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Abstract.  This paper presents conditions of initiation and development of failure in granular materials through a two-
dimensional discrete element model. General condition for the effective development of failure and its physical 
characteristics are recalled. Then relation between failure and the second order work expressed in terms of microscopic 
variables is discussed. Eventually, correspondence between a localized mode of failure marked with shear band patterns 
and space distribution of negative values of microscopic second-order work is investigated. 
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INTRODUCTION 

Failure in granular materials is classically 
associated to the notion of plastic limit condition 
represented in the stress space by a Mohr-Coulomb-
type failure surface. The objective of this paper is to 
reconsider the question of failure from a more general 
point of view. Hence we recall first: what is the 
physical manifestation of failure, the relation between 
its effective occurrence and the mode of control of the 
mechanical state, and finally the way to detect with the 
second-order work criterion the possible occurrence of 
failure. Then, in the framework of this general 
description of failure, we focus on the description of 
the mode of failure, either localized or diffused 
according to the development or the lack of 
localization of deformations. In particular, we 
investigate if a local expression of the second-order 
work (built from microscopic variables), in direct 
relation with the macroscopic expression of the second 
order work and thus with failure at the scale of the 
representative elementary volume, could also be linked 
to the mode of failure. 

Discussions and analyses are based on numerical 
simulations performed with the discrete element based 
software YADE [1]. The granular assemblies are made 
of elastic circular particles (in 2D), or spherical ones 
(in 3D), and inter-particle contacts are purely 
frictional. Besides, we will make reference to the 
macroscopic expression of the second order work W2, 
basically defined for a homogeneous volume oV  in 
equilibrium at a given time t under a prescribed 

external loading as: 
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involving both incremental Piola-Kirchoff stress �

and strain F , with 
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system during a time increment δt. In what follows, 
the lagrangian stress will be confounded with the usual 

Cauchy stress � , for the sake of simplicity.

FAILURE DESCRIPTION 

Failure is generally associated to the notion of limit 
stress state. Such limit stress states are easily 
observable in homogeneous laboratory tests where 
some loading paths lead to stress states that cannot be 
exceeded. The drained triaxial compression on a dense 
granular assembly constitutes a classical example. 
Fig. 1a shows the simulated response with the discrete 
element model to a two-dimensionnal drained biaxial 
compression under a confining pressure σ2 = 300 kPa. 
The axial stress σ1 grows until reaching a maximum. 
This maximum constitutes a limit stress state. This 
point can be verified by switching the control and 
response parameters. 

For the simulation we have just presented, the 
loading path was fixed by the loading parameter 
dσ2 = 0 (defining a straight line in the stress plane) and 
the mechanical state of the granular assembly along 

Powders and Grains 2013
AIP Conf. Proc. 1542, 585-588 (2013); doi: 10.1063/1.4811999

©   2013 AIP Publishing LLC 978-0-7354-1166-1/$30.00

585

Downloaded 24 Jul 2013 to 193.48.255.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



this path were controlled through the axial strain ε1 by 
imposing an axial compression (dε1 > 0). The axial 
stress σ1 was then a response parameter. We can renew 
this experiment by controlling σ1 and imposing a stress 
increases (dσ1 > 0), while ε1 is the response parameter. 
The response to this loading program is superimposed 
to the previous one in Fig. 1a. Even though a constant 
increase of σ1 is imposed, the limit stress state is not 
exceeded (actually it is here slightly exceeded due to 
inertial terms no more negligible at failure initiation). 
While it is approached, deformations increase strongly 
just as the strain rate and the kinetic energy as 
displayed in Fig. 1b. Thus, it is shown that the peak of 
σ1 is a limit stress state and that failure (characterized 
by unlimited strains and a transition from a quasi-static 
response to a dynamic one [2]) effectively occurs 
when the load apply to the granular assembly exceed 
this limit state. 

Limit stress states are classically described in soils 
by failure criterion of Mohr-Coulomb type. They can 
also be identified with the second-order work criterion 
stating that a limit state is reached if W2 ≤€0 [3] (for 
the biaxial loading path dσ2 = 0 is imposed and W2
vanishes together with dσ€1). This last criterion is 
more general than the Mohr-Coulomb criterion since it 
offers the possibility to detect mechanical states 
strictly included within the Mohr-Coulomb criterion 
from which failure may develop. This has been deeply 
discussed in previous papers (for instance [3] & [4]). 

Another important discussion in the description of 
failure is about the loss of homogeneity of the strain 
field and the development of strain localization  
patterns. For the drained compression previously 
discussed, the sample is initially in a dense state and as 
shown in Fig. 2, shear bands develop when the limit 
stress state is approached, indifferently for an axial 
stress or an axial strain control of the loading. 
Analytically, shear bands occurrence are detected with 
the Rice's criterion corresponding to the vanishing of 
the determinant of the acoustic tensor [5]. 
Consequently, the occurrence of failure characterized 
by strain localization pattern in shear bands will be 
detected along a given loading path when both criteria 
(second-order work for failure and Rice's criterion for 
shear band) are verified. Note that the effective 
occurrence of failure along the considered loading path 
depends on the mode of control of the loading (here 
for the drained compression an axial stress control is 
necessary).  

