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Granular materials

Industrial and other Natural materials
anthropic materials

Source: Ando et al. (2011)

Source: wikipedia (2012)
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Discrete Element Method (DEM)

Selected examples:

Sandpile
Larger and cohesive
Rotating drum
Screw conveyor
Grid-type Structure
Soll+grid (1)(2)
Periodic boundaries
Fluid coupling
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https://www.youtube.com/watch?v=r2sUPDzDVmQ
https://www.youtube.com/watch?v=UcQeOjluGYQ
https://www.youtube.com/watch?v=TWDlf0RlNCU
https://www.youtube.com/watch?v=s7qJ4nk4lkg
https://www.youtube.com/watch?v=udVWPvM_6eI
https://www.youtube.com/watch?v=YW5IsINjCvw
https://www.youtube.com/watch?v=03NEOaTnlKg
https://www.youtube.com/watch?v=xAZuNFliFcw
https://www.youtube.com/watch?v=gH585XaQEcY

What is a “discrete” model?

* All numerical models in mechanics define a finite number of
DOFs, they are all “discrete”.

* Here we call “discrete” a model for which the underlying
conceptual model is discontinuous, as opposed to “continuum’”
mechanics.

* The discrete element method (DEM) is sometimes used even

when the conceptual basis is continuous (see vision 2 in what
follows)
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What is a “discrete” model?

Conceptual model

Continuous Discrete

Finite element method (FEM) Molecular dynamics (MD)

Finite volume method (FVM) Discrete element method (DEM)
Finite differences method (FDM) Variants of Cundall's DEM (contact
Smooth particles hydrodynamics (SPH) dynamics, event driven,...)

Lattice Boltzmann method (LBM)
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What is a “discrete” model?

Conceptual model

Continuous Discrete

Finite element method (FEM) Molecular dynamics (MD)

Finite volume method (FVM) Discrete element method (DEM)
Finite differences method (FDM) Variants of Cundall's DEM (contact
Smooth particles hydrodynamics (SPH) dynamics, event driven,...)

Lattice Boltzmann method (LBM)
Discrete element method (??)
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What is a “discrete” model?

Yet more semantic...
Molecular Dynamics (Alder, 1959)

“Molecular dynamics (MD) is a computer simulation of physical movements
of atoms and molecules. [...] In the most common version, the trajectories of
molecules and atoms are determined by numerically solving the Newton's
equations of motion for a system of interacting particles, where forces
between the particles and potential energy are defined by molecular
mechanics force fields.” (wikipedia)

Softwares: OpenMM, Amber, LAMMPS,...

Discrete Element Method (Cundall, 1979 — I1SI 2469)

“A discrete element method (DEM), also called a distinct element method is
any of family of numerical methods for computing the motion and effect of a
large number of small particles. Though DEM is very closely related to
molecular dynamics, the method is generally distinguished by its inclusion
of rotational degrees-of-freedom as well as stateful contact and often
complicated geometries (including polyhedra).” (wikipedia)

Softwares: PFC2D/3D, SDEC, YADE-DEM, EsyS-Particle,...

Contact
(a.k.a NSCD, Moreau, 1988)

“Contact dynamics deals with the motion of multibody
systems subjected to unilateral contacts and friction.”
(wikipedia)

Softwares: LMGC90,...

MD # DEM !
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Source: Park & Sposito, 2003.

Source: Yade-DEM



Explicit DEM

|dealized particle shapes

Spheres

source: Yade-DEM

Ellipsoids

source: http://www.ruppweb.org/xray/comp/suptext.htm

Polyhedra

source: KOZICKI AND TEJCHMAN, 2011 (Yade-DEM)
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http://watermanpolyhedron.com/watermanpolyhedra1.html

Explicit FD scheme

LIST OF INTERACTIONS

NEWTON'S
SECOND LAW OF MOTION

Computation of particles position

l

Computation of interaction forces

INTERACTION LAW

1

CONTACT FORCES
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(Source: E. Catalano, PhD, 2012)



Governing Equations

Newtons Law

Translation
o
u =F/m
Rotation
T =Liiwi + (I — Ij; ) ax or
w; =T;/I (isotropic case)

