
Yade Documentation (3rd ed.)

3rd Edition based on Yade version 2025-07-02.git-e66a3fc, July 3, 2025

Authors
• Václav Šmilauer Freelance consultant (http://woodem.eu)

• Vasileios Angelidakis Newcastle University, UK

• Emanuele Catalano Univ. Grenoble Alpes, 3SR lab.

• Robert Caulk Univ. Grenoble Alpes, 3SR lab.

• Bruno Chareyre Univ. Grenoble Alpes, 3SR lab.

• William Chèvremont Univ. Grenoble Alpes, LRP

• Sergei Dorofeenko IPCP RAS, Chernogolovka

• Jérôme Duriez INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France

• Nolan Dyck Univ. of Western Ontario

• Jan Eliáš Brno University of Technology

• Burak Er Bursa Technical University

• Alexander Eulitz TU Berlin / Institute for Machine Tools and Factory Management

• Anton Gladky TU Bergakademie Freiberg

• Ning Guo Hong Kong Univ. of Science and Tech.

• Christian Jakob TU Bergakademie Freiberg

• François Kneib Univ. Grenoble Alpes, 3SR lab. / Irstea Grenoble

• Janek Kozicki Gdansk University of Technology

• Donia Marzougui Univ. Grenoble Alpes, 3SR lab.

• Raphaël Maurin Irstea Grenoble

• Chiara Modenese University of Oxford

• Gerald Pekmezi University of Alabama at Birmingham

• Luc Scholtès Univ. Grenoble Alpes, 3SR lab.

• Luc Sibille University of Nantes, lab. GeM

• Jan Stránský CVUT Prague

• Thomas Sweijen Utrecht University

• Klaus Thoeni The University of Newcastle (Australia)

• Chao Yuan Univ. Grenoble Alpes, 3SR lab.

• Karol Brzeziński Warsaw University of Technology

Citing this document
When referring to Yade-DEM software in scientific publication please cite it ”by DOI” as follows:
Šmilauer V. et al. (2021) Yade Documentation 3rd ed. The Yade Project. DOI:10.5281/zenodo.5705394.
http://yade-dem.org

See also http://yade-dem.org/doc/citing.html.

i

ii

Contents

1 Guided tour 1
1.1 Introduction . 1

1.1.1 Getting started . 1
1.1.2 Architecture overview . 7

1.2 Tutorial . 16
1.2.1 Introduction . 17
1.2.2 Hands-on . 17
1.2.3 Data mining . 28
1.2.4 Setting up a simulation . 34
1.2.5 Advanced & more . 37
1.2.6 Examples with tutorial . 39
1.2.7 More examples . 54

2 Yade for users 61
2.1 DEM formulation . 61

2.1.1 Collision detection . 61
2.1.2 Creating interaction between particles . 66
2.1.3 Kinematic variables . 67
2.1.4 Contact model (example) . 71
2.1.5 Motion integration . 71
2.1.6 Periodic boundary conditions . 80
2.1.7 Computational aspects . 84

2.2 User’s manual . 86
2.2.1 Scene construction . 86
2.2.2 Controlling simulation . 107
2.2.3 Postprocessing . 124
2.2.4 Python specialties and tricks . 130
2.2.5 Extending Yade . 131
2.2.6 Troubleshooting . 131
2.2.7 Getting in touch with Yade community . 132

2.3 Yade wrapper class reference . 133
2.3.1 Bodies . 133
2.3.2 Interactions . 193
2.3.3 Global engines . 246
2.3.4 Partial engines . 361
2.3.5 Dispatchers . 502
2.3.6 Functors . 506
2.3.7 Bounding volume creation . 507
2.3.8 Interaction Geometry creation . 516
2.3.9 Interaction Physics creation . 542
2.3.10 Constitutive laws . 563
2.3.11 Internal forces . 591
2.3.12 Callbacks . 593
2.3.13 Preprocessors . 594
2.3.14 Rendering . 603
2.3.15 Simulation data . 620

iii

2.3.16 Other classes . 632
2.4 Yade modules reference . 644

2.4.1 yade.bf module . 644
2.4.2 yade.bodiesHandling module . 647
2.4.3 yade.export module . 648
2.4.4 yade.geom module . 653
2.4.5 yade.gridpfacet module . 657
2.4.6 yade.libVersions module . 661
2.4.7 yade.linterpolation module . 664
2.4.8 yade.log module . 665
2.4.9 yade.math module . 667
2.4.10 yade.minieigenHP module . 710
2.4.11 yade.mpy module . 792
2.4.12 yade.pack module . 796
2.4.13 yade.plot module . 811
2.4.14 yade.polyhedra_utils module . 1397
2.4.15 yade.post2d module . 1398
2.4.16 yade.potential_utils module . 1402
2.4.17 yade.qt module . 1403
2.4.18 yade.timing module . 1406
2.4.19 yade.utils module . 1407
2.4.20 yade.ymport module . 1428

2.5 Installation . 1433
2.5.1 Packages . 1434
2.5.2 Docker . 1435
2.5.3 Source code . 1436
2.5.4 Speed-up compilation . 1442
2.5.5 Cloud Computing . 1443
2.5.6 GPU Acceleration . 1443
2.5.7 Special builds . 1443
2.5.8 Yubuntu . 1444

2.6 Acknowledging Yade . 1444

3 Yade for programmers 1447
3.1 Programmer’s manual . 1447

3.1.1 Build system . 1447
3.1.2 Development tools . 1448
3.1.3 Debugging . 1450
3.1.4 Regression tests . 1456
3.1.5 Conventions . 1458
3.1.6 Support framework . 1463
3.1.7 Simulation framework . 1490
3.1.8 Runtime structure . 1496
3.1.9 Python framework . 1498
3.1.10 Adding a new python/C++ module . 1500
3.1.11 Maintaining compatibility . 1501

3.2 Yade on GitLab . 1502
3.2.1 Fast checkout (read-only) . 1502
3.2.2 Branches on GitLab . 1502
3.2.3 Merge requests . 1506
3.2.4 Guidelines for pushing . 1507

4 Theoretical background and extensions 1509
4.1 DEM formulation . 1509
4.2 CFD-DEM coupled simulations with Yade and OpenFOAM 1509

4.2.1 Supported versions and examples . 1509
4.2.2 Background . 1510
4.2.3 Setting up a case . 1513

iv

4.2.4 Post-Processing . 1515
4.2.5 Using blockMeshDict . 1515
4.2.6 Using polyMesh . 1515

4.3 FEM-DEM hierarchical multiscale modeling with Yade and Escript 1516
4.3.1 Introduction . 1516
4.3.2 Finite element formulation . 1517
4.3.3 Multiscale solution procedure . 1517
4.3.4 Work on the YADE side . 1518
4.3.5 Work on the Escript side . 1518
4.3.6 Example tests . 1519
4.3.7 Disclaim . 1519

4.4 Simulating Acoustic Emissions in Yade . 1520
4.4.1 Summary . 1520
4.4.2 Model description . 1520
4.4.3 Activating the algorithm within Yade . 1522
4.4.4 Visualizing and post processing acoustic emissions 1523
4.4.5 Consideration of rock heterogeneity . 1523

4.5 Using YADE 1D vertical VANS fluid resolution . 1525
4.5.1 DEM-fluid coupling and fluid resolution in YADE 1525
4.5.2 Application of drag and buoyancy forces (HydroForceEngine::action) 1525
4.5.3 Solid phase averaging (HydroForceEngine::averageProfile) 1526
4.5.4 Fluid resolution\HydroForceEngine::fluidResolution 1527

4.6 Potential Particles and Potential Blocks . 1528
4.6.1 Introduction . 1528
4.6.2 Potential Particles code (PP) . 1529
4.6.3 Potential Blocks code (PB) . 1529
4.6.4 Engines . 1532
4.6.5 Contact Law . 1533
4.6.6 Shape definition of a PP and a PB . 1533
4.6.7 Body definition of a PP and a PB . 1535
4.6.8 Boundary Particles . 1536
4.6.9 Visualization . 1536
4.6.10 Axis-Aligned Bounding Box . 1537
4.6.11 Block Generation algorithm . 1538
4.6.12 Examples . 1538
4.6.13 Disclaimer . 1539
4.6.14 References . 1539

4.7 Bayesian Calibration using GrainLearning . 1539
4.7.1 Installation . 1539
4.7.2 Dynamic Systems . 1540
4.7.3 Bayesian Filtering . 1540
4.7.4 In Yade . 1544
4.7.5 In GrainLearning . 1544
4.7.6 Running Bayesian calibration . 1546
4.7.7 Setting the stopping criteria . 1547
4.7.8 Analyzing and visualizing the results . 1547
4.7.9 Particle-particle collision . 1548
4.7.10 Triaxial compression . 1548

5 Performance enhancements 1551
5.1 Accelerating Yade’s FlowEngine with GPU . 1551

5.1.1 Summary . 1551
5.1.2 Hardware, Software, and Model Requirements . 1551
5.1.3 Install CUDA . 1552
5.1.4 Install OpenBlas, and Lapack . 1552
5.1.5 Install SuiteSparse . 1552
5.1.6 Compile Yade . 1552
5.1.7 Controlling the GPU . 1553

v

5.1.8 Performance increase . 1553
5.2 MPI parallelization . 1554

5.2.1 Concepts . 1554
5.2.2 Walkthrough . 1555
5.2.3 MPI initialization and communications . 1557
5.2.4 Splitting . 1563
5.2.5 Merging . 1566
5.2.6 Hints and problems to expect . 1567
5.2.7 Control variables . 1567
5.2.8 Benchmark . 1568

5.3 Using YADE with cloud computing on Amazon EC2 . 1568
5.3.1 Summary . 1569
5.3.2 Launching an EC2 instance . 1569
5.3.3 Installing YADE and managing files . 1571
5.3.4 Plotting output in the terminal . 1572
5.3.5 Comments . 1573

5.4 High precision calculations . 1573
5.4.1 Installation . 1574
5.4.2 Supported modules . 1574
5.4.3 Double, quadruple, octuple and higher precisions 1576
5.4.4 Compatibility . 1577
5.4.5 Debugging . 1581

6 Short-courses 1583
6.1 THM short-course . 1583

6.1.1 Installing Yade (for Windows and Mac users) . 1583
6.1.2 Introduction to Bash and Python . 1584
6.1.3 Day 1 - Yade Hands-on part 1 . 1590
6.1.4 Day 1 - Yade Hands-on part 2 . 1591
6.1.5 Day 2 - Fluids Hands-on part 1 . 1594
6.1.6 Day 3 - Thermal Hands-on part 1 . 1598
6.1.7 Day 3 - Thermal Hands-on part 2 . 1602

7 Literature 1605
7.1 Yade Technical Archive . 1605

7.1.1 About . 1605
7.1.2 Contribute . 1605
7.1.3 Contact . 1605
7.1.4 Archive . 1606

7.2 Publications on Yade . 1606
7.2.1 Journal articles . 1606
7.2.2 Conference materials and book chapters . 1606
7.2.3 Master and PhD theses . 1606
7.2.4 Yade Technical Archive . 1606

7.3 References . 1606

8 Yade community events 1609
8.1 Yade community events . 1609

8.1.1 1st Yade hackathon . 1609
8.1.2 2nd Yet Another Discrete Element Workshop . 1611
8.1.3 1st Yet Another Discrete Element Workshop . 1611

9 Indices and tables 1613

Bibliography 1615

Python Module Index 1651

vi

Chapter 1

Guided tour

1.1 Introduction

1.1.1 Getting started

Before you start moving around in Yade, you should have some prior knowledge.

• Basics of command line in your Linux system are necessary for running yade. Look on the web for
tutorials.

• Python language; we recommend the official Python tutorial. Reading further documents on the
topic, such as Dive into Python will certainly not hurt either.

You are advised to try all commands described yourself. Don’t be afraid to experiment.

Hint: Sometimes reading this documentation in a .pdf format can be more comfortable. For example
in okular pdf viewer clicking links is faster than a page refresh in the web browser and to go back press
the shortcut Alt Shift ←. To try it have a look at the inheritance graph of PartialEngine then go back.

Starting yade

Yade is being run primarily from terminal; the name of command is yade.1 (In case you did not install
from package, you might need to give specific path to the command2):

$ yade
Welcome to Yade
TCP python prompt on localhost:9001, auth cookie `sdksuy'
TCP info provider on localhost:21000

(continues on next page)

1 The executable name can carry a suffix, such as version number (yade-0.20), depending on compilation options.
Packaged versions on Debian systems always provide the plain yade alias, by default pointing to latest stable version (or
latest snapshot, if no stable version is installed). You can use update-alternatives to change this.

2 In general, Unix shell (command line) has environment variable PATH defined, which determines directories searched
for executable files if you give name of the file without path. Typically, $PATH contains /usr/bin/, /usr/local/bin, /bin
and others; you can inspect your PATH by typing echo $PATH in the shell (directories are separated by :).

If Yade executable is not in directory contained in PATH, you have to specify it by hand, i.e. by typing the path in front
of the filename, such as in /home/user/bin/yade and similar. You can also navigate to the directory itself (cd ~/bin/yade,
where ~ is replaced by your home directory automatically) and type ./yade then (the . is the current directory, so ./
specifies that the file is to be found in the current directory).

To save typing, you can add the directory where Yade is installed to your PATH, typically by editing ~/.profile (in
normal cases automatically executed when shell starts up) file adding line like export PATH=/home/user/bin:$PATH. You
can also define an alias by saying alias yade="/home/users/bin/yade" in that file.

Details depend on what shell you use (bash, zsh, tcsh, …) and you will find more information in introductory material
on Linux/Unix.

1

http://docs.python.org/tutorial
http://www.diveintopython.net/
https://yade-dem.org/doc/Yade.pdf
https://okular.kde.org/

Yade Documentation, Release 3rd ed.

(continued from previous page)

[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9␣
↪→generator, F8 plot.]]
Yade [1]:

These initial lines give you some information about

• some information for Remote control, which you are unlikely to need now;

• basic help for the command-line that just appeared (Yade [1]:).

Type quit(), exit() or simply press ^D (^ is a commonly used written shortcut for pressing the Ctrl
key, so here ^D means Ctrl D) to quit Yade.

The command-line is ipython, python shell with enhanced interactive capabilities; it features persistent
history (remembers commands from your last sessions), searching and so on. See ipython’s documentation
for more details.

Typically, you will not type Yade commands by hand, but use scripts, python programs describing and
running your simulations. Let us take the most simple script that will just print “Hello world!”:

print("Hello world!")

Saving such script as hello.py, it can be given as argument to Yade:

$ yade hello.py
Welcome to Yade
TCP python prompt on localhost:9001, auth cookie `askcsu'
TCP info provider on localhost:21000
Running script hello.py ## the script is␣
↪→being run
Hello world! ## output from the␣
↪→script
[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9␣
↪→generator, F8 plot.]]
Yade [1]:

Yade will run the script and then drop to the command-line again.3 If you want Yade to quit immediately
after running the script, use the -x switch:

$ yade -x script.py

There is more command-line options than just -x, run yade -h to see all of them.

Options:

-v, --version show program’s version number and exit

-h, --help show this help message and exit

-j THREADS, --threads=THREADS Number of OpenMP threads
to run; defaults to 1. Equivalent to setting OMP_-
NUM_THREADS environment variable.

--cores=CORES Set number of OpenMP threads (as --threads) and in
addition set affinity of threads to the cores given.

--update Update deprecated class names in given script(s) using
text search & replace. Changed files will be backed up
with ~ suffix. Exit when done without running any
simulation.

3 Plain Python interpreter exits once it finishes running the script. The reason why Yade does the contrary is that most
of the time script only sets up simulation and lets it run; since computation typically runs in background thread, the script
is technically finished, but the computation is running.

2 Chapter 1. Guided tour

https://ipython.org/

Yade Documentation, Release 3rd ed.

--nice=NICE Increase nice level (i.e. decrease priority) by given
number.

-x Exit when the script finishes

-f Set logging verbosity, default is -f3 (yade.log.WARN)
for all classes

-n Run without graphical interface (equivalent to unset-
ting the DISPLAY environment variable)

--test Run regression test suite and exit; the exists status is 0
if all tests pass, 1 if a test fails and 2 for an unspecified
exception.

--check Run a series of user-defined check tests as described
in scripts/checks-and-tests/checks/README and Re-
gression tests

--performance Starts a test to measure the productivity.

--stdperformance Starts a standardized test to measure the productiv-
ity, which will keep retrying to run the benchmark
until standard deviation of the performance is below
1%. A common type of simulation is done: the spheres
fall down in a box and are given enough time to settle
in there. Note: better to use this with argument -j
THREADS (explained above).

--quickperformance Starts a quick test to measure the productivity.
Same as above, but only two short runs are performed,
without the attempts to find the computer perfor-
mance with small error.

--no-gdb Do not show backtrace when yade crashes (only effec-
tive with --debug)4.

Quick inline help

All of functions callable from ipython shell have a quickly accessible help by appending ? to the function
name, or calling help(…) command on them:

Yade [1]: O.run?
[0;31mDocstring:[0m
run((Omega)arg1 [, (int)nSteps=-1 [, (bool)wait=False]]) -> None :

Run the simulation. *nSteps* how many steps to run, then stop (if positive);␣
↪→*wait* will cause not returning to python until simulation will have stopped.
[0;31mType:[0m method

Yade [2]: help(O.pause)
Help on method pause:

pause(...) method of yade.wrapper.Omega instance
pause((Omega)arg1) -> None :

Stop simulation execution. (May be called from within the loop, and it will␣
↪→stop after the current step).

