a.,4
ARIM = _ %_Uj_kq—l uo - AX U} g e
! (2 T ez
ARY® =0

—q(C) — — — —
ARP~4©) = — (1 - =92k, - AxT - P9 - pP
+ky - Ax{ -nP~9. P9

Next, considering the matrix forn29) of the relation between
AR and Ax{, the diagonal term&{ of the stiffness matrix are
taken as approximations &) (i=1,2). Expressing{ from Eq.
(28), Eq. (30) is obtained fork{,.

ARY K9, K9 AxY
1o _ [P P2 1 (29)
ARY KY, K9, || Axd
_ p=N"
& =KI=KID +KIM + > kPO (30)
p=1

where

KIM = Jl(t?i;l)an—l + (tﬁ))z/mj
KIM = ki (uf 1972 + kS (ud /19)2

KP4 = (1 - P93 ky(0f) 92 + k(NP9

Finally, a value of the critical time step is computed from Egs.
(27) and(30) for each degrees of freedom and for each node. The
global critical time step is taken to be the minimum of all values,
and the actual time step in the simulation is taken as a fraction of
it.

Distinct Element Method-Distinct Spar Element
Method Coupling

Basic Concept

The DSEM algorithm has been coupled with the DEM code with
the concept of Fig. 7. At the beginning of each time step, the
external loads on the inclusion are determined with respect to the
positions and velocities of all elements. Next, the motion of
DSEM elements is computed from E¢L0). At this stage, the
half-cycle concerning the DSEM is finished. Then, the disk-
inclusion contact forces are introduced in the DEM program as a
set of forces and moments acting on the disks. This procedure is
equivalent to replacing, respectively, E¢b. and(2) by Egs.(31)

and (32). Finally, the positions of the disks are updated for the
next calculation cycle.

= (FP - f9/mg (3D)

65= (Mg~ rP-nP~9- uf)/1B (32

Critical Time Step
A global value of the critical time step is required for the coupled
simulations. In the DEM code, the critical time step associated to
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:3:: —— inclusion Fig. 9. Initial state of the anchorage in the full-distinct element
soil method simulation

Fig. 8. Geometry and boundary conditions of the pullout test
simulated

Procedure

a disk is estimated on the base of the stiffness of the contacts
acting upon it. The procedure, quite similar to that described in

the previous section, is detailed RFC2D (1997. By including

the stiffness of the disk-inclusion contacts in this procedure, the
critical time step related to the disks can be obtained. It is com-

pared to the one related to the DSEM elements, and the minimum
of the two is taken as the global critical time step.

In the modeling, the soil was simulated as a random packing of
clusters, each cluster being made of two disks connected in a rigid
manner(their radii are defined in Table)1The assembly was
generated with an initial porosity equal to 0.2. The density
of the clusters was set to 20 kN'fthe angle of friction between
the clusters was set to 38.7°, the normal stiffnk,*$3Nas set
to 5x10°kNm™, and the tangential stiffnesk, was set to
2.5X 10* kKN m™. The macroscopic angle of frictiops of such
assembly has been estimated by simulating biaxial compressions,
and it was found equal to 43%0.5°). The method to determine
¢ is detailed in Chareyre and Villar@002.

The soil mass was set in place between three rigid walls, as in
Fig. 8, and submitted to gravitational acceleration. The properties
of the cluster-wall contacts were the same as those defined in the

cant difference has two main origins. The first one, intrinsic in previous paragraph. Pullout tests were simulated with a constant

the method, is the more complex shape and constitutive behavior/€!0City, which must be low enough in order to avoid dynamic
of the DSEM elements. The second one is the spatial search€ff€CtS. It was set to 0.002 m/s after several trials. _
algorithm (based on a cell-space subdivisipprobably less opti- Du_nng the pullout process, th(_e soil above the |n(_:IuS|on_appI|es
mized in the DSEM than in the commercial DEM code used. This & Vertical load only, and the resistance to pullout is provided by
disadvantage has not been considered a major issue, however. |H1e |pteract|on at the lower soil-inclusion interface. This interac-
most applications, the number of DSEM elements should be low tion is represented by two forc&g, andQ,, calculated by sum-
compared with the number of DEM elements, so that the comput- MiNg, respectively, the normal components and the tangential

ing of DSEM elements represents a minor part of the global CPU Components of the contact forces along the lower side of the
time. inclusion. Here “normal” and “tangential” refer to the local ori-

entation of the inclusion. The mobilized angle of macroscopic
friction ¢, is defined as arctéa®,/Q,). In the following, the re-
sults will be presented in terms of the evolutionggf during the
pullout simulations for different values of the angleof contact
friction at the interface.