In the general case:

Contact Laws

d{f,,m }dt =L (u, u, i, i)
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Content

1. Introduction

2. Explicit (Cundall's type) DEM
2.1 Shapes
2.2 Governing equations
2.3 Classical contact models
2.4 Contact detection
2.5 Conditional stability
2.4 Energy conservation and damping

3. Element tests
3.1 Introduction
3.2 Packing generation
3.3 Boundary conditions and loading path
3.4 Post processing
3.5 Advanced stress-strain probing
3.6 A few caveats

4. Classical results
4.1 Stress-strain behavior
4.2 Micro-macro relations
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Explicit FD scheme

Schéma classique (point commun entre la DEM et la dynamique
moléculaire):
Seconde loi de Newton:

> F = mx (1)

Schéma DF explicite:

x(t + dt) — 2x(t) + x(t — dt)

Y F(t) = mx(t) = 1

+0(dt?)  (2)
Intégration:

Y F(t)

x(t 4 dt) = 2x(t) — x(t — dt) + -

dt? (3)

~ ferincipe similaire pour les rotations...)
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Explicit FD scheme

This centered 2™ order explicit scheme is also known as:

*“leap-frog” for the positions are known at times At while
velocities are known at times iAt+At/2

* Stormer's method or Verlet algorithm, especially in the context
of MD (Teukolsky, 2007)

It belongs to the family of symplectic integrators for Hamiltonian
systems. It implies the following properties, that even higher-order
schemes may not have (e.g. Runge-Kutta):

* Energy conservation over the time steps (with bounded
oscillations)

* Time reversibility
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Classical contact laws

Kinematic description

X5 .I". X2
| | X2
! \\\

(a) (b) (c) (d)

Mouvements relatifs 2D de deux particules en contact. (a)
déplacement normal, (b) cisaillement pur, (c) roulement, (d)

cisaillement simple.

Figure:
Yade-DEM)
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Classical contact laws

Force d’interaction définie la “loi de
contact” L T2

f = E(Xl,Xg,)-(l,)-(z,H) (4) Wi

ou par la dérivée:

f = L£*(x1,%2, %1, %2, 1, f) (5) pln |

Cas particuliers:
élastique linéaire: f = L(x1,x2)
visco—élastique: i = E(Xl, X2, X1, ).(2)

Hertzian contact
------------ Elastic-Plastic contact

[

visco-€élasto-plast.: f = L*(x1,x2, X1, X2, f)
;)‘— ﬁOU ple (I’OLllement et/Ou torSion) Hertzian model and the elastic-plastic
Pt el

idealization.
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Classical contact laws

Normal force-displacement relation

* Hertz contact (non-linear elasticity)

F _ iE*R1/2d3/2
3

* Mindlin and Deresiewicz (inelastic)

Yade Course, Amsterdam, 2022

Source: wikipedia
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(a} Contact in pactial slip

Source: Young Ju Ahn, Response of coupled frictional
contacts to cyclic loading, PhD dissertation, 2009.
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Classical contact laws

Simplified linear elastic law in the normal direction
un = |C; — Cil—do

}ﬁq ::]<PJLHQT1

A convenient definition of K,

K; = E4 l
K]_] + KZ_] — Ki] /.x‘" T l]%r] lz —r,
K — K1 K> f \:/ \\
NTK K l. ”// H//k /,'
Eil1EsLs \ L=1 fﬂx
Kn = — —
"TEL L \ /

Series of 2 springs representing normal stiffness of contact between 2 spheres.