A quick way to discover available functions is by using the tab-completion mechanism, e.g. type O. then
press tab.

4 On some linux systems stack trace will produce Operation not permitted error. See debugging section for solution.

1.1. Introduction 3

https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/README
https://ipython.org/

Yade Documentation, Release 3rd ed.

Creating simulation

To create simulation, one can either use a specialized class of type FileGenerator to create full scene,
possibly receiving some parameters. Generators are written in C++ and their role is limited to well-
defined scenarios. For instance, to create triaxial test scene:

Yade [3]: TriaxialTest(numberOfGrains=200).load()

Yade [4]: len(O.bodies)
Out[4]: 206

Generators are regular yade objects that support attribute access.

It is also possible to construct the scene by a python script; this gives much more flexibility and speed of
development and is the recommended way to create simulation. Yade provides modules for streamlined
body construction, import of geometries from files and reuse of common code. Since this topic is more
involved, it is explained in the User’s manual.

Running simulation

As explained below, the loop consists in running defined sequence of engines. Step number can be queried
by O.iter and advancing by one step is done by O.step(). Every step advances virtual time by current
timestep, O.dt that can be directly assigned or, which is usually better, automatically determined by a
GlobalStiffnessTimeStepper, if present:

Yade [5]: O.iter
Out[5]: 0

Yade [6]: O.time
Out[6]: 0.0

Yade [7]: O.dt=1e-4

Yade [8]: O.dynDt=False #else it would be adjusted automaticaly during first iteration

Yade [9]: O.step()

Yade [10]: O.iter
Out[10]: 1

Yade [11]: O.time
Out[11]: 0.0001

Normal simulations, however, are run continuously. Starting/stopping the loop is done by O.run() and
O.pause(); note that O.run() returns control to Python and the simulation runs in background; if
you want to wait for it to finish, use O.wait(). Fixed number of steps can be run with O.run(1000),
O.run(1000,True) will run and wait. To stop at absolute step number, O.stopAtIter can be set and
O.run() called normally.

Yade [12]: O.run()

Yade [13]: O.pause()

Yade [14]: O.iter
Out[14]: 1299

Yade [15]: O.run(100000,True)

(continues on next page)

4 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

Yade [16]: O.iter
Out[16]: 101299

Yade [17]: O.stopAtIter=500000

Yade [18]: O.run()

Yade [19]: O.wait()

Yade [20]: O.iter
Out[20]: 500000

Saving and loading

Simulation can be saved at any point to a binary file (optionaly compressed if the filename has extensions
such as “.gz” or “.bz2”). Saving to a XML file is also possible though resulting in larger files and slower
save/load, it is used when the filename contains “xml”. With some limitations, it is generally possible to
load the scene later and resume the simulation as if it were not interrupted. Note that since the saved
scene is a dump of Yade’s internal objects, it might not (probably will not) open with different Yade
version. This problem can be sometimes solved by migrating the saved file using “.xml” format.

Yade [21]: O.save('/tmp/a.yade.bz2')

Yade [22]: O.reload()

Yade [23]: O.load('/tmp/another.yade.bz2')

The principal use of saving the simulation to XML is to use it as temporary in-memory storage for
checkpoints in simulation, e.g. for reloading the initial state and running again with different parameters
(think tension/compression test, where each begins from the same virgin state). The functions O.
saveTmp() and O.loadTmp() can be optionally given a slot name, under which they will be found in
memory:

Yade [24]: O.saveTmp()

Yade [25]: O.loadTmp()

Yade [26]: O.saveTmp('init') ## named memory slot

Yade [27]: O.loadTmp('init')

Simulation can be reset to empty state by O.reset().

It can be sometimes useful to run different simulation, while the original one is temporarily suspended,
e.g. when dynamically creating packing. O.switchWorld() toggles between the primary and secondary
simulation.

1.1. Introduction 5

Yade Documentation, Release 3rd ed.

Graphical interface

Yade can be optionally compiled with QT based graphical interface (qt4 and qt5 are supported). It can
be started by pressing F12 in the command-line, and also is started automatically when running a script.

The control window on the left (fig. imgQtGui) is called Controller (can be invoked by yade.qt.
Controller() from python or by pressing F12 key in terminal):

1. The Simulation tab is mostly self-explanatory, and permits basic simulation control.

2. The Display tab has various rendering-related options, which apply to all opened views (they can
be zero or more, new one is opened by the New 3D button).

3. The Python tab has only a simple text entry area; it can be useful to enter python commands while
the command-line is blocked by running script, for instance.

Inside the Inspect window (on the right in fig. imgQtGui) all simulation data can be examined and
modified in realtime.

1. Clicking left mouse button on any of the blue hyperlinks will open documentation.

2. Clicking middle mouse button will copy the fully qualified python name into clipboard, which can
be pasted into terminal by clicking middle mouse button in the terminal (or pressing Ctrl-V).

3d views can be controlled using mouse and keyboard shortcuts; help is displayed if you press the h key
while in the 3d view. Note that having the 3d view open can slow down running simulation significantly,
it is meant only for quickly checking whether the simulation runs smoothly. Advanced post-processing
is described in dedicated section Data mining.

6 Chapter 1. Guided tour

http://qt.io

Yade Documentation, Release 3rd ed.

1.1.2 Architecture overview

In the following, a high-level overview of Yade architecture will be given. As many of the features are
directly represented in simulation scripts, which are written in Python, being familiar with this language
will help you follow the examples. For the rest, this knowledge is not strictly necessary and you can
ignore code examples.

Data and functions

To assure flexibility of software design, yade makes clear distinction of 2 families of classes: data com-
ponents and functional components. The former only store data without providing functionality, while
the latter define functions operating on the data. In programming, this is known as visitor pattern (as
functional components “visit” the data, without being bound to them explicitly).

Entire simulation, i.e. both data and functions, are stored in a single Scene object. It is accessible
through the Omega class in python (a singleton), which is by default stored in the O global variable:

Yade [28]: O.bodies # some data components
Out[28]: <yade.wrapper.BodyContainer at 0x7fa5ccdd3760>

Yade [29]: len(O.bodies) # there are no bodies as of yet
Out[29]: 0

Yade [30]: O.engines # functional components, empty at the moment
Out[30]: []

Data components

Bodies

Yade simulation (class Scene, but hidden inside Omega in Python) is represented by Bodies, their Inter-
actions and resultant generalized forces (all stored internally in special containers).

Each Body comprises the following:

Shape
represents particle’s geometry (neutral with regards to its spatial orientation), such as Sphere,
Facet or inifinite Wall; it usually does not change during simulation.

Material
stores characteristics pertaining to mechanical behavior, such as Young’s modulus or density, which
are independent on particle’s shape and dimensions; usually constant, might be shared amongst
multiple bodies.

State
contains state variables, in particular spatial position and orientation, linear and angular velocity;
it is updated by the integrator at every step. The derived classes would contain other information
related to current state of this body, e.g. its temperature, averaged damage or broken links between
components.

Bound
is used for approximate (“pass 1”) contact detection; updated as necessary following body’s motion.
Currently, Aabb is used most often as Bound. Some bodies may have no Bound, in which case they
are exempt from contact detection.

(In addition to these 4 components, bodies have several more minor data associated, such as Body::id or
Body::mask.)

All these four properties can be of different types, derived from their respective base types. Yade
frequently makes decisions about computation based on those types: Sphere + Sphere collision has to be

1.1. Introduction 7

Yade Documentation, Release 3rd ed.

Fig. 1: Examples of concrete classes that might be used to describe a Body: State, CpmState, Chained-
State, Material, ElastMat, FrictMat, FrictViscoMat, Shape, Polyhedra, PFacet, GridConnection, Bound,
Aabb.

8 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

treated differently than Facet + Sphere collision. Objects making those decisions are called Dispatchers
and are essential to understand Yade’s functioning; they are discussed below.

Explicitly assigning all 4 properties to each particle by hand would be not practical; there are utility
functions defined to create them with all necessary ingredients. For example, we can create sphere
particle using utils.sphere:

Yade [31]: s=utils.sphere(center=[0,0,0],radius=1)

Yade [32]: s.shape, s.state, s.mat, s.bound
Out[32]:
(<Sphere instance at 0x4932390>,
<State instance at 0x1b63680>,
<FrictMat instance at 0x489a7d0>,
None)

Yade [33]: s.state.pos
Out[33]: Vector3(0,0,0)

Yade [34]: s.shape.radius
Out[34]: 1.0

We see that a sphere with material of type FrictMat (default, unless you provide another Material) and
bounding volume of type Aabb (axis-aligned bounding box) was created. Its position is at the origin and
its radius is 1.0. Finally, this object can be inserted into the simulation; and we can insert yet one sphere
as well.

Yade [35]: O.bodies.append(s)
Out[35]: 0

Yade [36]: O.bodies.append(utils.sphere([0,0,2],.5))
Out[36]: 1

In each case, return value is Body.id of the body inserted.

Since till now the simulation was empty, its id is 0 for the first sphere and 1 for the second one. Saving
the id value is not necessary, unless you want to access this particular body later; it is remembered
internally in Body itself. You can address bodies by their id:

Yade [37]: O.bodies[1].state.pos
Out[37]: Vector3(0,0,2)

Yade [38]: O.bodies[100] # error because there are only two bodies
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[38], line 1[0m
[0;32m----> 1[0m [43mO[49m[38;5;241;43m.[39;49m[43mbodies[49m[43m[[49m[38;5;241;
↪→43m100[39;49m[43m][49m [38;5;66;03m# error because there are only two bodies[39;
↪→00m

[0;31mIndexError[0m: Body id out of range.

Adding the same body twice is, for reasons of the id uniqueness, not allowed:

Yade [39]: O.bodies.append(s) # error because this sphere was already added
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[39], line 1[0m
[0;32m----> 1[0m [43mO[49m[38;5;241;43m.[39;49m[43mbodies[49m[38;5;241;43m.[39;

(continues on next page)

1.1. Introduction 9

Yade Documentation, Release 3rd ed.

(continued from previous page)

↪→49m[43mappend[49m[43m([49m[43ms[49m[43m)[49m [38;5;66;03m# error because this␣
↪→sphere was already added[39;00m

[0;31mIndexError[0m: Body already has id 0 set; appending such body (for the second␣
↪→time) is not allowed.

Bodies can be iterated over using standard python iteration syntax:

Yade [40]: for b in O.bodies:
....: print(b.id,b.shape.radius)
....:

0 1.0
1 0.5

Interactions

Interactions are always between pair of bodies; usually, they are created by the collider based on spatial
proximity; they can, however, be created explicitly and exist independently of distance. Each interaction
has 2 components:

IGeom
holding geometrical configuration of the two particles in collision; it is updated automatically as
the particles in question move and can be queried for various geometrical characteristics, such as
penetration distance or shear strain.

Based on combination of types of Shapes of the particles, there might be different storage require-
ments; for that reason, a number of derived classes exists, e.g. for representing geometry of contact
between Sphere+Sphere, Cylinder+Sphere etc. Note, however, that it is possible to represent many
type of contacts with the basic sphere-sphere geometry (for instance in Ig2_Wall_Sphere_Sc-
Geom).

IPhys
representing non-geometrical features of the interaction; some are computed from Materials of the
particles in contact using some averaging algorithm (such as contact stiffness from Young’s moduli
of particles), others might be internal variables like damage.

Fig. 2: Examples of concrete classes that might be used to describe an Interaction: IGeom, Generic-
SpheresContact, PolyhedraGeom, CylScGeom, IPhys, NormPhys, NormShearPhys, FrictPhys.

Suppose now interactions have been already created. We can access them by the id pair:

10 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Yade [41]: O.interactions[0,1]
Out[41]: <Interaction instance at 0x1831b40>

Yade [42]: O.interactions[1,0] # order of ids is not important
Out[42]: <Interaction instance at 0x1831b40>

Yade [43]: i=O.interactions[0,1]

Yade [44]: i.id1,i.id2
Out[44]: (0, 1)

Yade [45]: i.geom
Out[45]: <ScGeom instance at 0x47e9470>

Yade [46]: i.phys
Out[46]: <FrictPhys instance at 0x4898420>

Yade [47]: O.interactions[100,10111] # asking for non existing interaction throws␣
↪→exception
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[47], line 1[0m
[0;32m----> 1[0m [43mO[49m[38;5;241;43m.[39;49m[43minteractions[49m[43m[[49m[38;5;241;
↪→43m100[39;49m[43m,[49m[38;5;241;43m10111[39;49m[43m][49m [38;5;66;03m# asking␣
↪→for non existing interaction throws exception[39;00m

[0;31mIndexError[0m: No such interaction

Generalized forces

Generalized forces include force, torque and forced displacement and rotation; they are stored only tem-
porariliy, during one computation step, and reset to zero afterwards. For reasons of parallel computation,
they work as accumulators, i.e. only can be added to, read and reset.

Yade [48]: O.forces.f(0)
Out[48]: Vector3(0,0,0)

Yade [49]: O.forces.addF(0,Vector3(1,2,3))

Yade [50]: O.forces.f(0)
Out[50]: Vector3(1,2,3)

You will only rarely modify forces from Python; it is usually done in c++ code and relevant documen-
tation can be found in the Programmer’s manual.

1.1. Introduction 11

Yade Documentation, Release 3rd ed.

Function components

In a typical DEM simulation, the following sequence is run repeatedly:

• reset forces on bodies from previous step

• approximate collision detection (pass 1)

• detect exact collisions of bodies, update interactions as necessary

• solve interactions, applying forces on bodies

• apply other external conditions (gravity, for instance).

• change position of bodies based on forces, by integrating motion equations.

bodies
Shape
Material
State
Bound

interactions

geometry
 collision detection pass 2
 strain evaluation

physics
 properties of new interactions

constitutive law
 compute forces from strainsforces

(generalized)

update
bounds

collision
detection
pass 1

other forces
(gravity, BC, ...)

miscellaneous engines
(recorders, ...)

reset forces

forces → acceleration

velocity update

position update

simulation
loop

increment
time by Δt

Fig. 3: Typical simulation loop; each step begins at body-centered bit at 11 o’clock, continues with
interaction bit, force application bit, miscellanea and ends with time update.

Each of these actions is represented by an Engine, functional element of simulation. The sequence of
engines is called simulation loop.

Engines

Simulation loop, shown at fig. img-yade-iter-loop, can be described as follows in Python (details will be
explained later); each of the O.engines items is instance of a type deriving from Engine:

O.engines=[
reset forces
ForceResetter(),
approximate collision detection, create interactions
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]),
handle interactions
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom(),Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),
(continues on next page)

12 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

apply other conditions
GravityEngine(gravity=(0,0,-9.81)),
update positions using Newton's equations
NewtonIntegrator()

]

There are 3 fundamental types of Engines:

GlobalEngines
operating on the whole simulation (e.g. ForceResetter which zeroes forces acting on bodies or
GravityEngine looping over all bodies and applying force based on their mass)

PartialEngine
operating only on some pre-selected bodies (e.g. ForceEngine applying constant force to some
selected bodies)

Dispatchers
do not perform any computation themselves; they merely call other functions, represented by
function objects, Functors. Each functor is specialized, able to handle certain object types, and
will be dispatched if such obejct is treated by the dispatcher.

Dispatchers and functors

For approximate collision detection (pass 1), we want to compute bounds for all bodies in the simulation;
suppose we want bound of type axis-aligned bounding box. Since the exact algorithm is different depend-
ing on particular shape, we need to provide functors for handling all specific cases. In the O.engines=[…]
declared above, the line:

InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()])

creates InsertionSortCollider (it internally uses BoundDispatcher, but that is a detail). It traverses all
bodies and will, based on shape type of each body, dispatch one of the functors to create/update bound
for that particular body. In the case shown, it has 2 functors, one handling spheres, another facets.

The name is composed from several parts: Bo (functor creating Bound), which accepts 1 type Sphere
and creates an Aabb (axis-aligned bounding box; it is derived from Bound). The Aabb objects are used
by InsertionSortCollider itself. All Bo1 functors derive from BoundFunctor.

Fig. 4: Example bound functors producing Aabb accepting various different types, such as Sphere, Facet
or Cylinder. In the case shown, the Bo1 functors produce Aabb instances from single specific Shape,
hence the number 1 in the functor name. Each of those functors uses specific geometry of the Shape i.e.
position of nodes in Facet or radius of sphere to calculate the Aabb.

The next part, reading

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],

(continues on next page)

1.1. Introduction 13

Yade Documentation, Release 3rd ed.

(continued from previous page)

[Law2_ScGeom_FrictPhys_CundallStrack()],
),

hides 3 internal dispatchers within the InteractionLoop engine; they all operate on interactions and are,
for performance reasons, put together:

IGeomDispatcher which uses IGeomFunctor
uses the first set of functors (Ig2), which are dispatched based on combination of 2 Shapes ob-
jects. Dispatched functor resolves exact collision configuration and creates an Interaction Geometry
IGeom (whence Ig in the name) associated with the interaction, if there is collision. The functor
might as well determine that there is no real collision even if they did overlap in the approximate
collision detection (e.g. the Aabb did overlap, but the shapes did not). In that case the attribute
is set to false and interaction is scheduled for removal.

1. The first functor, Ig2_Sphere_Sphere_ScGeom, is called on interaction of 2 Spheres and
creates ScGeom instance, if appropriate.

2. The second functor, Ig2_Facet_Sphere_ScGeom, is called for interaction of Facet with Sphere
and might create (again) a ScGeom instance.

