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A Hierarchical Model for Cross-scale Simulation of
Granular Media

Ning Guo and Jidong Zhao

Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong

Abstract. This paper presents a multiscale modeling framework for granular media based on a hierarchical cross-scale
approach. The overall material is treated as a continuum on the macroscale and the corresponding boundary value problem is
solved by �nite element method (FEM). At each Gauss point of the FEM mesh, a discrete element assembly is embedded from
which the material behavior is obtained for the global FEM computation. It is demonstrated that this technique may capture
the salient macroscopic behavior of granular media in a natural manner, and meanwhile helps to bypass the conventional
phenomenological nature of continuum modeling approaches. Moreover, the framework provides us with rich information on
the particle level which can be closely correlated to the macroscopic material response and hence helps to shed lights on the
cross-scaling understanding of granular media. Speci�c linkages between the microscopic origins and mechanisms and the
macroscopic responses can be conveniently developed. As a demonstrative example, the strain localization of granular sand
in biaxial compression test is investigated by the multiscale approach to showcase the above features.
Keywords: hierarchical multiscale modeling; �nite/discrete element methods; granular media; strain localization
PACS: 61.43.-j; 83.80.Fg; 83.50.Ax; 45.70.Vn

INTRODUCTION

Granular matter transmits forces through interparticle
contacts and forms highly inhomogeneous contact force
network inside the system to balance the external force
[1, 2]. Seemingly simple on each individual particle, the
inherent and induced inhomogeneity and the microscopic
self-reorganization of the entire system lead to a com-
plex collective behavior at the macroscopic level, includ-
ing state-dependent dilatancy, non-coaxiality, and strain
localization [3, 4, 5]. The development of a robust consti-
tutive model to capture all or even some of these aspects
of granular media proves to be challenging. Recently, the
discrete element method (DEM) has become a popular
tool in many areas to investigate the behavior of granu-
lar media. DEM respects the discrete nature of granular
media and models the material system as an assembly
of interacted individual particles. Based often on rather
simple contact law at microscopic level, DEM has been
demonstrated to be capable of capturing many salient
macroscopic features of granular media and meanwhile
providing interesting insights into the evolution of the as-
sociated internal micro-structures [6, 7, 8, 9].

One of the biggest constraints of DEM simulation of
granular media lies in its limitation in modeling very
large scale systems with realistic particle size, e.g., prac-
tical engineering level problems. To address this issue,
considerable efforts have been paid by researchers in
the community of granular mechanics and computa-
tional mechanics to develop coupled approach to com-
bine the continuum level simulations and the discrete-
based methods. Special focus has been placed on de-

veloping effective ways to link the microscopic origins
and mechanisms of granular media with their overall
mechanical behavior, or so-called micro-macro bridging
through homogenization techniques [10, 11]. The con-
cept and the methodology are further extended to a hi-
erarchical cross-scale framework [12, 13, 14] to solve
true boundary value problems (BVPs) where the macro-
scopic responses are homogenized from microscopic dis-
crete data, thus the constitutive law is no longer required.
In line with this, the study is devoted to develop a cross-
scale modeling framework for granular material model-
ing. In this approach, the �nite element method (FEM) is
used to tackle the large scale BVPs by virtue of its com-
putational ef�ciency.At each Gauss point of the FEM do-
main, a discrete element assembly is embedded to serve
as a representative volume element (RVE) which is the
smallest unit that ef�ciently captures the material consti-
tutive behavior with suf�cient accuracy. To elaborate, the
material point response is computed by receiving bound-
ary conditions from the FEM domain and then passed on
to the Gauss point for the FEM calculations. In so doing,
no constitutive assumptions, which are frequently crit-
icized to be phenomenological in nature, are needed a
priori for the continuum modeling. In what follows, the
solution procedure and formulations of the hierarchical
multi-scale modeling framework are �rst introduced. The
predictive capability of this framework is then demon-
strated by the examination of a biaxial compression test
on granular sand wherein strain localization is observed.
Throughout the paper, if not otherwise stated, indicial
tensor notation and Einstein summation convention are
used.
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SOLUTION PROCEDURE