(Source: Yade-DEM)
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Classical contact laws

Simplified linear elastic law: tangential direction

Relative velocity at the contact point:
S — S S
vio = (VY + w3 x (—don®)) — (v§ + w§ x (din°))
It has the tangential component:

v =V — (M° - vyo)n

0
Time integration of the force-displacement relation:
AF = K Au =K_(v.+ ®Xu )At= (K v_+® XF" )ALt

Attention must be paid to the global rotation of the contact represented by the spin
®, which must also be reflected in F_

Like for K, K can be taken as the harmonic average of K_, and K,

Yade Course, Amsterdam, 2022 p. 18



Classical contact laws

Coulomb's friction

t [Fnlt :
Py g Fr| > [P tan @
Fr =« _
F; otherwise.
\
F
FH ﬁ*
A N F;Efan(pt
ki
Kin Au,
- —F:,.Iran(pc ________
(a) U* o

(Source: Scholtes L., PhD, 2012)
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Classical contact laws

Additional features:

* normal adhesion (tensile strength)

* shear adhesion (shear strength summed with friction)
*Viscosity

* Irreversibility

* etc.

Higher degree laws (6D)

* rotational stiffness (bending and twisting)
* rotational strength (in the form of adhesion + “rolling” friction)
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Classical contact laws

The force-displacement relations and motion equations are all

defined in the current (deformed) configuration, as in the “updated
Lagrangian” methods.

Hence there is no limitation in the deformation/displacement.

See this example with Yade

Yade Course, Amsterdam, 2022 p. 21


http://www.youtube.com/watch?v=KKVk3YK0nu0

Implementation issues

LIST OF INTERACTIONS

INTERACTION LAW

NEWTON'S
SECOND LAW OF MOTION

Computation of particles position Computation of interaction forces

1

CONTACT FORCES

* Contact detection
* Stability condition / automatic timestep determination

* Damping

Yade Course, Amsterdam, 2022



Contact detection

The new contacts must be checked at each step.
The following naive algorithm scales with N2 and needs a
square root:

At each step:
Foriin [1,N]:
For jin [1,N]:
(R + Rj) > sqrt(lx2+ly2+122) ?

(and it is even worst for complex shapes...) 7= o0
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Contact detection
(R + R) > sart(/2+] 2+ ?) ?

Bounding boxes let one exclude many potential interactions
at a reduced cost ', S

Py h Py 1
l ﬁz : P3

P;O ]3%10 _X._
P]O-l—-lz‘;”
Ple—» P
Py »P3!
D > pw(0 pwl pw(0 pwl '
(Pi mP.j) A0 N [((P‘{“ py ) N (P;" Py )) £ &’J]
we{x,y,z}

(Source: Yade-DEM)
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Contact detection

Foriin [1,N]:
For jin [1,N]:
fast check(i,)) ?
(R + Rj) > sqrt(lx2+ly2+lzz) ?

Sorting in a regular grid results

In a constant number of checks
per particle, resulting in O(N) cost
(Munjiza et al. 2006)

Foriin [1,N]:
For j in neighbour cells:
fast check(l,)) ?
(R + Rj) > sqrt(lx2+ly2+122) ?

Yade Course, Amsterdam, 2022
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(Munjiza et al. 2006)



Contact detection

At each step:
Foriin [1,N]:
For jin [1,N]:
fast check(i,)) ?
(R + Rj) > sqrt(IX2+ly2+lZZ) ?

If the bounding boxes are larger than the actual size of the bodies, then
the extra length D* let one define a number of iterations n_. =D*/(v__ At)

max
In which no new contact can appeatr:
Ifn>n_ :

Foriin [1,N]:
For j in neighbour cells:
fast check(i,)) ?
add virtual interaction (i,))

A each step:
For (i,)) in virtual interactions:
fast check(i,}) ?
(R + Rj) > sqrt(lX2+ly2+lZZ) ? (with the real values of Ri,Rj)

Yade Course, Amsterdam, 2022 p. 26



Explicit FD scheme

Stability condition

Before diving into the three-dimensional multibody problem, it may help to exam-
ine how the CFD scheme performs for a simple mass-spring system governed by

k

i=— . (1.27)
m

This 1s practically what happens if we let one sphere subjected to gravity bounce on a
plane without loosing the contact. The natural oscillations of this system have a period
T =2m\/m/k

(Source)
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https://www.amazon.ca/Handbook-Discrete-Element-Method-Granular/dp/1785480669

Explicit FD scheme

Stability condition
Recall:

Acceleration at time ¢ is evaluated by

. B xli=At _opt 4 pttAt
Znlt) = A2

+ O(At?) (1.9)

b pt—At  A¢
ZHAL gt 4 Ay (wn Aﬁ;n +o
e

Apparently eq.1.10 implies that the positions of the last two steps (f and t — At)
must be kept in computer’s memory in order to calculate the next step, but concrete
implementation are not doing this exactly. Instead the average velocity :i:fz_&/ 2 =

pt _ pt—At

Fn(Xt)) + O(AtY). (1.10)

L T

is stored directly. It uses the same amount of memory but it is much more

useful in terms of post-processing. Is i1s commonly used for graphical representations

Using the average velocity, one iteration of the CFD sheme goes through the two-
step update (equivalent to eq. 1.10)

At
lHA2 — pt=At/2 4 m—F; (1.12)

mi‘FAt _ mf;At 4 d:ffAtﬂAt (1.13)
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Explicit FD scheme

Stability condition
At

glHAt2 — gt=at/2 4 = gt (1.12)
M
@it At = pi=At 4 GIEAL2 Ay (1.13)

In this situation we can write the state of the system after /V iterations explicitly

by introducing the vector Y = {z, &'~ 3 At}T. A matrix form of egs. 1.13 and 1.12
using this vector is

YF = MYy*! (1.28)
where k denotes the number of iterations and
1= 1
m=i=f 1] 19
kAt?
B = > ()
m

Consequently, the state after k iterations depends on the initial conditions and the k-th
power of M as

YF = M*Y". (1.30)

Yade Course, Amsterdam, 2022



Explicit FD scheme
Stability condition

YF = MFY©

In principle, three possible situations can occur with such equation depending on the
spectral radius p( M) of the recursion matrix 4,

—If p(M) > 1 then M" is not bounded, the scheme diverges;

—If p(M) < 1 then M" converge to the null matrix as k — 400, thus Y* — 0
(unphysical since there 1s no damping);

—If p(M) = 1 then M" is finite (it may not have a limit), and the scheme is
stable.

Yade Course, Amsterdam, 2022



Explicit FD scheme
Stability condition

Here the eigenvalues of M are the roots of

§=det(M — M) =)\ + (B—2)\+ 1. (1.31)
the discriminant of this polynomial is
A=(p—-2)7—-4 (1.32)

and its sign changes for § = 4, i.e. At = 2/m/k = T'/m, hence:

—If 8 > 4 (ie. At > 24/m/k) the two eigenvalues are real numbers equal to

M=02-B+V(B—-2)2-4)/2and Ny = (2— 5 — /(B —2)2 —4)/2, in which
|A2| > 1, thus eq. 1.30 diverges.

~-If0 < B < 4 (i.e. At < 2y/m/k) the two eigenvalues are complex numbers
equalto \; = (2 — B +iv/4— (8 —2)2)/2and Ay = (2 — 5 —i/4— (B —2)2)/2,
and p(M) = |A1| = |A2| = 1. It implies that the numerical solution - in terms of

real number - is the superposition of two complex modes of oscillation of constant
amplitude.

Yade Course, Amsterdam, 2022



Explicit FD scheme

Stability condition
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Explicit FD scheme
Stability condition

" 0.1 x maxDt ——

0.1 |

velocity
o

0.1 b~

0.2

-0.008 -0.006 -0.004 -0.002 0
position

Figure 1.4 — glhge: Q&)glljl%rig sphere in the position-velocity phase space, for different
values of At.
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Damping

Physical origin of dissipation:

* plastic dissipation at contacts

* viscous effects at contacts (e.g. Kelvin's spring-dashpot model,
lubrication,...)

Plastic dissipation is sometimes very small. Viscous dissipation can
help stabilizing the particles, but it can be at the price of a smaller
timestep.