All Ig2 functors derive from IGeomFunctor (they are documented at the same place).

Fig. 5: Example interaction geometry functors producing ScGeom or ScGridCoGeom accepting two
various different types (hence 2 in their name Ig2), such as Sphere, Wall or PFacet. Each of those
functors uses specific geometry of the Shape i.e. position of nodes in PFacet or radius of sphere to
calculate the interaction geometry.

IPhysDispatcher which uses IPhysFunctor
dispatches to the second set of functors based on combination of 2 Materials; these functors return
return IPhys instance (the Ip prefix). In our case, there is only 1 functor used, Ip2_FrictMat_-
FrictMat_FrictPhys, which create FrictPhys from 2 FrictMat’s.

Ip2 functors are derived from IPhysFunctor.

LawDispatcher which uses LawFunctor
dispatches to the third set of functors, based on combinations of IGeom and IPhys (wherefore 2 in
their name again) of each particular interaction, created by preceding functors. The Law2 functors
represent constitutive law; they resolve the interaction by computing forces on the interacting
bodies (repulsion, attraction, shear forces, …) or otherwise update interaction state variables.

Law2 functors all inherit from LawFunctor.

There is chain of types produced by earlier functors and accepted by later ones; the user is responsible
to satisfy type requirement (see img. img-dispatch-loop). An exception (with explanation) is raised in
the contrary case.

14 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Fig. 6: Example interaction physics functors (Ip2_FrictMat_CpmMat_FrictPhys, Ip2_FrictMat_Frict-
Mat_FrictPhys and Ip2_FrictMat_FrictViscoMat_FrictViscoPhys) producing FrictPhys or FrictVisco-
Phys accepting two various different types of Material (hence Ip2), such as CpmMat, FrictMat or
FrictViscoMat.

Fig. 7: Example LawFunctors (Law2_CylScGeom_FrictPhys_CundallStrack, Law2_ScGeom_Frict-
Phys_CundallStrack and Law2_ScGridCoGeom_FrictPhys_CundallStrack) each of them performing
calcuation of forces according to selected constitutive law.

1.1. Introduction 15

Yade Documentation, Release 3rd ed.

Fig. 8: Chain of functors producing and accepting certain types. In the case shown, the Ig2 functors
produce ScGeom instances from all handled Shapes combinations; the Ig2 functor produces FrictMat.
The constitutive law functor Law2 accepts the combination of types produced. Note that the types are
stated in the functor’s class names.

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and
facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in examples/simple-scene/simple-scene-default-engines.py.

1.2 Tutorial

This tutorial originated as handout for a course held at Technische Universität Dresden / Fakultät
Bauingenieurwesen / Institut für Geotechnik in Jaunary 2011. The focus was to give quick and rather
practical introduction to people without prior modeling experience, but with knowledge of mechanics.
Some computer literacy was assumed, though basics are reviewed in the Hands-on section.

The course did not in reality follow this document, but was based on interactive writing and commenting
simple Examples, which were mostly suggested by participants; many thanks to them for their ideas and
suggestions.

16 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/775ae7436/py/__init__.py.in#L112
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-default-engines.py
http://www.tu-dresden.de/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/geotechnik/

Yade Documentation, Release 3rd ed.

1.2.1 Introduction

The chapter Introduction is summarized in following presentation Yade: past, present and future with
some additional different examples. This presentation is from year 2011 and does not include latest
additions. As of year 2019 it is factually correct.

1.2.2 Hands-on

Shell basics

Directory tree

Directory tree is hierarchical way to organize files in operating systems. A typical (reduced) tree in linux
looks like this:

/ Root
���boot System startup
���bin Low-level programs
���lib Low-level libraries
���dev Hardware access
���sbin Administration programs
���proc System information
���var Files modified by system services
���root Root (administrator) home directory
���etc Configuration files
���media External drives
���tmp Temporary files
���usr Everything for normal operation (usr = UNIX system resources)
� ���bin User programs
� ���sbin Administration programs
� ���include Header files for c/c++

(continues on next page)

1.2. Tutorial 17

https://yade-dem.org/w/images/b/b5/Eudoxos2011-yade-past-present-future-updated-version.pdf

Yade Documentation, Release 3rd ed.

(continued from previous page)

� ���lib Libraries
� ���local Locally installed software
� ���doc Documentation
���home Contains the user's home directories

���user Home directory for user
���user1 Home directory for user1

Note that there is a single root /; all other disks (such as USB sticks) attach to some point in the tree
(e.g. in /media).

Shell navigation

Shell is the UNIX command-line, interface for conversation with the machine. Don’t be afraid.

Moving around

The shell is always operated by some user, at some concrete machine; these two are constant. We can
move in the directory structure, and the current place where we are is current directory. By default, it
is the home directory which contains all files belonging to the respective user:

user@machine:~$ # user operating at machine, in the directory␣
↪→~ (= user's home directory)
user@machine:~$ ls . # list contents of the current directory
user@machine:~$ ls foo # list contents of directory foo, relative to␣
↪→the dcurrent directory ~ (= ls ~/foo = ls /home/user/foo)
user@machine:~$ ls /tmp # list contents of /tmp
user@machine:~$ cd foo # change directory to foo
user@machine:~/foo$ ls ~ # list home directory (= ls /home/user)
user@machine:~/foo$ cd bar # change to bar (= cd ~/foo/bar)
user@machine:~/foo/bar$ cd ../../foo2 # go to the parent directory twice, then to␣
↪→foo2 (cd ~/foo/bar/../../foo2 = cd ~/foo2 = cd /home/user/foo2)
user@machine:~/foo2$ cd # go to the home directory (= ls ~ = ls /home/
↪→user)
user@machine:~$

Users typically have only permissions to write (i.e. modify files) only in their home directory (abbreviated
~, usually is /home/user) and /tmp, and permissions to read files in most other parts of the system:

user@machine:~$ ls /root # see what files the administrator has
ls: cannot open directory /root: Permission denied

Keys

Useful keys on the command-line are:

<tab> show possible completions of what is being typed (use abundantly!)
^C (=Ctrl+C) delete current line
^D exit the shell
↑↓ move up and down in the command history
^C interrupt currently running program
^\ kill currently running program
Shift-PgUp scroll the screen up (show past output)
Shift-PgDown scroll the screen down (show future output; works only on quantum computers)

18 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Running programs

When a program is being run (without giving its full path), several directories are searched for program
of that name; those directories are given by $PATH:

user@machine:~$ echo $PATH # show the value of $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
user@machine:~$ which ls # say what is the real path of ls

The first part of the command-line is the program to be run (which), the remaining parts are arguments
(ls in this case). It is up to the program which arguments it understands. Many programs can take
special arguments called options starting with - (followed by a single letter) or -- (followed by words);
one of the common options is -h or --help, which displays how to use the program (try ls --help).

Full documentation for each program usually exists as manual page (or man page), which can be shown
using e.g. man ls (q to exit)

Starting yade

If yade is installed on the machine, it can be (roughly speaking) run as any other program; without any
arguments, it runs in the “dialog mode”, where a command-line is presented:

user@machine:~$ yade
Welcome to Yade 2019.01a
TCP python prompt on localhost:9002, auth cookie `adcusk'
XMLRPC info provider on http://localhost:21002
[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9␣
↪→generator, F8 plot.]]
Yade [1]: #### hit ^D to exit
Do you really want to exit ([y]/n)?
Yade: normal exit.

The command-line is in fact python, enriched with some yade-specific features. (Pure python interpreter
can be run with python or ipython commands).

Instead of typing commands on-by-one on the command line, they can be be written in a file (with the
.py extension) and given as argument to Yade:

user@machine:~$ yade simulation.py

For a complete help, see man yade

Exercises

1. Open the terminal, navigate to your home directory

2. Create a new empty file and save it in ~/first.py

3. Change directory to /tmp; delete the file ~/first.py

4. Run program xeyes

5. Look at the help of Yade.

6. Look at the manual page of Yade

7. Run Yade, exit and run it again.

1.2. Tutorial 19

Yade Documentation, Release 3rd ed.

Python basics

We assume the reader is familar with Python tutorial and only briefly review some of the basic capabili-
ties. The following will run in pure-python interpreter (python or ipython), but also inside Yade, which
is a super-set of Python.

Numerical operations and modules:

Yade [1]: (1+3*4)**2 # usual rules for operator precedence, ** is␣
↪→exponentiation
Out[1]: 169

Yade [2]: import math # gain access to "module" of functions

Yade [3]: math.sqrt(2) # use a function from that module
Out[3]: 1.4142135623730951

Yade [4]: import math as m # use the module under a different name

Yade [5]: m.cos(m.pi)
Out[5]: -1.0

Yade [6]: from math import * # import everything so that it can be used without␣
↪→module name

Yade [7]: cos(pi)
Out[7]: -1.0

Variables:

Yade [8]: a=1; b,c=2,3 # multiple commands separated with ;, multiple assignment

Yade [9]: a+b+c
Out[9]: 6

Sequences

Lists

Lists are variable-length sequences, which can be modified; they are written with braces [...], and their
elements are accessed with numerical indices:

Yade [10]: a=[1,2,3] # list of numbers

Yade [11]: a[0] # first element has index 0
Out[11]: 1

Yade [12]: a[-1] # negative counts from the end
Out[12]: 3

Yade [13]: a[3] # error
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[13], line 1[0m
[0;32m----> 1[0m [43ma[49m[43m[[49m[38;5;241;43m3[39;49m[43m][49m [38;5;
↪→66;03m# error[39;00m

(continues on next page)

20 Chapter 1. Guided tour

http://docs.python.org/tutorial/index.html

Yade Documentation, Release 3rd ed.

(continued from previous page)

[0;31mIndexError[0m: list index out of range

Yade [14]: len(a) # number of elements
Out[14]: 3

Yade [15]: a[1:] # from second element to the end
Out[15]: [2, 3]

Yade [16]: a+=[4,5] # extend the list

Yade [17]: a+=[6]; a.append(7) # extend with single value, both have the same effect

Yade [18]: 9 in a # test presence of an element
Out[18]: False

Lists can be created in various ways:

Yade [19]: range(10)
Out[19]: range(0, 10)

Yade [20]: range(10)[-1]
Out[20]: 9

List of squares of even number smaller than 20, i.e.
{
a2 ∀a ∈ {0, · · · , 19}

∣∣ 2∥a} (note the similarity):

Yade [21]: [a**2 for a in range(20) if a%2==0]
Out[21]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Tuples

Tuples are constant sequences:

Yade [22]: b=(1,2,3)

Yade [23]: b[0]
Out[23]: 1

Yade [24]: b[0]=4 # error
[0;31m---[0m
[0;31mTypeError[0m Traceback (most recent call last)
Cell [0;32mIn[24], line 1[0m
[0;32m----> 1[0m [43mb[49m[43m[[49m[38;5;241;43m0[39;49m[43m][49m[38;5;241m=[39m[38;5;
↪→241m4[39m [38;5;66;03m# error[39;00m

[0;31mTypeError[0m: 'tuple' object does not support item assignment

1.2. Tutorial 21

Yade Documentation, Release 3rd ed.

Dictionaries

Mapping from keys to values:

Yade [25]: ende={'one':'ein' , 'two':'zwei' , 'three':'drei'}

Yade [26]: de={1:'ein' , 2:'zwei' , 3:'drei'}; en={1:'one' , 2:'two' , 3:'three'}

Yade [27]: ende['one'] ## access values
Out[27]: 'ein'

Yade [28]: de[1], en[2]
Out[28]: ('ein', 'two')

Functions, conditionals

Yade [29]: 4==5
Out[29]: False

Yade [30]: a=3.1

Yade [31]: if a<10:
....: b=-2 # conditional statement
....: else:
....: b=3
....:

Yade [32]: c=0 if a<1 else 1 # trenary conditional expression

Yade [33]: b,c
Out[33]: (-2, 1)

Yade [34]: def square(x): return x**2 # define a new function
....:

Yade [35]: square(2) # and call that function
Out[35]: 4

Exercises

1. Read the following code and say what wil be the values of a and b:

a=range(5)
b=[(aa**2 if aa%2==0 else -aa**2) for aa in a]

22 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Yade basics

Yade objects are constructed in the following manner (this process is also called “instantiation”, since we
create concrete instances of abstract classes: one individual sphere is an instance of the abstract Sphere,
like Socrates is an instance of “man”):

Yade [36]: Sphere # try also Sphere?
Out[36]: yade.wrapper.Sphere

Yade [37]: s=Sphere() # create a Sphere, without specifying any attributes

Yade [38]: s.radius # 'nan' is a special value meaning "not a number" (i.e.␣
↪→not defined)
Out[38]: nan

Yade [39]: s.radius=2 # set radius of an existing object

Yade [40]: s.radius
Out[40]: 2.0

Yade [41]: ss=Sphere(radius=3) # create Sphere, giving radius directly

Yade [42]: s.radius, ss.radius # also try typing s.<tab> to see defined attributes
Out[42]: (2.0, 3.0)

Particles

Particles are the “data” component of simulation; they are the objects that will undergo some processes,
though do not define those processes yet.

Singles

There is a number of pre-defined functions to create particles of certain type; in order to create a sphere,
one has to (see the source of sphere for instance):

1. Create Body

2. Set Body.shape to be an instance of Sphere with some given radius

3. Set Body.material (last-defined material is used, otherwise a default material is created)

4. Set position and orientation in Body.state, compute mass and moment of inertia based on Material
and Shape

In order to avoid such tasks, shorthand functions are defined in the utils module; to mention a few of
them, they are utils.sphere, utils.facet, utils.wall. The utils module is imported at startup in such a way
that the utils. prefix is not necessary for accessing them.

Yade [43]: s=sphere((0,0,0),radius=1) # create sphere particle centered at (0,0,0)␣
↪→with radius=1

Yade [44]: s.shape # s.shape describes the geometry of the␣
↪→particle
Out[44]: <Sphere instance at 0x4a214d0>

Yade [45]: s.shape.radius # we already know the Sphere class
Out[45]: 1.0

(continues on next page)

1.2. Tutorial 23

Yade Documentation, Release 3rd ed.

(continued from previous page)

Yade [46]: s.state.mass, s.state.inertia # inertia is computed from density and␣
↪→geometry
Out[46]:
(4188.790204786391,
Vector3(1675.516081914556253,1675.516081914556253,1675.516081914556253))

Yade [47]: s.state.pos # position is the one we prescribed
Out[47]: Vector3(0,0,0)

Yade [48]: s2=sphere((-2,0,0),radius=1,fixed=True) # explanation below

In the last example, the particle was fixed in space by the fixed=True parameter to sphere; such a
particle will not move, creating a primitive boundary condition.

A particle object is not yet part of the simulation; in order to do so, a special function O.bodies.append
(also see Omega::bodies and Scene) is called:

Yade [49]: O.bodies.append(s) # adds particle s to the simulation; returns␣
↪→id of the particle(s) added
Out[49]: 24

Packs

There are functions to generate a specific arrangement of particles in the pack module; for instance, cloud
(random loose packing) of spheres can be generated with the pack.SpherePack class:

Yade [50]: from yade import pack

Yade [51]: sp=pack.SpherePack() # create an empty cloud; SpherePack␣
↪→contains only geometrical information

Yade [52]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2) # put spheres with defined radius␣
↪→inside box given by corners (1,1,1) and (2,2,2)
Out[52]: 7

Yade [53]: for c,r in sp: print(c,r) # print center and radius of all␣
↪→particles (SpherePack is a sequence which can be iterated over)

....:
Vector3(1.465233863342424891,1.499844459897174964,1.383463451094824492) 0.2
Vector3(1.690262538867044473,1.76909859752197951,1.751615343627638932) 0.2
Vector3(1.267515944243128745,1.465243811226470516,1.796617828965857866) 0.2
Vector3(1.784531160751098078,1.783355560898626901,1.200356494944956776) 0.2
Vector3(1.746184749951752879,1.321944756697505996,1.784693957952870447) 0.2
Vector3(1.782739476427391168,1.271047964229311322,1.234098881068639741) 0.2
Vector3(1.21855397103011609,1.216483179221692579,1.228656683816428785) 0.2

Yade [54]: sp.toSimulation() # create particles and add them to␣
↪→the simulation
Out[54]: [25, 26, 27, 28, 29, 30, 31]

24 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Boundaries

facet (triangle Facet), wall (infinite axes-aligned plane Wall) and box (finite axes-aligned cuboids Box)
geometries are typically used to define boundaries. For instance, a “floor” for the simulation can be
created like this:

Yade [55]: O.bodies.append(wall(-1,axis=2))
Out[55]: 32

There are other convenience functions (like aabbWall for creating closed or open rectangular box, or
family of ymport functions)

Look inside

The simulation can be inspected in several ways. All data can be accessed from python directly:

Yade [56]: len(O.bodies)
Out[56]: 33

Yade [57]: O.bodies[10].shape.radius # radius of body #10 (will give error if not␣
↪→sphere, since only spheres have radius defined)
Out[57]: 0.16

Yade [58]: O.bodies[12].state.pos # position of body #12
Out[58]: Vector3(1.484580242060293154,1.21481256704688545,1.525728366038180406)

Besides that, Yade says this at startup (the line preceding the command-line):

[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9␣
↪→generator, F8 plot.]]

Controller
Pressing F12 brings up a window for controlling the simulation. Although typically no human
intervention is done in large simulations (which run “headless”, without any graphical interaction),
it can be handy in small examples. There are basic information on the simulation (will be used
later).