In a typical displacement-driven FEM, the global gov-
erning equation is solved by �rst discretizing the con-
sidered domain into �nite mesh in which the local dis-
placement and strain increments are interpolated from
boundary conditions. At each Gauss point, an incremen-
tal constitutive relation is then required to link the strain
increment with the stress increment:

�σi j = Di jkl �εkl (1)

where D denotes the tangent operator. The in�nitesimal
strain is calculated by:

εi j =
1
2
(ui, j+ u j,i) (2)

where �u is the unknown displacement vector. A linear
elastic problem can be solved directly since D is in-
deed the elastic modulus. For a general nonlinear case,
Newton-Raphson method is usually used to solve the
problem iteratively.

Instead of assuming a phenomenological constitutive
model a priori, we perform DEM simulations to obtain
the material behavior at each Gauss point. The boundary
condition for a particular DEM RVE is extracted from
the deformation �eld of the FEM domain at the speci�c
Gauss point. The homogenized stress and tangent opera-
tor are then returned to the global FEM equation. Itera-
tive schemes are employed to �nd a converged solution.
The procedure is summarized below:

1. Find a trial solution using the current stress and
tangent operator.

2. Use the solution as boundary condition for each
RVE and update stress and tangent operator.

3. Repeat the above steps until convergence is reached.

DEM and Homogenization

An popular open-source code YADE [15] has been
used for the DEM part of the multiscale computation.
A linear force-displacement contact law is chosen in
conjunction with the Coulomb’s friction criterion in the
DEM to describe the interparticle contacts. The normal
stiffness kn and the tangential stiffness kt are determined
from two input parameters Ec and νc:

kn = Ecr, kt = νckn (3)

where r = 2r1r2/(r1 + r2) is the common radius of the
two particles in contact. A threshold for the tangential
(frictional) force f ct is imposed:

| f ct | ≤ f cn tan ϕ (4)

where f cn is the normal contact force, ϕ is the interpar-
ticle friction angle. A simple local non-viscous damping
force [16] is also added to ensure quasi-static condition:

f damp
i = −α sign(vi)| f residi | (5)

where α is the damping ratio, �v is the velocity of the
particle, and �f resid is the residual force summed over all
contacts on the particle.

The homogenized Cauchy stress tensor for a DEM
packing follows the Love formula [17, 18]:

σi j =
1
V ∑
Nc
f ci dcj (6)

where V is the total volume (or area in two-dimension)
of the packing, Nc is summed contact number within the
packing, �f c is the contact force, and �dc is the branch
vector connecting centers of the two contact particles.
Two commonly referred quantities in soil mechanics –
the mean effective stress p and the deviatoric stress q in
2D case are then calculated:

p =
1
2

σii, q=
√

1
2
si jsi j (7)

where sss is the deviatoric stress tensor si j = σi j − pδi j
with δδδ being the Kronecker delta. The involved strain
quantities are deviatoric strain εq and volumetric strain
εv, calculated from the strain tensor εεε:

εq =
√

2ei jei j, εv = εii (8)

where ei j = εi j − 1/2εkkδi j.
We use the homogenized bulk elastic modulus of the

packing as a �rst trial approximation of the tangent oper-
ator. The analytical form is derived based on the assump-
tion of uniform strain �eld [19, 20, 12]:

Di jkl =
1
V ∑
Nc
(knnci dcj nckd

c
l + ktt

c
i dcjtck d

c
l ) (9)

where �nc and�tc are the unit vectors in the normal and
tangential directions at a contact.

Representive Volume Element

It remains debatable how large a proper RVE should
be chosen. Generally the size of the RVE should be large
enough to be statistically representative and meanwhile
adequately compact to render it computationally effec-
tive. In the current study, the parameters and the RVE
size are calibrated such that the the behavior of the RVE
is in qualitatively consistent with the laboratory data on
sand.
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TABLE 1. Parameters for the DEM model
Radii
(mm)

Density
(kg/m3)

Ec
(MPa)

νc ϕ
(rad)

α

1-3 2650 100 0.7 0.5 0.2
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FIGURE 1. Behaviour of the calibrated RVE