Numerical (non-physical) dissipation

* Cundall's non-viscous damping  (AFaw _ g vy o0
— d sEL Fw Uy, |, it B B

Fuw
* viscous effects at contact (yes, agaun:)
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Damping

e — —hd Sgﬂ(]:wﬁﬁ}m W e {KEU! E}

3.0 | T I 1

position

2.5

2.0

1.5

1.0

position

0.5

iteration 1e2

Fig%rgu%lbziﬂg‘? sphere bouncing on a plate with different values of non-viscous damp-
ing
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Content

1. Introduction

2. Explicit (Cundall's type) DEM
2.1 Shapes
2.2 Governing equations
2.3 Implementation (spheres)

3. Element tests
3.0 Introduction
3.1 Packing generation
3.2 Boundary conditions and loading path
3.3 Post processing
3.4 A few caveats

4. Classical results
4.1 Stress-strain behaviour
4.2 Micro-macro relations

5. DEM and fluids
6.1 Capillary effects in unsaturated materials
6.2 Coupling for saturated materials
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Element tests

How is DEM effectively used?
Vision 1: The conceptual model is particle-based

Model definition

_ Complex BVP  Result with complex boundary
Particles conditions

*shapes - > * rockfill,

* Particle Size Distribution * silos (e.g. A. Gladky, Yade-DEM),

* Contact parameters * mixers (e.g. A. Gladky, Yade-DEM),
*

Packing or

* porosit

PO Elementtest o, |k behaviour in {o,e}

Boundary conditions > * elastic constants, |
* friction coefficient,

+ Static variables * flow rule,

* coordination *

* jnitial distribution of forces
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http://www.youtube.com/watch?v=fyKqaqjx1uQ
http://www.youtube.com/watch?v=pfQpnxDSbqQ

Element tests

How is DEM effectively used?
Vision 2: The conceptual model is continuous

Model definition
Inverse problem

Particles Bulk behaviour in {o,¢}
* shapes _ - < Lo * elastic constants,
* Particle Size Distribution : * friction coefficient,
* Contact parameters * flow rule,
_ then i
Packing
* porosity Complex BVP _
- Result with complex boundary
Boundary conditions > conditions
_ _ * structures (soil, rock, concrete),
+ Static variables * composite systems,
* coordination * fragmentation of blocks
* initial distribution of forces *

Yade Course, Amsterdam, 2022



Element tests

How is DEM effectively used?
Vision 2: The conceptual model is continuous

Missile impacts Fragmentation Fractured rock mass

4 +
=
4_ +
T
R
*

Examples from Smilauer (2010a)
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Element tests

How is DEM effectively used?
Vision 2: The conceptual model is continuous

Why DEM instead of classical continuous methods?

Advantages:
+ Fragmentation and/or creation of contacts

+ unlimited displacements
+ more or less realistic behaviour without defining explicitely all the parameters

Difficulties:
- scale effects

- inversion problem:
Q. “I want to simulate a sand with f=30°, what contact friction should | use?”

A. “No clue. Let you start trial and error, through element testing.”

Examples from Smilauer (2010a)
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Element tests

In both visions, the simulations of element tests appear as key
point

O>— 01
(o))

’/ - .
- — /! variation de
i volume
g — +— Oy 3
4
— — S

M — | YT e ____
5 ~N_ VAV sable dense
T e sable lache
3
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Element tests

1. Generate a (random) packing
2. Define and simulate a loading path

3. Analyze the results to get meaningful macro-scale quantities
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Packing generation: deposition
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Packing generation: compaction

From the outside...

Source: Combe G., PhD Dissertation
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-+

L ™

(a). Génération aléatoire.

Packing generation: compaction

... or from the inside (particles growth)

Procédure ERDF

*

-+

o

(b). Compactage 1
Expansion des particules
tant que o < 0.

(c). Compactage 2
Diminution du
frottement avec o = 0.

072 31 ; - 0,55
2 0,64 4 = - s - - - - Porosity o B = 0,50
] ILES b 8 Contact friction coefficient L 045
% 0,56 gt~ o = Unbalanced force '
@ : EE : — o 0,40
8 048 fh--poeeeld
< | ; 0,35
g 0407 ‘-_.__% _____________ - 0,30
= 0,32 + et P e B e e e 0,25
S :
*g 0,24 i = 0,20
O i = 0,15
- 0,16 |
2 : - 0,10
8 0,08 :
s 0 i 0,05
% 0,00 4 v v ' ' ' v v v . + 0,00
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
iterations
(Source: Tong et al., 2012)
Yade Course, Amsterdam, 2022 p. 45
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Packing generation: geometric algorithms

* Example in Jerier et al. (2009) using tetrahedral mesh
* Many other algorithms, see for instance Bagi (2005)

Step 1 Step 2

(source: Jerier et al. (2009))
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Packing generation: compaction

Geometric + _ + _

Yade Course, Amsterdam, 2022



Loading path

Boundary conditions

Homogeneous conditions:

T=0on,
or
u=eg X,

or combinations of the above.