3d view
The 3d view can be opened with F11 (or by clicking on button in the Controller – see below).
There is a number of keyboard shortcuts to manipulate it (press h to get basic help), and it can
be moved, rotated and zoomed using mouse. Display-related settings can be set in the “Display”
tab of the controller (such as whether particles are drawn).

Inspector
Inspector is opened by clicking on the appropriate button in the Controller. It shows (and updates)
internal data of the current simulation. In particular, one can have a look at engines, particles
(Bodies) and interactions (Interactions). Clicking at each of the attribute names links to the
appropriate section in the documentation.

1.2. Tutorial 25

Yade Documentation, Release 3rd ed.

Exercises

1. What is this code going to do?

Yade [59]: O.bodies.append([sphere((2*i,0,0),1) for i in range(1,20)])
Out[59]: [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
↪→ 51]

2. Create a simple simulation with cloud of spheres enclosed in the box (0,0,0) and (1,1,1) with
mean radius .1. (hint: pack.SpherePack.makeCloud)

3. Enclose the cloud created above in box with corners (0,0,0) and (1,1,1); keep the top of the
box open. (hint: aabbWall; type aabbWall? or aabbWall?? to get help on the command line)

4. Open the 3D view, try zooming in/out; position axes so that z is upwards, y goes to the right and
x towards you.

Engines

Engines define processes undertaken by particles. As we know from the theoretical introduction, the
sequence of engines is called simulation loop. Let us define a simple interaction loop:

Yade [60]: O.engines=[# newlines and indentations are not␣
↪→important until the brace is closed

....: ForceResetter(),

....: InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),

....: InteractionLoop(# dtto for the parenthesis here

....: [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],

....: [Ip2_FrictMat_FrictMat_FrictPhys()],

....: [Law2_ScGeom_FrictPhys_CundallStrack()]

....:),

....: NewtonIntegrator(damping=.2,label='newtonCustomLabel') # define a␣
↪→label newtonCustomLabel under which we can access this engine easily

....:]

....:

Yade [61]: O.engines
Out[61]:
[<ForceResetter instance at 0x488e690>,
<InsertionSortCollider instance at 0x4a46a70>,
<InteractionLoop instance at 0x47d34c0>,
<NewtonIntegrator instance at 0x32ce690>]

Yade [62]: O.engines[-1]==newtonCustomLabel # is it the same object?
Out[62]: True

Yade [63]: newtonCustomLabel.damping
Out[63]: 0.2

Instead of typing everything into the command-line, one can describe simulation in a file (script) and
then run yade with that file as an argument. We will therefore no longer show the command-line unless
necessary; instead, only the script part will be shown. Like this:

O.engines=[# newlines and indentations are not important until the␣
↪→brace is closed

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),
InteractionLoop(# dtto for the parenthesis here

(continues on next page)

26 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
GravityEngine(gravity=(0,0,-9.81)), # 9.81 is the gravity␣

↪→acceleration, and we say that
NewtonIntegrator(damping=.2,label='newtonCustomLabel') # define a label under␣

↪→which we can access this engine easily
]

Besides engines being run, it is likewise important to define how often they will run. Some engines can
run only sometimes (we will see this later), while most of them will run always; the time between two
successive runs of engines is timestep (∆t). There is a mathematical limit on the timestep value, called
critical timestep, which is computed from properties of particles. Since there is a function for that, we
can just set timestep using PWaveTimeStep:

O.dt=PWaveTimeStep()

Each time when the simulation loop finishes, time O.time is advanced by the timestep O.dt:

Yade [64]: O.dt=0.01

Yade [65]: O.time
Out[65]: 0.0

Yade [66]: O.step()

Yade [67]: O.time
Out[67]: 0.01

For experimenting with a single simulations, it is handy to save it to memory; this can be achieved, once
everything is defined, with:

O.saveTmp()

Exercises

1. Define engines as in the above example, run the Inspector and click through the engines to see
their sequence.

2. Write a simple script which will

1. define particles as in the previous exercise (cloud of spheres inside a box open from the top)
but with a smaller radius (*rMean*=.04)

2. define a simple simulation loop, as the one given above

3. set ∆t equal to the critical P-Wave ∆t

4. save the initial simulation state to memory

3. Run the previously-defined simulation multiple times, while changing the value of timestep (use
the � button to reload the initial configuration).

1. Try changing the gravity parameter, before running the simulation.

2. See what happens as you increase ∆t above the P-Wave value.

3. Try changing damping

1.2. Tutorial 27

Yade Documentation, Release 3rd ed.

4. Reload the simulation, open the 3d view, open the Inspector, select a particle in the 3d view (shift-
click). Then run the simulation and watch how forces on that particle change; pause the simulation
somewhere in the middle, look at interactions of this particle.

5. At which point can we say that the deposition is done, so that the simulation can be stopped?

See also:

The Bouncing sphere example shows a basic simulation.

1.2.3 Data mining

Read

Local data

All data of the simulation are accessible from python; when you open the Inspector, blue labels of various
data can be clicked – left button for getting to the documentation, middle click to copy the name of the
object (use Ctrl-V or middle-click to paste elsewhere). The interesting objects are among others (see
Omega for a full list):

1. O.engines

Engines are accessed by their index (position) in the simulation loop:

O.engines[0] # first engine
O.engines[-1] # last engine

Note: The index can change if O.engines is modified. Labeling introduced in the section below
is a better solution for reliable access to a particular engine.

2. O.bodies

Bodies are identified by their id, which is guaranteed to not change during the whole simulation:

O.bodies[0] # first body
[b.shape.radius for b in O.bodies if isinstance(b.shape,Sphere)] # list of␣
↪→radii of all spherical bodies
sum([b.state.mass for b in O.bodies]) # sum of␣
↪→masses of all bodies
numpy.average([b.state.vel[0] for b in O.bodies]) # average␣
↪→velocity in x direction

Note: Uniqueness of Body.id is not guaranteed, since newly created bodies might recycle ids of
deleted ones.

3. O.forces

Generalized forces (forces, torques) acting on each particle. They are (usually) reset at the begin-
ning of each step with ForceResetter, subsequently forces from individual interactions are accumu-
lated in InteractionLoop. To access the data, use:

O.forces.f(0) # force on #0
O.forces.t(1) # torque on #1

4. O.interactions

Interactions are identified by ids of the respective interacting particles (they are created and deleted
automatically during the simulation):

28 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

O.interactions[0,1] # interactions of #0 with #1
O.interactions[1,0] # the same object
O.bodies[0].intrs() # all interactions of body #0
for i in O.bodies[12].intrs(): print (i.isReal,i.id1,i.id2) # get some info␣
↪→about interactions of body #12
[(i.isReal,i.id1,i.id2) for i in O.bodies[12].intrs()] # same thing, but␣
↪→make a list

Labels

Engines and functors can be labeled, which means that python variable of that name is automatically
created.

Yade [1]: O.engines=[
...: NewtonIntegrator(damping=.2,label='newtonCustomLabel')
...:]
...:

Yade [2]: newtonCustomLabel.damping=.4

Yade [3]: O.engines[0].damping # O.engines[0] and newtonCustomLabel are␣
↪→the same objects
Out[3]: 0.4

Yade [4]: newtonCustomLabel==O.engines[0] # O.engines[0] and newtonCustomLabel are␣
↪→the same objects
Out[4]: True

Exercises

1. Find meaning of this expression:

max([b.state.vel.norm() for b in O.bodies])

2. Run the Gravity deposition script, pause after a few seconds of simulation. Write expressions that
compute

1. kinetic energy
∑

1
2
mi|vi|

2

2. average mass (hint: use numpy.average)

3. maximum z-coordinate of all particles

4. number of interactions of body #1

Global data

Useful measures of what happens in the simulation globally:

unbalanced force
ratio of maximum contact force and maximum per-body force; measure of staticity, computed with
unbalancedForce.

porosity
ratio of void volume and total volume; computed with porosity.

coordination number
average number of interactions per particle, avgNumInteractions

1.2. Tutorial 29

http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

Yade Documentation, Release 3rd ed.

stress tensor (periodic boundary conditions)
averaged force in interactions, computed with normalShearStressTensors

fabric tensor
distribution of contacts in space (not yet implemented); can be visualized with plotDirections

Energies

Evaluating energy data for all components in the simulation (such as gravity work, kinetic energy, plastic
dissipation, damping dissipation) can be enabled with

O.trackEnergy=True

Subsequently, energy values are accessible in the O.energy; it is a dictionary where its entries can be
retrived with keys() and their values with O.energy[key].

Save

PyRunner

To save data that we just learned to access, we need to call Python from within the simulation loop.
PyRunner is created just for that; it inherits periodicy control from PeriodicEngine and takes the code
to run as text (must be quoted, i.e. inside '...') attribute called command. For instance, adding this
to O.engines will print the current step number every one second wall clock time:

O.engines=O.engines+[PyRunner(command='print(O.iter)',realPeriod=1)]

Writing complicated code inside command is awkward; in such case, we define a function that will be
called:

def myFunction():
'''Print step number, and pause the simulation is unbalanced force is smaller␣

↪→than 0.05.'''
print(O.iter)
if unbalancedForce()<0.05:

print('Unbalanced force is smaller than 0.05, pausing.')
O.pause()

Now this function can be added to O.engines:

O.engines+=[PyRunner(command='myFunction()',iterPeriod=100)]

or, in general, like that:

O.engines=[
...
PyRunner(command='myFunction()',iterPeriod=100) # call myFunction every 100␣

↪→steps
]

Warning: If a function was declared inside a live yade session (ipython) and PyRunner attribute
updateGlobals is set to False then an error NameError: name 'myFunction' is not defined will
occur unless python globals() are updated with command

globals().update(locals())

30 Chapter 1. Guided tour

http://ipython.org

Yade Documentation, Release 3rd ed.

Exercises

1. Run the Gravity deposition simulation, but change it such that:

1. utils.unbalancedForce is printed every 2 seconds.

2. check every 1000 steps the value of unbalanced force

• if smaller than 0.2, set damping to 0.8 (hint: use labels)

• if smaller than 0.1, pause the simulation

Keeping history

Yade provides the plot module used for storing and plotting variables (plotting itself will be discussed
later). Let us start by importing this module and declare variable names that will be plotted:

from yade import plot
plot.plots={'t':('coordNum','unForce',None,'Ek')} # kinetic energy␣
↪→will have legend on the right as indicated by None separator.

Periodic storing of data is done with PyRunner and the plot.addData function. Also let’s enable energy
tracking:

O.trackEnergy=True
def addPlotData():

this function adds current values to the history of data, under the names␣
↪→specified

plot.addData(t=O.time,Ek=kineticEnergy(),coordNum=avgNumInteractions(),
↪→unForce=unbalancedForce())

Now this function can be added to O.engines:

O.engines+=[PyRunner(command='addPlotData()',iterPeriod=20)]

or, in general, like that:

O.engines=[# ...,
PyRunner(command='addPlotData()',iterPeriod=20) # call the␣

↪→addPlotData function every 20 iterations
]

History is stored in plot.data, and can be accessed using the variable name, e.g. plot.data['Ek'], and
saved to text file (for post-processing outside yade) with plot.saveDataTxt.

Plot

plot provides facilities for plotting history saved with plot.addData as 2d plots. Data to be plotted are
specified using dictionary plot.plots

plot.plots={'t':('coordNum','unForce',None,'Ek')}

History of all values is given as the name used for plot.addData; keys of the dictionary are x-axis values,
and values are sequence of data on the y axis; the None separates data on the left and right axes (they
are scaled independently). The plot itself is created with

plot.plot() # on the command line, F8 can be used as shorthand

While the plot is open, it will be updated periodically, so that simulation evolution can be seen in
real-time.

1.2. Tutorial 31

Yade Documentation, Release 3rd ed.

Energy plots

Plotting all energy contributions would be difficult, since names of all energies might not be known in
advance. Fortunately, there is a way to handle that in Yade. It consists in two parts:

1. plot.addData is given all the energies that are currently defined:

plot.addData(i=O.iter,total=O.energy.total(),**O.energy)

The O.energy.total functions, which sums all energies together. The **O.energy is special python
syntax for converting dictionary (remember that O.energy is a dictionary) to named functions
arguments, so that the following two commands are identical:

function(a=3,b=34) # give arguments as arguments
function(**{'a':3,'b':34}) # create arguments from dictionary

2. Data to plot are specified using a function that gives names of data to plot, rather than providing
the data names directly:

plot.plots={'i':['total']+O.energy.keys()}

where total is the name we gave to O.energy.total() above, while O.energy.keys() will always
return list of currently defined energies.

Energy plot example

Plotting energies inside a live yade session, for example by launching examples/test/triax-basic-without-
plots.py would look following:

from yade import plot
O.trackEnergy=True
O.step() # performing a single simulation step is necessary␣
↪→to populate O.energy.keys()
plot.plots={'t':O.energy.keys()+['total']}

def addPlotData():
this function adds current values to the history of data, under the names␣

↪→specified
plot.addData(t=O.time , total=O.energy.total() , **O.energy)

O.engines+=[PyRunner(command='addPlotData()',iterPeriod=20)]

globals().update(locals()) # do this only because this is an example of a live␣
↪→yade session

Press F8 to show plot window and F11 to show 3D view, then press � to start simulation.

32 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py

Yade Documentation, Release 3rd ed.

Using multiple plots

It is also possible to make several separate plots, for example like this:

plot.plots={ 't':('total','kinetic') , 't ':['elastPotential','gravWork'] , 't ':(
↪→'nonviscDamp') }

Warning: There cannot be duplicate names declared in separate plots. This is why spaces were
used above to indicate the same variable t.

With the caveat above, a following example inside a live yade session launched on examples/test/triax-
basic-without-plots.py would look following:

from yade import plot
O.trackEnergy=True
plot.plots={ 't':('total','kinetic') , 't ':['elastPotential','gravWork'] , 't ':(
↪→'nonviscDamp') }

def addPlotData():
assign value to all three: 't', 't ' and 't ' with single t=... assignment
plot.addData(t=O.time , total=O.energy.total() , **O.energy)

O.engines+=[PyRunner(command='addPlotData()',iterPeriod=20)]

globals().update(locals()) # do this only because this is an example of a live␣
↪→yade session

plot.plot(subPlots=False) # show plots in separate windows

plot.plot(subPlots=True) # same as pressing F8: close current plot windows␣
↪→and reopen a single new one

Press F8 to show plot window and F11 to show 3D view, then press � to start simulation, see video below:

Exercises

1. Calculate average momentum in y direction.

2. Run the Gravity deposition script, plotting unbalanced force and kinetic energy.

3. While the script is running, try changing the NewtonIntegrator.damping parameter (do it from both
Inspector and from the command-line). What influence does it have on the evolution of unbalanced
force and kinetic energy?

4. Think about and write down all energy sources (input); write down also all energy sinks (dissipa-
tion).

5. Simulate Gravity deposition and plot all energies as they evolve during the simulation.

See also:

Most Examples with tutorial use plotting facilities of Yade, some of them also track energy of the
simulation.

1.2. Tutorial 33

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://youtu.be/AALiZ7G7yNM

Yade Documentation, Release 3rd ed.

1.2.4 Setting up a simulation

See also:

Examples Gravity deposition, Oedometric test, Periodic simple shear, Periodic triaxial test deal with
topics discussed here.

Parametric studies

Input parameters of the simulation (such as size distribution, damping, various contact parameters, …)
influence the results, but frequently an analytical relationship is not known. To study such influence,
similar simulations differing only in a few parameters can be run and results compared. Yade can be run
in batch mode, where one simulation script is used in conjunction with parameter table, which specifies
parameter values for each run of the script. Batch simulation are run non-interactively, i.e. without user
intervention; the user must therefore start and stop the simulation explicitly.

Suppose we want to study the influence of damping on the evolution of kinetic energy. The script has to
be adapted at several places:

1. We have to make sure the script reads relevant parameters from the parameter table. This is done
using utils.readParamsFromTable; the parameters which are read are created as variables in the
yade.params.table module:

readParamsFromTable(damping=.2) # yade.params.table.damping variable will␣
↪→be created
from yade.params import table # typing table.damping is easier than␣
↪→yade.params.table.damping

Note that utils.readParamsFromTable takes default values of its parameters, which are used if the
script is not run in non-batch mode.

2. Parameters from the table are used at appropriate places:

NewtonIntegrator(damping=table.damping),

3. The simulation is run non-interactively; we must therefore specify at which point it should stop:

O.engines+=[PyRunner(iterPeriod=1000,command='checkUnbalancedForce()')] #␣
↪→call our function defined below periodically

def checkUnbalancedForce():
if unbalancedForce<0.05: # exit Yade if unbalanced␣

↪→force drops below 0.05
plot.saveDataTxt(O.tags['d.id']+'.data.bz2') # save all data into a␣

↪→unique file before exiting
import sys
sys.exit(0) # exit the program

4. Finally, we must start the simulation at the very end of the script:

O.run() # run forever, until stopped by checkUnbalancedForce()
waitIfBatch() # do not finish the script until the simulation ends; does␣
↪→nothing in non-batch mode

The parameter table is a simple text-file (e.g. params.txt), where each line specifies a simulation to
run:

comments start with # as in python
damping # first non-comment line is variable name
.2

(continues on next page)

34 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

.4

.6

Finally, the simulation is run using the special batch command:

user@machine:~$ yade-batch params.txt simulation.py

Exercises

1. Run the Gravity deposition script in batch mode, varying damping to take values of .2, .4, .6.

2. See the http://localhost:9080 overview page while the batch is running (fig. imgBatchExample).

1.2. Tutorial 35

http://localhost:9080

Yade Documentation, Release 3rd ed.