The RVE �nally calibrated contains 2000 polydisperse
circular particles (cylindrical rods) with a mean radius
rmean = 2mm. Selected parameters for the DEM model
are presented in Table 1. Periodic boundary applies in
both directions of the DEM assembly with zero gravity
(i.e., no body force). We �rst examine the behavior of
the RVE in drained biaxial compression with an initial
isotropic pressure (p0 = 300kPa) but different void ra-
tios e0. From Fig. 1, it is found that dense packing has
larger peak strength and is more dilative than the loose
packing. The three cases shown are consistent with typi-
cal behavior of dense, medium dense and loose samples
of sand. The same RVE is used in the following multi-
scale modeling of the biaxial compression problem.

BIAXIAL COMPRESSION TEST

A sample of 100mm× 200mm under biaxial compres-
sion is considered. The domain is discretized into 6 × 10
�rst-order quadrilateral (Q1) elements. The mesh and the
boundary condition are illustrated in Fig. 2. An identical
dense packing of RVE is attached to each Gauss point.
The specimen is loaded in the vertical direction with a
constant con�ning pressure σ00 = 300kPa applied to the
horizontal.

Fig. 3(a) shows the deviatoric strain contour at a global
axial strain about 0.5% when a localized deformation is
initiated. Since all boundary conditions and the applied
loads are symmetric, and the material properties and ini-
tial state are homogeneous in the sample as well. Con-
ventional FEM simulation would other predict no occur-
rence of localization at all. However, the current multi-
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FIGURE 2. Discretization and boundary condition of the
specimen

A
B

FIGURE 3. Contour of (a) deviatoric strain; (b) fabric
anisotropy

scale simulation shows that the initially identical RVEs
at different Gauss points evolve along different loading
paths, which results in different fabric. The asymmet-
ric physical fabric breaks the symmetry of the sample
and causes asymmetric localization. Our modeling thus
shows that the occurrence of localization is a result of
material behavior rather than arbitrary perturbations re-
ported in many other studies.

Indeed, by virtue of the multi-scale modeling ap-
proach, the overall material response can be directly
linked to the underlying microstructure and the micro-
scopic mechanism. One quantity re�ecting the micro-
structure is the so-called fabric tensor. The contact-
normal based fabric tensor proposed by [21] is employed
here:

φi j =
1
Nc ∑

Nc
nci n

c
j (10)

The trace of φφφ is φii = 1. A deviatoric tensor can be
calculated which quanti�es the fabric anisotropy:

Fi j = 4(φi j −
1
2

δi j) (11)
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FIGURE 4. Contact force network for RVEs (a) outside and
(b) inside the localized region

The second invariant of Fi j is used to measure the
anisotropic intensity Fa =

√
1/2Fi jFi j. Fig. 3(b) shows

the contour of Fa over the problem domain. Notably, the
localized region is more anisotropic than the surrounding
region due to concentrated shearing.

The local structure characteristics are further exam-
ined from the contact force network of the RVEs. Fig. 4
shows a comparison between two RVEs, one located
outside and the other inside of the strain localized re-
gion, corresponding to Point A and B in Fig. 3(a) re-
spectively. As can be seen, the contact forces are larger
and more concentrated within the localized region with
the anisotropic orientation mainly aligned in the com-
pression direction (indicated by a thick line), while the
surrounding force chains are weakened (indicated by el-
lipses) which makes the penetrating strong force chains
fragile to buckling [see also 22, 23].

CONCLUSIONS

We developed a hierarchical cross-scale framework and
extended it to solve a boundary value problem for gran-
ular media. The method may help to bypass the phe-
nomenological way in conventional constitutive mod-
eling, and meanwhile offers rich information linked to
the microscopic level of the material. An example of
strain localization in biaxial compression test was used
to demonstrate this feature. We note that, however, the
proposed method is computationally expensive. Coarse
mesh has been used in the demonstrated example, and the
computation has been terminated by rather small strain
level, e.g., the initiation of localization. Due to �uctu-
ations in simulated responses by DEM, the numerical
scheme may not converge in some cases. As an ongo-
ing work, we are still working on such aspects as paral-
lelization of the RVE computations and design of robust
iterative schemes to improve the method.
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