However, limit states and failure can also be 
associated with homogeneous strain fields as shown in 
Fig. 3, where incremental deviatoric strain fields are 
displayed for a medium dense 2D particle assembly 
subjected to an undrained (isochoric) biaxial 
compression. For such a loading path the second-order  

(a)

(b)

FIGURE 1.  Responses of the discrete element model 
to a drained biaxial compression axially strain 
controlled (a), or stress controlled (a & b).

work writes W2 = V dq dε1 and thus vanishes at the 
peak of the stress deviator q, corresponding to a limit 
state from which failure can effectively develops if the 
stress deviator q is the control parameter. However 
strain field stays rather homogeneous after the peak of 
q, and we can imagine that Rice's criterion never holds 
along this loading path for this granular assembly.

LOCAL SECOND-ORDER WORK  

We consider a homogeneous volume oV  of 

granular material comprised of N  grains. The shape 
of each grain ‘p’ is arbitrary. The total number of 
contacts at time t within the assembly is denoted cN . 
The Lagrangian formulation given in Eq. (1) can be 
readily differentiated, then providing the following 
expression of the second-order work (see [6] for more 
details): 

2
c c p p

i i i i
p,q p V

W = �f �l + �f �x
∈

� �  (2) 

where cl  is the branch vector relating the centres of 
contacting particles, cf  is the contact force between 
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              (1)                              (2)                              (3)

          

              (1)                              (2)                              (3)

          

FIGURE 2. Incremental deviatoric strain fields 
computed at states numbered from 1 to 3 in Fig. 1, for 
the axially strain controlled loading (top) and stress 
controlled one (bottom); color represents the intensity 
of incremental deviatoric strain. 

   (1)                             (2)                            (3)

        

FIGURE 3. Stress response path for an undrained  
biaxial compression (top), and incremental deviatoric 
strain fields computed at states numbered from 1 to 3 
(bottom)

contacting particles, and pf  denotes the resultant 
force applied to the particle ‘p’ of position px . As 
specified in [6], the creation or the deletion of contacts 
is accounted for in this approach. The symbol 

p,q
� denotes the summation over p and q varying over 

[ ]1, N  with q p≤ , and c refers to the contacting pair 
(p, q) . When no contact exists between particles ‘p’ 

and ‘q’, cf  is set to zero. 
It is worth noting that in the absence of incremental 

unbalanced force and in quasi-static regime, Eq. (2) 
simplifies into: 

2
c c

i i
p,q

W = �f �l�  (3) 

The validity of this relation has been numerically 
checked for 3D granular assemblies in axisymmetric 
conditions. After a first triaxial loading path under a 
confining pressure of 100 kPa, different strain probes 
were simulated from the same loading point 
(corresponding to a deviatoric ratio 0.48�= ). The 
strain probes have the same amplitude (10-4), and are 
characterized by different orientations �� in the 
Rendulic strain plane. The stress response is computed 
for each orientation ��  and W2 is deduced from 

Eq. (1). Likewise, the quantity c c
i i

p,q
�f �l�  can also be 

computed, which allows the validity of Eq. (3) to be 
assessed. 

As seen in Fig. 4, an excellent agreement between 
both expressions of the second-order work with micro 
and macro variables is obtained. Equation (3) 
expresses the internal second-order work from 
micromechanical variables, namely the contact forces 
existing between contacting granules, and the branch 
vectors joining these granules. The attempt of such a 
formulation is to go down to the microscopic scale, to 
try to elucidate what are the basic microstructural 
origins giving rise to the vanishing of the internal 
second-order work, and therefore what are the 
microstructural contexts prone to instabilities. 

To progress along this line, we plotted for the 
drained biaxial compressions presented in previous 
section the space distribution of inter-particle contacts 
c - where the local second-order work ( c c

i i�f �l ) is 
negative in Fig. 5, for both axially strain and stress 
controlled loading paths. These distributions can be 
compared with the incremental deviatoric strain fields 
in Fig. 2. The patterns of these distributions are very 
similar, c - contacts are concentrated in the shear bands 
(as shown by the theory) where failure occurs and are 
sparsely distributed outside the shear band where the 
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FIGURE 4. Macroscopic and microscopic expressions 
of the second-order work. 

material is unloading. Inversely, c - contacts for the 
undrained loading path (presented in Fig. 3) stay 
homogeneously distributed, even after the point of 
potential failure occurrence (q peak) as shown in 
Fig. 6. 

CONCLUSION 

Effective failure can be described as the bifurcation 
of the response of the granular assembly from a quasi-
static one, before failure initiation, to a dynamic one 
during failure development. Along a given loading 
path, the occurrence of this bifurcation (and thus of 
failure) depends on the mode of control of the granular 
assembly. Possible points of bifurcation are detected 
with the second-order work criterion. This later can be 
equivalently expressed in the framework of continuum 
mechanics or in the discrete micro-mechanics 
framework. Both expressions give at the scale of the 
granular assembly an identical information about the 
possibility of failure occurrence. Nevertheless the local 
expression of the second-order work criterion seems to 
give a richer information, since the spatial distribution 
of inter-particle contacts satisfying this criterion is 
apparently directly related to the mode of failure 
(localized or diffused). However, additional statistical 
analysis need to be performed to improve the 
understanding of potential links between failure mode 
and local second-order work. 
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              (1)                             (2)                            (3)

        

FIGURE 5. Fields of c- contacts for the drained 
biaxial compression axially strain controlled (top) and 
stress controlled (bottom).

              (1)                             (2)                            (3)

          

FIGURE 6. Fields of c- contacts for the undrained 
biaxial compression presented in Fig. 3.
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