Boundary

Particles moving in infinite space usually need some constraints to make the simulation meaningful.

Supports

So far, supports (unmovable particles) were providing necessary boundary: in the Gravity deposition
script the geom.facetBox is internally composed of facets (triangulation elements), which are fixed in
space; facets are also used for arbitrary triangulated surfaces (see relevant sections of the User’s manual).
Another frequently used boundary is utils.wall (infinite axis-aligned plane).

Periodic

Periodic boundary is a “boundary” created by using periodic (rather than infinite) space. Such boundary
is activated by O.periodic=True , and the space configuration is decribed by O.cell . It is well suited for
studying bulk material behavior, as boundary effects are avoided, leading to smaller number of particles.
On the other hand, it might not be suitable for studying localization, as any cell-level effects (such as
shear bands) have to satisfy periodicity as well.

The periodic cell is described by its reference size of box aligned with global axes, and current transfor-
mation, which can capture stretch, shear and rotation. Deformation is prescribed via velocity gradient,
which updates the transformation before the next step. Homothetic deformation can smear velocity
gradient accross the cell, making the boundary dissolve in the whole cell.

Stress and strains can be controlled with PeriTriaxController; it is possible to prescribe mixed
strain/stress goal state using PeriTriaxController.stressMask.

The following creates periodic cloud of spheres and compresses to achieve σx=-10 kPa, σy=-10kPa and
εz=-0.1. Since stress is specified for y and z, stressMask is binary 0b011 (x→1, y→2, z→4, in decimal
1+2=3).

Yade [1]: sp=pack.SpherePack()

Yade [2]: sp.makeCloud((1,1,1),(2,2,2),rMean=.16,periodic=True)
Out[2]: 20

Yade [3]: sp.toSimulation() # implicitly sets O.periodic=True, and O.cell.
↪→refSize to the packing period size
Out[3]: [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]

Yade [4]: O.engines+=[PeriTriaxController(goal=(-1e4,-1e4,-.1),stressMask=0b011,
↪→maxUnbalanced=.2,doneHook='functionToRunWhenFinished()')]

When the simulation runs, PeriTriaxController takes over the control and calls doneHook when goal is
reached. A full simulation with PeriTriaxController might look like the following:

from yade import pack, plot

sp = pack.SpherePack()
rMean = .05
sp.makeCloud((0, 0, 0), (1, 1, 1), rMean=rMean, periodic=True)
sp.toSimulation()
O.engines = [

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()], verletDist=.05 * rMean),
InteractionLoop([Ig2_Sphere_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_

↪→FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()]),
(continues on next page)

36 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

NewtonIntegrator(damping=.6),
PeriTriaxController(

goal=(-1e6, -1e6, -.1), stressMask=0b011, maxUnbalanced=.2, doneHook=
↪→'goalReached()', label='triax', maxStrainRate=(.1, .1, .1), dynCell=True

),
PyRunner(iterPeriod=100, command='addPlotData()')

]
O.dt = .5 * utils.PWaveTimeStep()
O.trackEnergy = True

def goalReached():
print('Goal reached, strain', triax.strain, ' stress', triax.stress)
O.pause()

def addPlotData():
plot.addData(

sx=triax.stress[0],
sy=triax.stress[1],
sz=triax.stress[2],
ex=triax.strain[0],
ey=triax.strain[1],
ez=triax.strain[2],
i=O.iter,
unbalanced=utils.unbalancedForce(),
totalEnergy=O.energy.total(),
**O.energy # plot all energies

)

plot.plots = {
'i': (('unbalanced', 'go'), None, 'kinetic'),
' i': ('ex', 'ey', 'ez', None, 'sx', 'sy', 'sz'),
'i ': (O.energy.keys, None, ('totalEnergy', 'bo'))

}
plot.plot()
O.saveTmp()
O.run()

1.2.5 Advanced & more

Particle size distribution

See Periodic triaxial test and examples/test/psd.py

1.2. Tutorial 37

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/psd.py

Yade Documentation, Release 3rd ed.

Clumps

Clump; see Periodic triaxial test

Testing laws

LawTester, scripts/checks-and-tests/law-test.py

Visualization

See the example 3d-postprocessing and video recording

• VTKRecorder & Paraview

• makeVideo

• SnapshotEngine

• doc/sphinx/tutorial/05-3d-postprocessing.py

• examples/test/force-network-video.py

• doc/sphinx/tutorial/make-simulation-video.py

Convert python 2 scripts to python 3

Below is a non-exhaustive list of common things to do to convert your scripts to python 3.

Mandatory:

• print ... becomes print(...),

• myDict.iterkeys(), myDict.itervalues(), myDict.iteritems() becomes myDict.keys(),
myDict.values(), myDict.items(),

• import cPickle becomes import pickle,

• ‘‘ and <> operators are no longer recognized,

• inconsistent use of tabs and spaces in indentation is prohibited, for this reason all scripts in yade
use tabs for indentation.

Should be checked, but not always mandatory:

• (euclidian) division of two integers: i1/i2 becomes i1//i2,

• myDict.keys(), myDict.values(), myDict.items() becomes sometimes list(myDict.keys()),
list(myDict.values()), list(myDict.items()) (depending on your usage),

• map(), filter(), zip() becomes sometimes list(map()), list(filter()), list(zip()) (de-
pending on your usage),

• string encoding is now UTF8 everywhere, it may cause problems on user inputs/outputs (keyboard,
file…) with special chars.

38 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/law-test.py
http://www.paraview.org
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/05-3d-postprocessing.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/force-network-video.py
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/make-simulation-video.py

Yade Documentation, Release 3rd ed.

Optional:

• # encoding: utf-8 no longer needed

1.2.6 Examples with tutorial

The online version of this tutorial contains embedded videos.

Bouncing sphere

Following example is in file doc/sphinx/tutorial/01-bouncing-sphere.py.

basic simulation showing sphere falling ball gravity,
bouncing against another sphere representing the support

DATA COMPONENTS

add 2 particles to the simulation
they the default material (utils.defaultMat)
O.bodies.append(

[
fixed: particle's position in space will not change (support)
sphere(center=(0, 0, 0), radius=.5, fixed=True),
this particles is free, subject to dynamics
sphere((0, 0, 2), .5)

]
)

FUNCTIONAL COMPONENTS

simulation loop -- see presentation for the explanation
O.engines = [

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom()], # collision geometry
[Ip2_FrictMat_FrictMat_FrictPhys()], # collision "physics"
[Law2_ScGeom_FrictPhys_CundallStrack()] # contact law -- apply forces

),
Apply gravity force to particles. damping: numerical dissipation of energy.
NewtonIntegrator(gravity=(0, 0, -9.81), damping=0.1)

]

set timestep to a fraction of the critical timestep
the fraction is very small, so that the simulation is not too fast
and the motion can be observed
O.dt = .5e-4 * PWaveTimeStep()

save the simulation, so that it can be reloaded later, for experimentation
O.saveTmp()

1.2. Tutorial 39

https://yade-dem.org/doc/tutorial-examples.html
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/01-bouncing-sphere.py

Yade Documentation, Release 3rd ed.

Gravity deposition

Following example is in file doc/sphinx/tutorial/02-gravity-deposition.py.

gravity deposition in box, showing how to plot and save history of data,
and how to control the simulation while it is running by calling
python functions from within the simulation loop

import yade modules that we will use below
from yade import pack, plot

create rectangular box from facets
O.bodies.append(geom.facetBox((.5, .5, .5), (.5, .5, .5), wallMask=31))

create empty sphere packing
sphere packing is not equivalent to particles in simulation, it contains only the␣
↪→pure geometry
sp = pack.SpherePack()
generate randomly spheres with uniform radius distribution
sp.makeCloud((0, 0, 0), (1, 1, 1), rMean=.05, rRelFuzz=.5)
add the sphere pack to the simulation
sp.toSimulation()

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Facet_Aabb()]),
InteractionLoop(

handle sphere+sphere and facet+sphere collisions
[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
NewtonIntegrator(gravity=(0, 0, -9.81), damping=0.4),
call the checkUnbalanced function (defined below) every 2 seconds
PyRunner(command='checkUnbalanced()', realPeriod=2),
call the addPlotData function every 200 steps
PyRunner(command='addPlotData()', iterPeriod=100)

]
O.dt = .5 * PWaveTimeStep()

enable energy tracking; any simulation parts supporting it
can create and update arbitrary energy types, which can be
accessed as O.energy['energyName'] subsequently
O.trackEnergy = True

if the unbalanced forces goes below .05, the packing
is considered stabilized, therefore we stop collected
data history and stop
def checkUnbalanced():

if unbalancedForce() < .05:
O.pause()
plot.saveDataTxt('bbb.txt.bz2')
plot.saveGnuplot('bbb') is also possible

collect history of data which will be plotted
(continues on next page)

40 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/02-gravity-deposition.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

def addPlotData():
each item is given a names, by which it can be the unsed in plot.plots
the **O.energy converts dictionary-like O.energy to plot.addData arguments
plot.addData(i=O.iter, unbalanced=unbalancedForce(), **O.energy)

define how to plot data: 'i' (step number) on the x-axis, unbalanced force
on the left y-axis, all energies on the right y-axis
(O.energy.keys is function which will be called to get all defined energies)
None separates left and right y-axis
plot.plots = {'i': ('unbalanced', None, O.energy.keys)}

show the plot on the screen, and update while the simulation runs
plot.plot()

O.saveTmp()

Oedometric test

Following example is in file doc/sphinx/tutorial/03-oedometric-test.py.

gravity deposition, continuing with oedometric test after stabilization
shows also how to run parametric studies with yade-batch

The components of the batch are:
1. table with parameters, one set of parameters per line (ccc.table)
2. readParamsFromTable which reads respective line from the parameter file
3. the simulation muse be run using yade-batch, not yade
#
$ yade-batch --job-threads=1 03-oedometric-test.table 03-oedometric-test.py
#

load parameters from file if run in batch
default values are used if not run from batch
readParamsFromTable(rMean=.05, rRelFuzz=.3, maxLoad=1e6, minLoad=1e4)
make rMean, rRelFuzz, maxLoad accessible directly as variables later
from yade.params.table import *

create box with free top, and ceate loose packing inside the box
from yade import pack, plot

O.bodies.append(geom.facetBox((.5, .5, .5), (.5, .5, .5), wallMask=31))
sp = pack.SpherePack()
sp.makeCloud((0, 0, 0), (1, 1, 1), rMean=rMean, rRelFuzz=rRelFuzz)
sp.toSimulation()

O.engines = [
ForceResetter(),
sphere, facet, wall
InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Facet_Aabb(), Bo1_Wall_Aabb()]),
InteractionLoop(

the loading plate is a wall, we need to handle sphere+sphere,␣
↪→sphere+facet, sphere+wall

[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom(), Ig2_Wall_
↪→Sphere_ScGeom()],

(continues on next page)

1.2. Tutorial 41

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/03-oedometric-test.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
NewtonIntegrator(gravity=(0, 0, -9.81), damping=0.5),
the label creates an automatic variable referring to this engine
we use it below to change its attributes from the functions called
PyRunner(command='checkUnbalanced()', realPeriod=2, label='checker'),

]
O.dt = .5 * PWaveTimeStep()

the following checkUnbalanced, unloadPlate and stopUnloading functions are all␣
↪→called by the 'checker'
(the last engine) one after another; this sequence defines progression of different␣
↪→stages of the
simulation, as each of the functions, when the condition is satisfied, updates
↪→'checker' to call
the next function when it is run from within the simulation next time

check whether the gravity deposition has already finished
if so, add wall on the top of the packing and start the oedometric test
def checkUnbalanced():

at the very start, unbalanced force can be low as there is only few contacts,␣
↪→but it does not mean the packing is stable

if O.iter < 5000:
return

the rest will be run only if unbalanced is < .1 (stabilized packing)
if unbalancedForce() > .1:

return
add plate at the position on the top of the packing
the maximum finds the z-coordinate of the top of the topmost particle
O.bodies.append(wall(max([b.state.pos[2] + b.shape.radius for b in O.bodies if␣

↪→isinstance(b.shape, Sphere)]), axis=2, sense=-1))
global plate # without this line, the plate variable would only exist inside this␣

↪→function
plate = O.bodies[-1] # the last particles is the plate
Wall objects are "fixed" by default, i.e. not subject to forces
prescribing a velocity will therefore make it move at constant velocity␣

↪→(downwards)
plate.state.vel = (0, 0, -.1)
start plotting the data now, it was not interesting before
O.engines = O.engines + [PyRunner(command='addPlotData()', iterPeriod=200)]
next time, do not call this function anymore, but the next one (unloadPlate)␣

↪→instead
checker.command = 'unloadPlate()'

def unloadPlate():
if the force on plate exceeds maximum load, start unloading
if abs(O.forces.f(plate.id)[2]) > maxLoad:

plate.state.vel *= -1
next time, do not call this function anymore, but the next one␣

↪→(stopUnloading) instead
checker.command = 'stopUnloading()'

(continues on next page)

42 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

def stopUnloading():
if abs(O.forces.f(plate.id)[2]) < minLoad:

O.tags can be used to retrieve unique identifiers of the simulation
if running in batch, subsequent simulation would overwrite each other's␣

↪→output files otherwise
d (or description) is simulation description (composed of parameter values)
while the id is composed of time and process number
plot.saveDataTxt(O.tags['d.id'] + '.txt')
O.pause()

def addPlotData():
if not isinstance(O.bodies[-1].shape, Wall):

plot.addData()
return

Fz = O.forces.f(plate.id)[2]
plot.addData(Fz=Fz, w=plate.state.pos[2] - plate.state.refPos[2],␣

↪→unbalanced=unbalancedForce(), i=O.iter)

besides unbalanced force evolution, also plot the displacement-force diagram
plot.plots = {'i': ('unbalanced',), 'w': ('Fz',)}
plot.plot()

O.run()
when running with yade-batch, the script must not finish until the simulation is␣
↪→done fully
this command will wait for that (has no influence in the non-batch mode)
waitIfBatch()

Batch table

To run the same script doc/sphinx/tutorial/03-oedometric-test.py in batch mode to test different param-
eters, execute command yade-batch 03-oedometric-test.table 03-oedometric-test.py, also visit
page http://localhost:9080 to see the batch simulation progress.

rMean rRelFuzz maxLoad
.05 .1 1e6
.05 .2 1e6
.05 .3 1e6

Periodic simple shear

Following example is in file doc/sphinx/tutorial/04-periodic-simple-shear.py.

encoding: utf-8

script for periodic simple shear test, with periodic boundary
first compresses to attain some isotropic stress (checkStress),
then loads in shear (checkDistorsion)
#
the initial packing is either regular (hexagonal), with empty bands along the␣
↪→boundary,
or periodic random cloud of spheres

(continues on next page)

1.2. Tutorial 43

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/03-oedometric-test.py
http://localhost:9080
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/04-periodic-simple-shear.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

#
material friction angle is initially set to zero, so that the resulting packing is␣
↪→dense
(sphere rearrangement is easier if there is no friction)
#

setup the periodic boundary
O.periodic = True
O.cell.hSize = Matrix3(2, 0, 0, 0, 2, 0, 0, 0, 2)

from yade import pack, plot

the "if 0:" block will be never executed, therefore the "else:" block will be
to use cloud instead of regular packing, change to "if 1:" or something similar
if 0:

create cloud of spheres and insert them into the simulation
we give corners, mean radius, radius variation
sp = pack.SpherePack()
sp.makeCloud((0, 0, 0), (2, 2, 2), rMean=.1, rRelFuzz=.6, periodic=True)
insert the packing into the simulation
sp.toSimulation(color=(0, 0, 1)) # pure blue

else:
in this case, add dense packing
O.bodies.append(pack.regularHexa(pack.inAlignedBox((0, 0, 0), (2, 2, 2)), radius=.