Central Processing Unit Time

One of the main advantages of using circular particles in DEM
codes is a reduced CPU time. Thus it is not surprising that the
Central Processing UnitCPU) time required for a DSEM ele-
ment is much more than the one required for a circular particle. In
our computations, we found that a DSEM element is equivalent to
10 traditional DEM elements in terms of CPU time. This signifi-

Simulating Pullout Tests with Two Models
for the Inclusion

The results obtained by simulating pullout tests on straight an-
chorages are reported in this section. They are part of a more
general study on geosynthetic anchorages in[sei Chareyre et

al. (2002]. An inclusion without bending strength was included

. . 50 - ——o—=38.7° =30.0°
in a breakable random packing whose geometry and boundary :=z1.a° _______ :;11'3,
conditions are defined in Fig. 8. The tensile stiffndssf the ol
inclusion was set to H&kN m™. The inclusion was simulated
alternatively with disks or with spar elements to provide a com- 30
parison. »
s 20 ; Y

Table 1. Definition of the Clusters Used for the Soil Model 10 -

Radius of the disks in the cluster

0 - . . . s

Disk 1 Disk 2 0 0.01 0.02 0.03 0.04 0.05
Number of clusters (mm) (mm) U(m)
400 11.60 10.44 Fig. 10. Evolution of the angle of mobilized friction as a function
1,600 5.80 5.22 of the displacement and the angle of contact friction at the interface
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Fig. 13. Displacement of the disks fdy from 0 to 0.05 m

Fig. 11. Comparison between the mean angle of inclination of the
contacts’ normal and the mobilized friction angle

able inclusion would probably prevent any global periodicity
since the disks of the inclusion could not move simultaneously.

No periodic variation ing,, is noticeable withu=30° andp
=38.7°. As seen in Fig. 13, a high value @fproduces displace-
ments of soil elements below the inclusion. It denotes a shear
Full-Distinct Element Method Simulations failure within the granular assembly. That is why the periodicity
vanishes in that case. Indeed, shearing the random packing of soil
elements cannot generate any periodic mechanism.

Results

Fig. 9 represents the initial state of the model when the inclusion
was simulated using a set of 68 disks of radius 8.15 mm. Ap-
proximately 2,000 clusters were used to simulate the soil, as de-
fined in Table 1. Coupled Distinct Element Method-Distinct Spar

The evolution ofe,, is reported in Fig. 10 with respect to the  Element Method Simulations
pullout displacement and the angle of contact frictiop. The
initial value of ¢, is close to zero. It rises gradually until it
reaches a peak, followed by a strain softening transition. The
angle of peak friction depends qn the higher it is set, and the
higher ¢, is obtained at peak.

After the peak, some important fluctuationsgf are notice-
able. With the lower values of., in particular with n=11.3°,
those fluctuations seem to have a period equivalent to the diam-
eter of the disks simulating the inclusion. For a better understand-
ing of this feature, the orientation of the soil-inclusion contacts
along the lower interface was analyzed. The results obtained for
the casqn=11.3° are presented in Fig. 11. Let us consider all the
contacts between the lower side of the inclusion and the sgil.
is introduced as the mean inclination of the contact normals with
respect to the verticdh,,> 0 for a clockwise inclination In Fig.

11, the evolution of\,, highlights a collective behavior of the
contacts, with the same periodicity as,. Moreover,¢,, appears
to be very close to\,,+p, thus demonstrating the role of the
collective evolution in the fluctuations af;,.

It is suggested that when the model is generated, the cluster

The results obtained by modeling the inclusion with spar elements
are presented in this sectige soil being modeled exactly in the
same way. Note that, in this problem, it was not necessary to
damp the equations of motion for the DSEM elements. A suffi-
cient damping is provided by the friction between the inclusion
and the surrounding elements. Fig. 14 demonstrates that the co-
efficient of damping has no influence on the results in that case.
Fig. 15 shows the evolution aj,, in the coupled simulation
for different values of.. There is no strain softening. When
< 30°, the curves show a gradual increasepjnuntil a constant
residual value(however, ¢, drops sporadically during the re-
sidual phasg With w=38.7°, ¢, fluctuates during the residual
phase. Nevertheless, the fluctuations are smaller than those ob-
tained with the previous modeling, angl, can be considered
almost constant.
As seen in Fig. 16, the occurrence of fluctuations with the
highest values of. is correlated with a shear deformation of the

assembly representing the soil tends to fit into the periodic rough- =
ness of the inclusion. A mechanism similar to that of Fig.(A@t . Y Y
with a random packingis enabled then. Note that the tensile 20 4 '
stiffness of inclusion was high compared to the load applied, and
that its tensile strain was always less than 0.2%. A more deform- _ 151
s ¥  eeeeee =0
* 104 —_ §= 0.2
——. Xx=04
5 4
0 . v .
0.005 0.010 0.015
U (m)

1. An=0 2.Am>0 3. Am<0

Fig. 14. Evolution of the mobilized angle of friction in the
Fig. 12. Principle of the periodic evolution of the contacts at the distinct element method-distinct spar element method coupling with
soil-inclusion interface w=21.8° for different values of the damping coefficient
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Fig. 15. Evolution of the mobilized angle of friction in the distinct
element method-distinct spar element method coupling as function
of the displacement and the interface contact friction

soil below the inclusion. Note that there are some failures in the
soil when n=38.7°, although the angle of internal friction is
higher thanu (¢s=41°). In fact, ¢ is a mean macroscopic value
and does not represent the effective strength at the granular scal
The interaction with the inclusion can then cause the instability of
soft spots in the microstructure, particularlyf is inferior but
close togs.