Yade Course, Amsterdam, 2022
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Loading path

Boundary conditions

(a) (b)

Figure 2.5: Types of boundary conditions: (a) rigid walls (b) flexible (¢) periodic. [23]
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Loading path

Rigid walls:
* Imposing displacement is straightforward
* Imposing stress can be done with a dynamic method or by servo-

control (more efficient)

Periodic boundary conditions (no boundaries!):

* stress and strains are controlled by deforming the period

* Inhomogeneous effects are avoided by 3
applying the same velocity gradient to '
the period and the particles positions

Yade Course, Amsterdam, 2022 p. 50



Loading path

Classical paths

Triaxial compression
* The most classical test on soils

Simple shear

* Inspired by Couette flow. Mostly used with periodic boundary
conditions (3-periodic or 2-periodic for very large shear)

* Introduces more complexity (hence harder analysis) due to non-
coaxiality

Live examples with Yade

Yade Course, Amsterdam, 2022 p. 51



Post-processing

A. {o,e} can be deduced simply by forces and displacements at the boundaries
when rigid walls are used.

Yade Course, Amsterdam, 2022 p. 52



Post-processing

B. {o,e} can be defined from internal kinematic and static variables. Averaging
the microscale definitions gives the same tensors as that defined at the
boundaries (A). They also serve for analyzing heterogeneous disp./stress fields
(e.g. shear banding)

1 1
<VdX >= — | VdXdv = — dX @ nds
V VS an

Yade Course, Amsterdam, 2022 p. 53



Advanced stress-strain probing

di'1
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Caveats

Variability, “Representative Element Volume”, and the extreme
sensitivity to initial conditions (butterfly effect)
* classical values: N>1k (2D) or N>10k (3D)

* variabllity is inherent (e.g. single thread vs. multithread)

500 grains (dg/L, =0,052)

4000 grains (do/L,=0,018)
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Caveats

Quasistaticity

Strict quasistaticity is never found in granular soils (experimentaly nor
numericaly). Of real interest is the impact of strain rate on the results.
In most cases, authors refer to “quasistaticity” in this later sense.
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Content

1. Introduction

2. Explicit (Cundall's type) DEM
2.1 Shapes
2.2 Governing equations
2.3 Implementation (spheres)

3. Element tests
3.0 Introduction
3.1 Packing generation
3.2 Boundary conditions and loading path
3.3 Post processing
3.4 Advanced stress-strain probing
3.5 A few caveats

4. Classical results
4.1 Stress-strain behavior
4.2 Micro-macro relations

5. DEM and fluids
6.1 Capillary effects in unsaturated materials
6.2 Coupling for saturated materials

Yade Course, Amsterdam, 2022



Classical results (elastic-frictional model)

Qualitatively similar to experimental behavior of sands, but the shear
strength of spheres is generally lower (typically, ¢=18° at the critical state)
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Classical results (elastic-frictional model)

A quasi-elastic domain can be identified with linear elastic contact laws
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Classical results (elastic-frictional model)

Coulomb friction rules the bulk behavior for elastic-plastic contacts as long
as o/E <100
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Classical results (elastic-frictional model)

* The relation between peak friction and contact friction is highly non-linear.

* More contact friction induces more dilantancy

* Residual friction is almost constant (and very low)

* Realistic bulk friction is obtained at the price of complex shapes or
moments at contact
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Classical results (elastic-frictional model)

2.5

A critical state is observed, with
a unique asymptotic behavior at
large strain

Approximately € > 10% in 2D,
¢ >20% in 3D
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