↪→1, gap=0, color=(0, 0, 1)))

create "dense" packing by setting friction to zero initially
O.materials[0].frictionAngle = 0

simulation loop (will be run at every step)
O.engines = [

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

interaction loop
[Ig2_Sphere_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
NewtonIntegrator(damping=.4),
run checkStress function (defined below) every second
the label is arbitrary, and is used later to refer to this engine
PyRunner(command='checkStress()', realPeriod=1, label='checker'),
record data for plotting every 100 steps; addData function is defined below
PyRunner(command='addData()', iterPeriod=100)

]

set the integration timestep to be 1/2 of the "critical" timestep
O.dt = .5 * PWaveTimeStep()

prescribe isotropic normal deformation (constant strain rate)
of the periodic cell
O.cell.velGrad = Matrix3(-.1, 0, 0, 0, -.1, 0, 0, 0, -.1)

when to stop the isotropic compression (used inside checkStress)
limitMeanStress = -5e5

(continues on next page)

44 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

called every second by the PyRunner engine
def checkStress():

stress tensor as the sum of normal and shear contributions
Matrix3.Zero is the intial value for sum(...)
stress = getStress().trace() / 3.
print('mean stress', stress)
if mean stress is below (bigger in absolute value) limitMeanStress, start␣

↪→shearing
if stress < limitMeanStress:

apply constant-rate distorsion on the periodic cell
O.cell.velGrad = Matrix3(0, 0, .1, 0, 0, 0, 0, 0, 0)
change the function called by the checker engine
(checkStress will not be called anymore)
checker.command = 'checkDistorsion()'
block rotations of particles to increase tanPhi, if desired
disabled by default
if 0:

for b in O.bodies:
block X,Y,Z rotations, translations are free
b.state.blockedDOFs = 'XYZ'
stop rotations if any, as blockedDOFs block accelerations really
b.state.angVel = (0, 0, 0)

set friction angle back to non-zero value
tangensOfFrictionAngle is computed by the Ip2_* functor from material
for future contacts change material (there is only one material for all␣

↪→particles)
O.materials[0].frictionAngle = .5 # radians
for existing contacts, set contact friction directly
for i in O.interactions:

i.phys.tangensOfFrictionAngle = tan(.5)

called from the 'checker' engine periodically, during the shear phase
def checkDistorsion():

if the distorsion value is >.3, exit; otherwise do nothing
if abs(O.cell.trsf[0, 2]) > .5:

save data from addData(...) before exiting into file
use O.tags['id'] to distinguish individual runs of the same simulation
plot.saveDataTxt(O.tags['id'] + '.txt')
exit the program
#import sys
#sys.exit(0) # no error (0)
O.pause()

called periodically to store data history
def addData():

get the stress tensor (as 3x3 matrix)
stress = sum(normalShearStressTensors(), Matrix3.Zero)
give names to values we are interested in and save them
plot.addData(exz=O.cell.trsf[0, 2], szz=stress[2, 2], sxz=stress[0, 2],␣

↪→tanPhi=(stress[0, 2] / stress[2, 2]) if stress[2, 2] != 0 else 0, i=O.iter)
color particles based on rotation amount
for b in O.bodies:

(continues on next page)

1.2. Tutorial 45

Yade Documentation, Release 3rd ed.

(continued from previous page)

rot() gives rotation vector between reference and current position
b.shape.color = scalarOnColorScale(b.state.rot().norm(), 0, pi / 2.)

define what to plot (3 plots in total)
exz(i), [left y axis, separate by None:] szz(i), sxz(i)
szz(exz), sxz(exz)
tanPhi(i)
note the space in 'i ' so that it does not overwrite the 'i' entry
plot.plots = {'i': ('exz', None, 'szz', 'sxz'), 'exz': ('szz', 'sxz'), 'i ': ('tanPhi
↪→',)}

better show rotation of particles
Gl1_Sphere.stripes = True

open the plot on the screen
plot.plot()

O.saveTmp()

3d postprocessing

Following example is in file doc/sphinx/tutorial/05-3d-postprocessing.py. This example will run for
20000 iterations, saving *.png snapshots, then it will make a video 3d.mpeg out of those snapshots.

demonstrate 3d postprocessing with yade
#
1. qt.SnapshotEngine saves images of the 3d view as it appears on the screen␣
↪→periodically
makeVideo is then used to make real movie from those images
2. VTKRecorder saves data in files which can be opened with Paraview
see the User's manual for an intro to Paraview

generate loose packing
from yade import pack, qt

sp = pack.SpherePack()
sp.makeCloud((0, 0, 0), (2, 2, 2), rMean=.1, rRelFuzz=.6, periodic=True)
add to scene, make it periodic
sp.toSimulation()

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

interaction loop
[Ig2_Sphere_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
NewtonIntegrator(damping=.4),
save data for Paraview
VTKRecorder(fileName='3d-vtk-', recorders=['all'], iterPeriod=1000),
save data from Yade's own 3d view
qt.SnapshotEngine(fileBase='3d-', iterPeriod=200, label='snapshot'),

(continues on next page)

46 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/05-3d-postprocessing.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

this engine will be called after 20000 steps, only once
PyRunner(command='finish()', iterPeriod=20000)

]
O.dt = .5 * PWaveTimeStep()

prescribe constant-strain deformation of the cell
O.cell.velGrad = Matrix3(-.1, 0, 0, 0, -.1, 0, 0, 0, -.1)

we must open the view explicitly (limitation of the qt.SnapshotEngine)
qt.View()

this function is called when the simulation is finished
def finish():

snapshot is label of qt.SnapshotEngine
the 'snapshots' attribute contains list of all saved files
makeVideo(snapshot.snapshots, '3d.mpeg', fps=10, bps=10000)
O.pause()

set parameters of the renderer, to show network chains rather than particles
these settings are accessible from the Controller window, on the second tab (
↪→"Display") as well
rr = yade.qt.Renderer()
rr.shape = False
rr.intrPhys = True

Periodic triaxial test

Following example is in file doc/sphinx/tutorial/06-periodic-triaxial-test.py. A variant of this exemple
includes capillary forces, see doc/sphinx/tutorial/06-periodic-triaxial-test-capillarity.py

encoding: utf-8

periodic triaxial test simulation
#
The initial packing is either
#
1. random cloud with uniform distribution, or
2. cloud with specified granulometry (radii and percentages), or
3. cloud of clumps, i.e. rigid aggregates of several particles
#
The triaxial consists of 2 stages:
#
1. isotropic compaction, until sigmaIso is reached in all directions;
this stage is ended by calling compactionFinished()
2. constant-strain deformation along the z-axis, while maintaining
constant stress (sigmaIso) laterally; this stage is ended by calling
triaxFinished()
#
Controlling of strain and stresses is performed via PeriTriaxController,
of which parameters determine type of control and also stability
condition (maxUnbalanced) so that the packing is considered stabilized
and the stage is done.
#

(continues on next page)

1.2. Tutorial 47

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/06-periodic-triaxial-test.py
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/06-periodic-triaxial-test-capillarity.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

sigmaIso = -1e5

#import matplotlib
#matplotlib.use('Agg')

generate loose packing
from yade import pack, qt, plot

O.periodic = True
sp = pack.SpherePack()
if 0:

uniform distribution
sp.makeCloud((0, 0, 0), (2, 2, 2), rMean=.1, rRelFuzz=.3, periodic=True)

else:
create packing from clumps
configuration of one clump
c1 = pack.SpherePack([((0, 0, 0), .03333), ((.03, 0, 0), .017), ((0, .03, 0), .

↪→017)])
make cloud using the configuration c1 (there could c2, c3, ...; selection␣

↪→between them would be random)
sp.makeClumpCloud((0, 0, 0), (2, 2, 2), [c1], periodic=True, num=500)

setup periodic boundary, insert the packing
sp.toSimulation()

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop([Ig2_Sphere_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_

↪→FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()]),
PeriTriaxController(

label='triax',
specify target values and whether they are strains or stresses
goal=(sigmaIso, sigmaIso, sigmaIso),
stressMask=7,
type of servo-control
dynCell=True,
maxStrainRate=(10, 10, 10),
wait until the unbalanced force goes below this value
maxUnbalanced=.1,
relStressTol=1e-3,
call this function when goal is reached and the packing is stable
doneHook='compactionFinished()'

),
NewtonIntegrator(damping=.2),
PyRunner(command='addPlotData()', iterPeriod=100),

]
O.dt = .5 * PWaveTimeStep()

def addPlotData():
plot.addData(

unbalanced=unbalancedForce(),
i=O.iter,
sxx=triax.stress[0],

(continues on next page)

48 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

syy=triax.stress[1],
szz=triax.stress[2],
exx=triax.strain[0],
eyy=triax.strain[1],
ezz=triax.strain[2],
save all available energy data
Etot=O.energy.total(),
**O.energy

)

enable energy tracking in the code
O.trackEnergy = True

define what to plot
plot.plots = {

'i': ('unbalanced',),
'i ': ('sxx', 'syy', 'szz'),
' i': ('exx', 'eyy', 'ezz'),
energy plot
' i ': (O.energy.keys, None, 'Etot'),

}
show the plot
plot.plot()

def compactionFinished():
set the current cell configuration to be the reference one
O.cell.trsf = Matrix3.Identity
change control type: keep constant confinement in x,y, 20% compression in z
triax.goal = (sigmaIso, sigmaIso, -.2)
triax.stressMask = 3
allow faster deformation along x,y to better maintain stresses
triax.maxStrainRate = (1., 1., .1)
next time, call triaxFinished instead of compactionFinished
triax.doneHook = 'triaxFinished()'
do not wait for stabilization before calling triaxFinished
triax.maxUnbalanced = 10

def triaxFinished():
print('Finished')
O.pause()

Fluid injection

Following example is in file doc/sphinx/tutorial/07-fluid-injection.py. The video below results from
post-processing with paraview

This script simulates the injection of a fluid in a localized region below immersed␣
↪→particles
The simulation is periodic along z-axis.
at first execution, the simulation starts by depositing the particles in the␣
↪→container then saves the scene before proceeding to injection
further execution will reload the deposited layer and start injection directly to␣

(continues on next page)

1.2. Tutorial 49

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/07-fluid-injection.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

↪→gain time
WARNING: changes in some input parameters like dimensions of the box or number of␣
↪→particles will not be reflected as long as the saved state is present on disk,
remember to erase it to force a new generation, or set newSample=True below

from yade import pack, export
import yade.timing
from math import *
from pylab import rand
import os.path
import numpy as np
import matplotlib.pyplot as plt

O.periodic = True

Dimensions of the box and of the injection zone
width = 0.8 #
height = 1
depth = 0.4
aperture = 0.05 * width

number of spheres
numSpheres = 2000
contact friction during deposition
compFricDegree = 10
porosity of the initial cloud
porosity = 0.8
Cundall's damping (zero recommanded)
damp = 0.0
fluid viscosity
mu = 0.01
flow rate at the inlet
injectedFlux = -0.001
name of output folder
key = 'output0'

newSample = False #turn this true if you want to generate new sample by pluviation␣
↪→each time you run the script

Deduced mean size for generating the cloud and consistency check
filename = "init" + key + str(numSpheres)
volume = width * height * depth
meanRad = pow(volume * (1 - porosity) / (pi * (4 / 3.) * numSpheres), 1 / 3.)
if (meanRad * 6 > depth):

print("INCOMPATIBLE SIZES. INCREASE DEPTH OR INCREASE NUM_SPHERES")

if no deposited layer has been found (first execution), generate bodies
if not os.path.isfile(filename + ".yade") or newSample: #we create new sample if it␣
↪→does not exist...

O.cell.hSize = Matrix3(width, 0, 0, 0, 3. * height, 0, 0, 0, depth)
O.materials.append(FrictMat(young=400000.0, poisson=0.5,␣

↪→frictionAngle=compFricDegree / 180.0 * pi, density=1600, label='spheres'))
O.materials.append(FrictMat(young=400000.0, poisson=0.5, frictionAngle=radians(15),

↪→ density=1000, label='walls'))
lowBox = box(center=(width / 2.0, height, width / 2.0), extents=(width * 1000.0, 0,

↪→ width * 1000.0), fixed=True, wire=False)
(continues on next page)

50 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

O.bodies.append(lowBox)
topBox = box(center=(width / 2.0, 2 * height + 4 * meanRad, width / 2.0),␣

↪→extents=(width * 1000.0, 0, width * 1000.0), fixed=True, wire=False)
O.bodies.append(topBox)

sp = pack.SpherePack()
sp.makeCloud((0, height + 2 * meanRad, 0), (width, 2 * height + 2 * meanRad,␣

↪→depth), -1, .002, numSpheres, periodic=True, porosity=porosity, seed=2)
O.bodies.append([sphere(s[0], s[1], color=(0.6 + 0.15 * rand(), 0.5 + 0.15 *␣

↪→rand(), 0.15 + 0.15 * rand()), material='spheres') for s in sp])
else: #... else we re-use the previous one

O.load(filename + ".yade")

look better
Gl1_Sphere.stripes = True

define the fluid solver with appropriate parameter (see PeriodicFlowEngine's␣
↪→documentation)
flow = PeriodicFlowEngine(

dead=1,
meshUpdateInterval=40,
defTolerance=-1,
permeabilityFactor=1.0,
useSolver=3,
duplicateThreshold=depth,
wallIds=[-1, -1, 0, 1, -1, -1],
bndCondIsPressure=[0, 0, 0, 1, 0, 0],
viscosity=mu,
label="flow"

)

newton = NewtonIntegrator(damping=damp, gravity=(0, -9.81, 0))

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Box_Aabb()],␣

↪→allowBiggerThanPeriod=1),
InteractionLoop([Ig2_Sphere_Sphere_ScGeom(), Ig2_Box_Sphere_ScGeom()], [Ip2_

↪→FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()]),
GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=1000,␣

↪→timestepSafetyCoefficient=0.3, defaultDt=utils.PWaveTimeStep(), label='timestepper
↪→'),

flow, # <====== the solver is inserted here, for the moment it is "dead"␣
↪→(doing nothing)

newton,
some recorders for post-processing
PyRunner(command="flow.saveVtk(key)", iterPeriod=25, dead=1, label="vtkE"),
VTKRecorder(recorders=["spheres", "velocity", "stress"], iterPeriod=25,␣

↪→dead=1, fileName=key + '/', label="vtkR")
]

########## if this is fresh execution, get static equilibrium and save the result for␣
↪→later use #############
if not os.path.isfile(filename + ".yade") or newSample:

O.run(1000, 1)
while unbalancedForce() > 0.01:

(continues on next page)

1.2. Tutorial 51

Yade Documentation, Release 3rd ed.

(continued from previous page)

O.run(100, 1)
turn the recorders and the solver on
vtkE.dead = vtkR.dead = flow.dead = 0
#add a recorder and define what to plot
O.engines = O.engines + [PyRunner(command=('myAddPlotData()'), iterPeriod=50,␣

↪→label="recorder")]
O.save(filename + ".yade")

O.saveTmp()

########## define what to plot ##############
from yade import plot
import pylab

First, find particle at the top of the sample (for evaluating initial height of the␣
↪→layer)
maxY = 0
for s in O.bodies:

if isinstance(s.shape, Sphere):
pos = s.state.pos
if pos[1] > maxY:

maxY = pos[1]

def myAddPlotData():
index = flow.getCell(0.5 * width, height, 0.5 * depth)
if index > 0:

########## find particle at the top of the sample ##############
simpleH = 0
for s in O.bodies:

if isinstance(s.shape, Sphere):
pos = s.state.pos
if pos[1] > simpleH:

simpleH = pos[1]
########## function to compute hf ##############
cavityh = height
for s in O.bodies:

v = s.state.vel
magvel = pow((v[0] * v[0] + v[1] * v[1] + v[2] * v[2]), 0.5)
if magvel > 0.14:

pos = s.state.pos
if pos[1] > cavityh:

cavityh = pos[1]

#########################
plot.addData(

t=O.time,
i=O.iter,
p=flow.getPorePressure((0.5 * width, height, 0.5 * depth)),
q=-injectedFlux,
Ho=maxY - 1,
hf=cavityh - 1,
H=simpleH - 1

)

H = simpleH - 1
(continues on next page)

52 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

(continued from previous page)

hf = cavityh - 1

################ impose the costant flux ###############

In this function we find the elements of the mesh which have a face in the␣
↪→injection region, to distribute the inlet flux
it is inserted in the solver below
def imposeFlux(valF):

found = 0
listF1 = []
for k in range(flow.nCells()):

if 0 in flow.getVertices(k) and flow.getCellCenter(k)[0] > ((width - aperture) /
↪→ 2.) and flow.getCellCenter(k)[0] < ((width + aperture) / 2.):

listF1.append(k)
flow.clearImposedFlux()
if len(listF1) == 0:

flow.imposeFlux((0.5 * width, height, 0.5 * depth), valF)
else:

for k in listF1:
flow.imposeFlux(flow.getCellBarycenter(k), valF / float(len(listF1)))

injectedFlux = -1 #this one is large and it will fluidize violently, see below for␣
↪→smoother evolutions

very important: the flux needs to be imposed with this "hook", which plugs our␣
↪→custom function in the right place in the solving sequence
flow.blockHook = "imposeFlux(injectedFlux)"

############### EXERCISE ###################
1- use trial and error in the shell (see the note below) to find approximately an␣
↪→upper-bound of "injectedFlux", below which there is only limited movements of the␣
↪→particles
2- implement in this script a progressive increase of the flux, starting from a␣
↪→small fraction of max value above, and exceeding it by a factor 2 at the end
3- choose an approriate plot to show that the pressure response is initially linear,
↪→ then sublinear. Is the upper-bound from question 1 also an upper-bound for the␣
↪→linear response?
4- compare with fig. 10 from https://doi.org/10.1103/PhysRevE.94.052905 (also␣
↪→available at https://arxiv.org/pdf/1703.02319)
5- use paraview to generate a video similar to https://www.youtube.com/watch?
↪→v=gH585XaQEcY (it can be with a constant flux)

#NOTE:
to change the injected flux interactively, change it in the global scope:
globals()["injectedFlux"]=-0.03
else we have two variables with the same name in different scopes and

1.2. Tutorial 53

Yade Documentation, Release 3rd ed.

1.2.7 More examples

The same list with embedded videos is available online, but not recommended for viewing on slow internet
connection.

A full list of examples is in file examples/list_of_examples.txt. Videos of some of those examples are
listed below.

FluidCouplingLBM

• refFastBuoyancy, source file, video.

FluidCouplingPFV

• refFastOedometer, source file, video.

HydroForceEngine

• refFastBuoyantParticles, source file, video.

• refFastFluidizedBed, source file, video.

• refFastSedimentTransportExample, source file, video.

• refFastLaminarShearFlow, source file, video.

• refFastPostProcessValidMaurin2015, source file, video.

• refFastValidMaurin2015, source file, video.

PeriodicBoundaries

• refFastCellFlipping, source file, video.

• refFastPeri3dController-example1, source file, video.