In order to understand the origin of the temporary diminution
of ¢, whenu=11.3-30°, the mean unbalanced rdtinu.r) was
compared tap,,. The m.u.r. is computed on the disks as the mean
magnitude of the resultant fordé; in Eq. (1)] divided by the

27 0.004
unb. ratio 0.003
2 |
0.002 %
~ 23
c 0.001
: Ll or 3
) 1 s
Sl | |l “ J 0 3
0001 3
19 | g
o 0002 €
17 -0.003
0 0.005 0.01 0.015 0.02
U (m)

Fig. 17. Comparison between the evolution gf, and the evolution
of the mean unbalanced force

micro-macro relation is more complex. The roughness of the in-
terface causes an increase in the global friction, and this increase
depends onw.

Fig. 17 shows with both the DEM and the DSEM thaf,.,
cannot exceed a maximum value, which is slightly higher than

e('angle of internal friction of the soil A maximum value equal to

os could have been expected. But actually, when a shear band of
finite thickness develops in the soil below the inclusion, the ver-
tical stress at the depth of the sheared zone is higher than the
normal stress at the soil-inclusion interface. The shear strength of
the soil at the interface is increased then, and the angle of mobi-
lized friction can slightly exceed..

mean magnitude of the contact forces. It tends to zero when the

evolution of the system is quas-istatic. As seen in Fig. 17 for the
casen=21.8°, the decreases dy, are correlated with some peaks

of the m.u.r. These peaks denote small dynamic events related to,

contact failures in the soil. It shows that the dropspipare due
to local reorganizations of the disks near the interfagequickly
increases back tp. as soon as the disks stabilize.

Macroscopic Versus Microscopic Peak Friction

The maximum valuep,,,., Of ¢, (considered as the macroscopic
friction angle is plotted as function of the angle of local friction

p in Fig. 18. The micro—macro relation betwegnand ¢,y iS
highly dependent on the model used. With the DSEM, there is a

very good equivalence between the microscopic and the macro-

scopic scale, except fqu=45°. With the full-DEM model, the

p=30°

p=45°

Fig. 16. Displacement of the disks fdy from 0 to 0.02 m

Conclusions

A numerical model named DSEM has been proposed to simulate
the deformation of a stressed inclusion in two dimensions and its
interaction with a granular matter. With the concepts of the
DSEM and DEM algorithms being very similar, it was possible to
couple the DSEM with the distinct element coB&C2D, thus
enabling us to simulate the soil-inclusion interaction in composite
systems.

Pullout tests on straight anchorages were simulated. Some re-
sults obtained with the coupled DEM-DSEM model have been
reported and compared with the results of a previous modeling,
based on the DEM only, where the inclusion was simulated by a
chain of disks. The main difference between those two types of
modeling was the shape of the interface between the soil and

60
50 | )
X X_E
40 r X "
S 30 Voi
& x L x DEM
20 | R o DSEM
A e Om=l
I S 9m=0s
0 10 20 30 4 5 60

Fig. 18. Global versus local friction angle at the soil-inclusion
interface
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inclusion, which was locally even in the first case and periodically = m = mass of a node;

rough in the second. Whatever the method of modeling is, the soil mp = mass of a disk;

and the inclusion can interact with two different mechanisms, N° = number of spar elements;

depending on the local friction angje at the interface. Whep N¢ = number of disks interacting with a node;
is low, the inclusion is pulled-out without notable deformation in n, = unit normal of the current contact;

the soil. Whenp. is high enough, a shear band parallel to the = Q = force of lower interface interaction;
geosynthetic develops in the soil. Considering those two mecha- R; = resultant force vector acting on a node;

nisms, only the calculations with the DSEM can provide in both r = radius of a disk;
cases some realistic results in terms of global friction. Indeed, t = time;
whenp is low and the inclusion simulated by disks, the interface T = axial load;
roughness generates undesirable periodic oscillations of high t; = unit vector parallel tdD;
magnitude in the global friction. U = pullout displacement;
In case the inclusion is rouglwhich is generally the cagethe u; = unit vector perpendicular tD;