• refFastPeri3dController-shear, source file, video.

• refFastPeri3dController-triaxialCompression, source file, video.

• refFastPeriodic-compress, source file, video.

• refFastPeriodic-shear, source file, video.

• refFastPeriodic-simple-shear, source file, video.

• refFastPeriodic-simple, source file, video.

• refFastPeriodic-triax-settingHsize, source file, video.

• refFastPeriodic-triax, source file, video.

• refFastPeriodicSandPile, source file, video.

54 Chapter 1. Guided tour

https://yade-dem.org/doc/tutorial-more-examples.html
https://gitlab.com/yade-dev/trunk/blob/master/examples/list_of_examples.txt
https://gitlab.com/yade-dev/trunk/blob/master/examples/FluidCouplingLBM/buoyancy.py
https://youtu.be/bohwFU328NA
https://gitlab.com/yade-dev/trunk/blob/master/examples/FluidCouplingPFV/oedometer.py
https://youtu.be/Oq4KyNDkMYA
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/oneWayCoupling/buoyantParticles.py
https://youtu.be/AjFtdbaorE4
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/oneWayCoupling/fluidizedBed.py
https://youtu.be/_sFdHmc2kf8
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/oneWayCoupling/sedimentTransportExample.py
https://youtu.be/W6h-k7gGwTo
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/twoWayCoupling/laminarShearFlow.py
https://youtu.be/E2IOd9k47KM
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/validations/DEMCoupling/Maurinetal2015/postProcessValidMaurin2015.py
https://youtu.be/H_6CcrA3dSE
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/validations/DEMCoupling/Maurinetal2015/validMaurin2015.py
https://youtu.be/__8jcD7It0w
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/cellFlipping.py
https://youtu.be/MOwatO13pgI
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/peri3dController_example1.py
https://youtu.be/PWbri2_SR4w
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/peri3dController_shear.py
https://youtu.be/jMqqEF5LWTY
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/peri3dController_triaxialCompression.py
https://youtu.be/Jlq0V2jaQx0
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-compress.py
https://youtu.be/1_6Umjgia2k
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-shear.py
https://youtu.be/XY_CwJcrsTE
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-simple-shear.py
https://youtu.be/JXK9FwuU0WM
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-simple.py
https://youtu.be/q1yYLxZZU-Y
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-triax-settingHsize.py
https://youtu.be/8b_lJm4GhYs
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-triax.py
https://youtu.be/Hp1W8WhmQZU
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodicSandPile.py
https://youtu.be/_SeA5KDzxpg

Yade Documentation, Release 3rd ed.

PotentialBlocks

• refFastWedgeYADE, source file, video.

• refFastCubePBscaled, source file, video.

PotentialParticles

• refFastCubePPscaled, source file, video.

WireMatPM

• refFastWirecontacttest, source file, video.

• refFastWirepackings, source file, video.

• refFastWiretensiltest, source file, video.

Adaptiveintegrator

• refFastSimple-scene-plot-NewtonIntegrator, source file, video.

• refFastSimple-scene-plot-RungeKuttaCashKarp54, source file, video.

Agglomerate

• refFastCompress, source file, video.

• refFastSimulation, source file, video.

Baraban

• refFastBicyclePedalEngine, source file, video.

• refFastBaraban, source file, video.

• refFastRotating-cylinder, source file, video.

Bulldozer

• refFastBulldozer, source file, video.

Capillary

• refFastCapillar, source file, video.

1.2. Tutorial 55

https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/WedgeYADE.py
https://youtu.be/GYrFkhFV-0E
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/cubePBscaled.py
https://youtu.be/Slnj-KeG-0w
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialParticles/cubePPscaled.py
https://youtu.be/gOgjwMavjuk
https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wirecontacttest.py
https://youtu.be/Kc0R6ZaSIa0
https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wirepackings.py
https://youtu.be/VaW6gDdyiIc
https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wiretensiltest.py
https://youtu.be/mC2Rj-MK2TE
https://gitlab.com/yade-dev/trunk/blob/master/examples/adaptiveintegrator/simple-scene-plot-NewtonIntegrator.py
https://youtu.be/gRkKQKhwl5w
https://gitlab.com/yade-dev/trunk/blob/master/examples/adaptiveintegrator/simple-scene-plot-RungeKuttaCashKarp54.py
https://youtu.be/57LmSgbSFZI
https://gitlab.com/yade-dev/trunk/blob/master/examples/agglomerate/compress.py
https://youtu.be/u_Wua_JnYE4
https://gitlab.com/yade-dev/trunk/blob/master/examples/agglomerate/simulation.py
https://youtu.be/QOhpCAJ5ypw
https://gitlab.com/yade-dev/trunk/blob/master/examples/baraban/BicyclePedalEngine.py
https://youtu.be/tF9Qe9ayklo
https://gitlab.com/yade-dev/trunk/blob/master/examples/baraban/baraban.py
https://youtu.be/OCcjDf1rluw
https://gitlab.com/yade-dev/trunk/blob/master/examples/baraban/rotating-cylinder.py
https://youtu.be/Hh6nGzIU1vU
https://gitlab.com/yade-dev/trunk/blob/master/examples/bulldozer/bulldozer.py
https://youtu.be/6cTyE-KfgcQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillary/capillar.py
https://youtu.be/gtpNKGJZpyc

Yade Documentation, Release 3rd ed.

CapillaryLaplaceYoung

• refFastCapillaryPhys-example, source file, video.

• refFastCapillaryBridge, source file, video.

Chained-cylinders

• refFastCohesiveCylinderSphere, source file, video.

• refFastChained-cylinder-roots, source file, video.

• refFastChained-cylinder-spring, source file, video.

Clumps

• refFastAddToClump-example, source file, video.

• refFastApply-buoyancy-clumps, source file, video.

• refFastClump-hopper-test, source file, video.

• refFastClump-hopper-viscoelastic, source file, video.

• refFastClump-inbox-viscoelastic, source file, video.

• refFastClump-viscoelastic, source file, video.

• refFastReleaseFromClump-example, source file, video.

• refFastReplaceByClumps-example, source file, video.

• refFastTriax-basic-with-clumps, source file, video.

Clumps-breakage

• refFastClumps-breakage-first-example, source file, video.

• refFastAbrasive, source file, video.

• refFastOedometric, source file, video.

• refFastUniaxial-clump, source file, video.

• refFastUniaxial-sphere, source file, video.

Concrete

• refFastBrazilian, source file, video.

• refFastInteraction-histogram, source file, video.

• refFastPeriodic, source file, video.

• refFastTriax, source file, video.

• refFastUniax-post, source file, video.

• refFastUniax, source file, video.

56 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/CapillaryPhys-example.py
https://youtu.be/H0bPKX-jwu8
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/capillaryBridge.py
https://youtu.be/ds6zXTxaIY0
https://gitlab.com/yade-dev/trunk/blob/master/examples/chained-cylinders/CohesiveCylinderSphere.py
https://youtu.be/F2eStgTSgp0
https://gitlab.com/yade-dev/trunk/blob/master/examples/chained-cylinders/chained-cylinder-roots.py
https://youtu.be/wwkUIpVBL8k
https://gitlab.com/yade-dev/trunk/blob/master/examples/chained-cylinders/chained-cylinder-spring.py
https://youtu.be/wYp0XA_Q3ds
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/addToClump-example.py
https://youtu.be/uP19j2yZltg
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/apply-buoyancy-clumps.py
https://youtu.be/fwsx_c1ibkM
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-hopper-test.py
https://youtu.be/ESzQ3t7RHeM
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-hopper-viscoelastic.py
https://youtu.be/cX7Ewoz9wy8
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-inbox-viscoelastic.py
https://youtu.be/rpOYcwoDihE
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-viscoelastic.py
https://youtu.be/VSovZDU8Kb8
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/releaseFromClump-example.py
https://youtu.be/inER1NuyM-0
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/replaceByClumps-example.py
https://youtu.be/zjeN-OUj18A
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/triax-basic-with-clumps.py
https://youtu.be/kqisX2LfwIg
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps-breakage/first_example.py
https://youtu.be/WMFo_8tI1KM
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps-breakage/abrasive.py
https://youtu.be/v__ORwA-IPc
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps-breakage/oedometric.py
https://youtu.be/EJYV-T7H0Ks
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps-breakage/uniaxial_clump.py
https://youtu.be/GAcW_zTKTLU
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps-breakage/uniaxial_sphere_batch.py
https://youtu.be/5OSsnooCDv0
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/brazilian.py
https://youtu.be/KCq336lbw7w
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/interaction-histogram.py
https://youtu.be/59f8gSLu6DA
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/periodic.py
https://youtu.be/DOptBIIp73U
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/triax.py
https://youtu.be/BEB88z1EztA
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax-post.py
https://youtu.be/iXYD9kMB9kA
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py
https://youtu.be/Z1VQ14m0riM

Yade Documentation, Release 3rd ed.

Conveyor

• refFastConveyor, source file, video.

Cylinders

• refFastBendingbeams, source file, video.

• refFastCylinder-cylinder, source file, video.

• refFastCylinderconnection-roots, source file, video.

• refFastMikado, source file, video.

Deformableelem

• refFastMinimalTensileTest, source file, video.

• refFastTestDeformableBodies, source file, video.

• refFastTestDeformableBodies-pressure, source file, video.

Grids

• refFastCohesiveGridConnectionSphere, source file, video.

• refFastGridConnection-Spring, source file, video.

• refFastSimple-GridConnection-Falling, source file, video.

• refFastSimple-Grid-Falling, source file, video.

Gts-horse

• refFastGts-horse, source file, video.

• refFastGts-operators, source file, video.

• refFastGts-random-pack-obb, source file, video.

• refFastGts-random-pack, source file, video.

Hourglass

• refFastHourglass, source file, video.

Packs

• refFastPacks, source file, video.

1.2. Tutorial 57

https://gitlab.com/yade-dev/trunk/blob/master/examples/conveyor/conveyor.py
https://youtu.be/bLULZ2a_thk
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/bendingbeams.py
https://youtu.be/DO_ab64sUJc
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/cylinder-cylinder.py
https://youtu.be/IEzbwudIwGA
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/cylinderconnection-roots.py
https://youtu.be/h-6z79VXWA8
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/mikado.py
https://youtu.be/j2aNyUSaWps
https://gitlab.com/yade-dev/trunk/blob/master/examples/deformableelem/MinimalTensileTest.py
https://youtu.be/sa0yVUKytN0
https://gitlab.com/yade-dev/trunk/blob/master/examples/deformableelem/testDeformableBodies.py
https://youtu.be/L0q-1QMmw8Q
https://gitlab.com/yade-dev/trunk/blob/master/examples/deformableelem/testDeformableBodies_pressure.py
https://youtu.be/QPAtlnptjvk
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/CohesiveGridConnectionSphere.py
https://youtu.be/H8VCdsW6wVA
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/GridConnection_Spring.py
https://youtu.be/NQL5y7bz9XU
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/Simple_GridConnection_Falling.py
https://youtu.be/ede8_SQkkeM
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/Simple_Grid_Falling.py
https://youtu.be/g8HVsbJB4fU
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-horse.py
https://youtu.be/xteVeQlMrYM
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-operators.py
https://youtu.be/eZ9jBEiKUnk
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-random-pack-obb.py
https://youtu.be/L04jwnz5Ujg
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-random-pack.py
https://youtu.be/1dMVlf2u0zM
https://gitlab.com/yade-dev/trunk/blob/master/examples/hourglass/hourglass.py
https://youtu.be/wS_x4UPROOE
https://gitlab.com/yade-dev/trunk/blob/master/examples/packs/packs.py
https://youtu.be/luGIch9gSdg

Yade Documentation, Release 3rd ed.

Pfacet

• refFastGts-pfacet, source file, video.

• refFastMesh-pfacet, source file, video.

• refFastPFacets-grids-spheres-interacting, source file, video.

• refFastPfacetcreators, source file, video.

Polyhedra

• refFastBall, source file, video.

• refFastHorse, source file, video.

• refFastIrregular, source file, video.

• refFastSphere-interaction, source file, video.

• refFastSplitter, source file, video.

• refFastInteractinDetectionFactor, source file, video.

• refFastScGeom, source file, video.

• refFastTextExport, source file, video.

PolyhedraBreak

• refFastUniaxial-compression, source file, video.

Ring2d

• refFastRingCundallDamping, source file, video.

• refFastRingSimpleViscoelastic, source file, video.

Rod-penetration

• refFastModel, source file, video.

Simple-scene

• refFast2SpheresNormVisc, source file, video.

• refFastSave-then-reload, source file, video.

• refFastSimple-scene-default-engines, source file, video.

• refFastSimple-scene-energy-tracking, source file, video.

• refFastSimple-scene-plot, source file, video.

• refFastSimple-scene, source file, video.

58 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/gts-pfacet.py
https://youtu.be/AA2rCfdBX1w
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/mesh-pfacet.py
https://youtu.be/HZ3aAOaebbo
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/pFacets_grids_spheres_interacting.py
https://youtu.be/3e09Zi_LPU0
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/pfacetcreators.py
https://youtu.be/5PMYeadRRvA
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/ball.py
https://youtu.be/pH6kbVcTRg4
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/horse.py
https://youtu.be/I9bpX85B8f8
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/irregular.py
https://youtu.be/9XbkYXukdjI
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/sphere-interaction.py
https://youtu.be/2ZlWJBQ4ELY
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/splitter.py
https://youtu.be/IjXvPLU92xQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/tests/interactinDetectionFactor.py
https://youtu.be/mPj7YfFObdg
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/tests/scGeom.py
https://youtu.be/xdpFnwy_mB8
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/textExport.py
https://youtu.be/Js52jLduYYM
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedraBreak/uniaxial_compression.py
https://youtu.be/r77l-A8O8ug
https://gitlab.com/yade-dev/trunk/blob/master/examples/ring2d/ringCundallDamping.py
https://youtu.be/jm_snDXShaE
https://gitlab.com/yade-dev/trunk/blob/master/examples/ring2d/ringSimpleViscoelastic.py
https://youtu.be/1-StKzb7XV4
https://gitlab.com/yade-dev/trunk/blob/master/examples/rod-penetration/model.py
https://youtu.be/b_yLp0onOzg
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/2SpheresNormVisc.py
https://youtu.be/kiWMTyNGMv4
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/save-then-reload.py
https://youtu.be/-_xUAgGMz2E
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-default-engines.py
https://youtu.be/i8Vl3tx1-JM
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-energy-tracking.py
https://youtu.be/D3XrbW3lvsU
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://youtu.be/3bUCL4VmvGM
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene.py
https://youtu.be/a6j6v6zByFk

Yade Documentation, Release 3rd ed.

Stl-gts

• refFastGts-stl, source file, video.

Tesselationwrapper

• refFastTesselationWrapper, source file, video.

Test

• refFastNet-2part-displ-unloading, source file, video.

• refFastNet-2part-displ, source file, video.

• refFastBeam-l6geom, source file, video.

• refFastClump-facet, source file, video.

• refFastClumpPack, source file, video.

• refFastCollider-stride-triax, source file, video.

• refFastCollider-stride, source file, video.

• refFastCombined-kinematic-engine, source file, video.

• refFastEnergy, source file, video.

• refFastFacet-box, source file, video.

• refFastFacet-sphere-ViscElBasic-peri, source file, video.

• refFastFacet-sphere-ViscElBasic, source file, video.

• refFastFacet-sphere, source file, video.

• refFastHelix, source file, video.

• refFastInterpolating-force, source file, video.

• refFastKinematic, source file, video.

• refFastMindlin, source file, video.

• refFastMulti, source file, video.

• refFastPack-cloud, source file, video.

• refFastPack-inConvexPolyhedron, source file, video.

• refFastPv-section, source file, video.

• refFastPeriodic-geom-compare, source file, video.

• refFastPsd, source file, video.

• refFastSphere-sphere-ViscElBasic-peri, source file, video.

• refFastSubdomain-balancer, source file, video.

• refFastTest-sphere-facet-corner, source file, video.

• refFastTest-sphere-facet, source file, video.

• refFastTriax-basic, source file, video.

• refFastTriax-basic-without-plots, source file, video.

• refFastUnvRead, source file, video.