DSEM is probably not well suited to study micromechanically the  v; = unit tangent of a contact;
soil-inclusion interaction. However, coupled DEM-DSEM models X; = position vector of a node;

could be appropriate when the global behavior of composite  x = label of a node;

structures is to be studied. In this case, the effect of the actual y; = position vector of the center of a disk;
roughness may be taken into account globally in the valug.of y = label of a disk;

In the coupled model, the angles of local and global interface y/ = orthogonal projection of; on D;
friction are almost equal. This is an important advantage of At.; = critical time step;

DSEM compared to DEM. If the global behavior of a soil- 3" = angle of deflection at node’;

inclusion structure is to be simulated, the valuauah the model e" = axial strain in elemenb™;

can be set directly from macroscopic measurements dmge . 6; = angle of rotation of a disk;

can be taken equal to the angle of macroscopic friction obtained \, = mean angle of inclination of the interface contact
from shear tests on soil-geosynthetic interfac@$is approach normals;

has been used to simulate geosynthetic anchorages with complex p = friction angle at disk—inclusion contacts;

shapes. The results are consistent with experimental data, and p" = friction angle at disk-disk contacts;

practical conclusions for design can be drawn from them. Those ¢ = factor of influence of a contact;

results will be reported in a future paper. ¢s = internal friction angle of the disk assembly;

The concept of the DSEM can be extended to three- ¢, = angle of mobilized interface friction;

dimensional problems by considering a three-dimensional loading ¢,,.x = angle of peak interface friction; and

on each element. Coupling the DEM and the DSEM in 3D would x = coefficient of damping.

enable a micromechanical approach for studying different soil .

reinforcement techniqud$ibers, mesh elements, geogpids Subscripts
i,j = integer indices equal to 1 or 2;

normal component; and

= tangential component.

— 3O —
I

Notation
Superscripts
The foIIowmg. symbols are used in this paper: C = related to contact forces:
B; = bending moment at a node; G = related to gravitational forces;
b = label of a bar; M = related to bending moments;
D = axis of spar element; p,q = positive integer exponents; and
d = displacement at contact; T = related to tensile loads.
e = thickness of the inclusion;
E, = Young modulus;
F; = resultant force vector acting on a disk; References
f; = disk-inclusion contact force;
fi"* = threshold value of the shear force at contact; Chareyre, B., Briancon, L., and Villard, F2002. “Theoretical versus
g, = gravitational acceleration vector; experimental modeling of the anchorage capacity of geotextiles in
Ip = moment of inertia of disk/™; trenches."Geosynthet. Inf.9(2), 97-123.
| = moment of inertia of a beam; Chareyre, B., and Villard, P(2002. “Discrete element modeling of
J = axial stiffness of the inclusion; curved geosynthetic anchorages with known macro-properfiesc.,
K = translational stiffness; First Int. PFC SymposiugrGelsenkirchen, Germany, 197-203.
Kij = terms of the stiffness matrix: CundaII’,’ P. A.(.1987). “Distinct elgment model Qf rock. and.sou struc-
k, = normal stiffness at disk—inclusion contacts; ture. 'Analytlcal and computational mthods in engineering rock me-
k; = normal stiffness at disk—disk contacts: c chanics E. T. Brown, ed., Allen & Unv‘\‘nn, !_ondon, 129—_163.
k = tangential stiffness at disk—inclusion contacts: undall, P. A, and Stra<_:k, 0. D. I(_19_79. A discrete numerical model
* . . . . for granular assembliesGeotechnique 29(1), 47—65.
k = tang(_entlal sFlffness at disk-disk contacts; Hart, R., Cundall, P. A., and Lemos, (1988. “Formulation of a three-
kw = rotational stiffness of a node; dimensional distinct element model. Il: Mechanical calculations for
| = length of a spar element; motion and interaction of a system composed of many polyhedral
lo = length at repose of a spar element; blocks.” Int. J. Rock Mech. Min. Sci. Geomech. Absg5(3), 117—
M3 = resultant moment acting on a disk; 125.

JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005 / 697



Hentz, S., Daudeville, L., and Donze, (B003. “Modeling of reinforced ites.” Finite Elem. Anal. Design284), 321-336.
concrete structures subjected to impacts by the discrete elementPFC2D user manual; release 1.1A997. Itasca Consulting Group, Inc.,

method.”Proc., 16th Engineering Mechanics CqriEM2003, ASCE, Minneapolis.
Reston, Va. Villard, P., Kotake, N., and Otani, §2002. “Modeling of reinforced soil

Mohammadi, S., Owen, D. R. J., and Peric, @998. “A combined in finite element analysis.” Keynote lecturiéroc., 7th Int. Conf. on
finite/discrete element algorithm for delamination analysis of compos- Geosynthetics). P. Gourc and P. Delmas, eds., Nice, France, 39-95.

698 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005