1.2. Tutorial 59

https://gitlab.com/yade-dev/trunk/blob/master/examples/stl-gts/gts-stl.py
https://youtu.be/MvxHr7mCR0A
https://gitlab.com/yade-dev/trunk/blob/master/examples/tesselationwrapper/tesselationWrapper.py
https://youtu.be/2o3Y4znBmh8
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/WireMatPM/net-2part-displ-unloading.py
https://youtu.be/588FJ80bf4I
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/WireMatPM/net-2part-displ.py
https://youtu.be/dcU3xQghpEc
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/beam-l6geom.py
https://youtu.be/CFWi3YGXSKQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/clump-facet.py
https://youtu.be/kGRgeom2isI
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/clumpPack.py
https://youtu.be/qq17u0gXAfU
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/collider-stride-triax.py
https://youtu.be/jHXXuu7WeBk
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/collider-stride.py
https://youtu.be/0UIC-HhGDBY
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/combined-kinematic-engine.py
https://youtu.be/6lN9N1YAmvM
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/energy.py
https://youtu.be/8v6ln8by5fo
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-box.py
https://youtu.be/9h-5MLa5s0o
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-sphere-ViscElBasic-peri.py
https://youtu.be/NKzzupEVO8A
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-sphere-ViscElBasic.py
https://youtu.be/cggR3UG7a6o
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-sphere.py
https://youtu.be/7aJ2jHK2zv8
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/helix.py
https://youtu.be/EvpwMBdyG4s
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/interpolating-force.py
https://youtu.be/3RNc1J9YCds
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/kinematic.py
https://youtu.be/J10jxnWuhFc
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/mindlin.py
https://youtu.be/kqr39aXEMCk
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/multi/multi.py
https://youtu.be/-DQrAVyXEzw
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/pack-cloud.py
https://youtu.be/bcPS894Qp_g
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/pack-inConvexPolyhedron.py
https://youtu.be/fBJT5iFQ4ak
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/paraview-spheres-solid-section/pv_section.py
https://youtu.be/bFiUfoEXFMQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/periodic-geom-compare.py
https://youtu.be/SiobftG7Lqw
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/psd.py
https://youtu.be/HVs7qGg4AE0
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/sphere-sphere-ViscElBasic-peri.py
https://youtu.be/ar4JDS6vjs0
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/subdomain-balancer.py
https://youtu.be/i4_LOzGk3m8
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/test-sphere-facet-corner.py
https://youtu.be/NaELYGF9tKg
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/test-sphere-facet.py
https://youtu.be/J7i86WHK3QA
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic.py
https://youtu.be/B2DIXJJvpwM
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://youtu.be/AALiZ7G7yNM
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/unv-read/unvRead.py
https://youtu.be/IkDE36LAwr8

Yade Documentation, Release 3rd ed.

Tetra

• refFastOneTetra, source file, video.

• refFastOneTetraPoly, source file, video.

• refFastTwoTetras, source file, video.

• refFastTwoTetrasPoly, source file, video.

ViscoelasticBoundaryCondition

• refFastViscoelasticSingleElement, source file, video.

• refFastViscoelasticDiscreteFoundation, source file, video.

60 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/oneTetra.py
https://youtu.be/bv8PxbiG500
https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/oneTetraPoly.py
https://youtu.be/vzOJte9HzgI
https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/twoTetras.py
https://youtu.be/U9edvfJWspk
https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/twoTetrasPoly.py
https://youtu.be/nAIBxWQ32-o
https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/single-element.py
https://youtu.be/02gh9dzzjX8
https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/discrete-foundation.py
https://youtu.be/G52NUijtFOA

Chapter 2

Yade for users

2.1 DEM formulation

In this chapter, we mathematically describe general features of explicit DEM simulations, with some
reference to Yade implementation of these algorithms. They are given roughly in the order as they
appear in simulation; first, two particles might establish a new interaction, which consists in

1. detecting collision between particles;

2. creating new interaction and determining its properties (such as stiffness); they are either precom-
puted or derived from properties of both particles;

Then, for already existing interactions, the following is performed:

1. strain evaluation;

2. stress computation based on strains;

3. force application to particles in interaction.

This simplified description serves only to give meaning to the ordering of sections within this chapter.
A more detailed description of this simulation loop is given later.

In this chapter we refer to kinematic variables of the contacts as ‘‘strains‘‘, although at this scale it
is also common to speak of ‘‘displacements‘‘. Which semantic is more appropriate depends on the
conceptual model one is starting from, and therefore it cannot be decided independently of specific
problems. The reader familiar with displacements can mentaly replace normal strain and shear strain by
normal displacement and shear displacement, respectively, without altering the meaning of what follows.

2.1.1 Collision detection

Generalities

Exact computation of collision configuration between two particles can be relatively expensive (for in-
stance between Sphere and Facet). Taking a general pair of bodies i and j and their ‘‘exact‘‘ (In the
sense of precision admissible by numerical implementation.) spatial predicates (called Shape in Yade)
represented by point sets Pi, Pj the detection generally proceeds in 2 passes:

1. fast collision detection using approximate predicate P̃i and P̃j; they are pre-constructed in such a
way as to abstract away individual features of Pi and Pj and satisfy the condition

∀x ∈ R3 : x ∈ Pi ⇒ x ∈ P̃i (2.1)

(likewise for Pj). The approximate predicate is called ‘‘bounding volume’’ (Bound in Yade) since it
bounds any particle’s volume from outside (by virtue of the implication). It follows that (Pi∩Pj) ̸=

61

Yade Documentation, Release 3rd ed.

∅ ⇒ (P̃i ∩ P̃j) ̸= ∅ and, by applying modus tollens,(
P̃i ∩ P̃j

)
= ∅ ⇒ (

Pi ∩ Pj

)
= ∅ (2.2)

which is a candidate exclusion rule in the proper sense.

2. By filtering away impossible collisions in (2.2), a more expensive, exact collision detection algo-
rithms can be run on possible interactions, filtering out remaining spurious couples (P̃i ∩ P̃j) ̸=
∅∧
(
Pi∩Pj

)
= ∅. These algorithms operate on Pi and Pj and have to be able to handle all possible

combinations of shape types.

It is only the first step we are concerned with here.

Algorithms

Collision evaluation algorithms have been the subject of extensive research in fields such as robotics,
computer graphics and simulations. They can be roughly divided in two groups:

Hierarchical algorithms
which recursively subdivide space and restrict the number of approximate checks in the first pass,
knowing that lower-level bounding volumes can intersect only if they are part of the same higher-
level bounding volume. Hierarchy elements are bounding volumes of different kinds: octrees
[Jung1997], bounding spheres [Hubbard1996], k-DOP’s [Klosowski1998].

Flat algorithms
work directly with bounding volumes without grouping them in hierarchies first; let us only mention
two kinds commonly used in particle simulations:

Sweep and prune
algorithm operates on axis-aligned bounding boxes, which overlap if and only if they
overlap along all axes. These algorithms have roughly O(n logn) complexity, where
n is number of particles as long as they exploit temporal coherence of the simulation.

Grid algorithms
represent continuous R3 space by a finite set of regularly spaced points, leading to
very fast neighbor search; they can reach the O(n) complexity [Munjiza1998] and
recent research suggests ways to overcome one of the major drawbacks of this method,
which is the necessity to adjust grid cell size to the largest particle in the simulation
([Munjiza2006], the ‘‘multistep’’ extension).

Temporal coherence
expresses the fact that motion of particles in simulation is not arbitrary but governed by physical
laws. This knowledge can be exploited to optimize performance.

Numerical stability of integrating motion equations dictates an upper limit on ∆t (sect. Stability consid-
erations) and, by consequence, on displacement of particles during one step. This consideration is taken
into account in [Munjiza2006], implying that any particle may not move further than to a neighboring
grid cell during one step allowing the O(n) complexity; it is also explored in the periodic variant of the
sweep and prune algorithm described below.

On a finer level, it is common to enlarge P̃i predicates in such a way that they satisfy the (2.1) condition
during several timesteps; the first collision detection pass might then be run with stride, speeding up
the simulation considerably. The original publication of this optimization by Verlet [Verlet1967] used
enlarged list of neighbors, giving this technique the name Verlet list. In general cases, however, where
neighbor lists are not necessarily used, the term Verlet distance is employed.

62 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Sweep and prune

Let us describe in detail the sweep and prune algorithm used for collision detection in Yade (class
InsertionSortCollider). Axis-aligned bounding boxes (Aabb) are used as P̃i; each Aabb is given by lower
and upper corner ∈ R3 (in the following, P̃x0

i , P̃x1
i are minimum/maximum coordinates of P̃i along the

x-axis and so on). Construction of Aabb from various particle Shape’s (such as Sphere, Facet, Wall) is
straightforward, handled by appropriate classes deriving form BoundFunctor (Bo1_Sphere_Aabb, Bo1_-
Facet_Aabb, …).

Presence of overlap of two Aabb’s can be determined from conjunction of separate overlaps of intervals
along each axis (fig-sweep-and-prune):(

P̃i ∩ P̃j

)
̸= ∅ ⇔ ∧

w∈{x,y,z}

[((
P̃w0
i , P̃w1

i

)
∩
(
P̃w0
j , P̃w1

j

))
̸= ∅
]

where (a, b) denotes interval in R.

P1

P2
P3

P̃x0
1

+x

+y

P̃x1
1

P̃x0
2

P̃x0
3

P̃x1
2

P̃x1
3

P̃y1
3

P̃y0
3

P̃y1
2

P̃y0
2

P̃y1
1

P̃y0
1

P̃3P̃2

P̃1

Fig. 1: Sweep and prune algorithm (shown in 2D), where Aabb of each sphere is represented by minimum
and maximum value along each axis. Spatial overlap of Aabb’s is present if they overlap along all axes.
In this case, P̃1 ∩ P̃2 ̸= ∅ (but note that P1 ∩ P2 = ∅) and P̃2 ∩ P̃3 ̸= ∅.}

The collider keeps 3 separate lists (arrays) Lw for each axis w ∈ {x, y, z}

Lw =
⋃
i

{
P̃w0
i , P̃w1

i

}
where i traverses all particles. Lw arrays (sorted sets) contain respective coordinates of minimum and
maximum corners for each Aabb (we call these coordinates bound in the following); besides bound, each
of list elements further carries id referring to particle it belongs to, and a flag whether it is lower or
upper bound.

In the initial step, all lists are sorted (using quicksort, average O(n logn)) and one axis is used to create
initial interactions: the range between lower and upper bound for each body is traversed, while bounds
in-between indicate potential Aabb overlaps which must be checked on the remaining axes as well.

At each successive step, lists are already pre-sorted. Inversions occur where a particle’s coordinate has
just crossed another particle’s coordinate; this number is limited by numerical stability of simulation and
its physical meaning (giving spatio-temporal coherence to the algorithm). The insertion sort algorithm
swaps neighboring elements if they are inverted, and has complexity between O(n) and O(n2), for pre-
sorted and unsorted lists respectively. For our purposes, we need only to handle inversions, which by
nature of the sort algorithm are detected inside the sort loop. An inversion might signify:

2.1. DEM formulation 63

Yade Documentation, Release 3rd ed.

• overlap along the current axis, if an upper bound inverts (swaps) with a lower bound (i.e. that the
upper bound with a higher coordinate was out of order in coming before the lower bound with a
lower coordinate). Overlap along the other 2 axes is checked and if there is overlap along all axes,
a new potential interaction is created.

• End of overlap along the current axis, if lower bound inverts (swaps) with an upper bound. If there
is only potential interaction between the two particles in question, it is deleted.

• Nothing if both bounds are upper or both lower.

Aperiodic insertion sort

Let us show the sort algorithm on a sample sequence of numbers:

Elements are traversed from left to right; each of them keeps inverting (swapping) with neighbors to the
left, moving left itself, until any of the following conditions is satisfied:

(≤) the sorting order with the left neighbor is correct, or
(||) the element is at the beginning of the sequence.

We start at the leftmost element (the current element is marked i)

It obviously immediately satisfies (||), and we move to the next element:

Condition (≤) holds, therefore we move to the right. The 2 is not in order (violating (≤)) and two
inversions take place; after that, (||) holds:

The last element 4 first violates (≤), but satisfies it after one inversion

64 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

All elements having been traversed, the sequence is now sorted.

It is obvious that if the initial sequence were sorted, elements only would have to be traversed without
any inversion to handle (that happens in O(n) time).

For each inversion during the sort in simulation, the function that investigates change in Aabb overlap is
invoked, creating or deleting interactions.

The periodic variant of the sort algorithm is described in Periodic insertion sort algorithm, along with
other periodic-boundary related topics.

Optimization with Verlet distances

As noted above, [Verlet1967] explored the possibility of running the collision detection only sparsely by
enlarging predicates P̃i.

In Yade, this is achieved by enlarging Aabb of particles by fixed relative length (or Verlet’s distance) in all
dimensions ∆L (InsertionSortCollider.sweepLength). Suppose the collider run last time at step m and the
current step is n. NewtonIntegrator tracks the cummulated distance traversed by each particle between
m and n by comparing the current position with the reference position from time n (Bound::refPos),

Lmn = |Xn − Xm| (2.3)

triggering the collider re-run as soon as one particle gives:

Lmn > ∆L. (2.4)

∆L is defined primarily by the parameter InsertionSortCollider.verletDist. It can be set directly by
assigning a positive value, or indirectly by assigning negative value (which defines ∆L in proportion of
the smallest particle radius). In addition, InsertionSortCollider.targetInterv can be used to adjust ∆L

independently for each particle. Larger ∆L will be assigned to the fastest ones, so that all particles would
ideally reach the edge of their bounds after this “target” number of iterations. Results of using Verlet
distance depend highly on the nature of simulation and choice of InsertionSortCollider.targetInterv.
Adjusting the sizes independently for each particle is especially efficient if some parts of a problem have
high-speed particles will others are not moving. If it is not the case, no significant gain should be expected
as compared to targetInterv=0 (assigning the same ∆L to all particles).

The number of particles and the number of available threads is also to be considered for choosing an
appropriate Verlet’s distance. A larger distance will result in less time spent in the collider (which runs
single-threaded) and more time in computing interactions (multi-threaded). Typically, large ∆L will be
used for large simulations with more than 105 particles on multi-core computers. On the other hand
simulations with less than 104 particles on single processor will probably benefit from smaller ∆L. Users
benchmarks may be found on Yade’s wiki (see e.g. https://yade-dem.org/wiki/Colliders_performace).

2.1. DEM formulation 65

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 3rd ed.

2.1.2 Creating interaction between particles

Collision detection described above is only approximate. Exact collision detection depends on the ge-
ometry of individual particles and is handled separately. In Yade terminology, the Collider creates only
potential interactions; potential interactions are evaluated exactly using specialized algorithms for colli-
sion of two spheres or other combinations. Exact collision detection must be run at every timestep since
it is at every step that particles can change their mutual position (the collider is only run sometimes
if the Verlet distance optimization is in use). Some exact collision detection algorithms are described
in Kinematic variables; in Yade, they are implemented in classes deriving from IGeomFunctor (prefixed
with Ig2).

Besides detection of geometrical overlap (which corresponds to IGeom in Yade), there are also non-
geometrical properties of the interaction to be determined (IPhys). In Yade, they are computed for
every new interaction by calling a functor deriving from IPhysFunctor (prefixed with Ip2) which accepts
the given combination of Material types of both particles.

Stiffnesses

Basic DEM interaction defines two stiffnesses: normal stiffness KN and shear (tangent) stiffness KT .
It is desirable that KN be related to fictitious Young’s modulus of the particles’ material, while KT is
typically determined as a given fraction of computed KN. The KT/KN ratio determines macroscopic
Poisson’s ratio of the arrangement, which can be shown by dimensional analysis: elastic continuum has
two parameters (E and ν) and basic DEM model also has 2 parameters with the same dimensions KN and
KT/KN; macroscopic Poisson’s ratio is therefore determined solely by KT/KN and macroscopic Young’s
modulus is then proportional to KN and affected by KT/KN.

Naturally, such analysis is highly simplifying and does not account for particle radius distribution, packing
configuration and other possible parameters such as the interaction radius introduced later.

Normal stiffness

The algorithm commonly used in Yade computes normal interaction stiffness as stiffness of two springs
in serial configuration with lengths equal to the sphere radii (fig-spheres-contact-stiffness).

E1

E2

l1 = r1 l2 = r2

l = l1 + l2

Fig. 2: Series of 2 springs representing normal stiffness of contact between 2 spheres.

Let us define distance l = l1+ l2, where li are distances between contact point and sphere centers, which
are initially (roughly speaking) equal to sphere radii. Change of distance between the sphere centers ∆l
is distributed onto deformations of both spheres ∆l = ∆l1 + ∆l2 proportionally to their compliances.
Displacement change ∆li generates force Fi = Ki∆li, where Ki assures proportionality and has physical
meaning and dimension of stiffness; Ki is related to the sphere material modulus Ei and some length l̃i

66 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

proportional to ri.

∆l = ∆l1 + ∆l2

Ki = Eil̃i

KN∆l = F = F1 = F2

KN (∆l1 + ∆l2) = F

KN

(
F

K1

+
F

K2

)
= F

K−1
1 + K−1

2 = K−1
N

KN =
K1K2

K1 + K2

KN =
E1l̃1E2l̃2

E1l̃1 + E2l̃2

The most used class computing interaction properties Ip2_FrictMat_FrictMat_FrictPhys uses l̃i = 2ri.

Some formulations define an equivalent cross-section Aeq, which in that case appears in the l̃i term as
Ki = Eil̃i = Ei

Aeq
li

. Such is the case for the concrete model (Ip2_CpmMat_CpmMat_CpmPhys), where
Aeq = min(r1, r2).

For reasons given above, no pretense about equality of particle-level Ei and macroscopic modulus E should
be made. Some formulations, such as [Hentz2003], introduce parameters to match them numerically.
This is not appropriate, in our opinion, since it binds those values to particular features of the sphere
arrangement that was used for calibration.

Other parameters

Non-elastic parameters differ for various material models. Usually, though, they are averaged from
the particles’ material properties, if it makes sense. For instance, Ip2_CpmMat_CpmMat_CpmPhys
averages most quantities, while Ip2_FrictMat_FrictMat_FrictPhys computes internal friction angle as
φ = min(φ1, φ2) to avoid friction with bodies that are frictionless.

2.1.3 Kinematic variables

In the general case, mutual configuration of two particles has 6 degrees of freedom (DoFs) just like a
beam in 3D space: both particles have 6 DoFs each, but the interaction itself is free to move and rotate
in space (with both spheres) having 6 DoFs itself; then 12− 6 = 6. They are shown at fig-spheres-dofs.

We will only describe normal and shear components of the relative movement in the following, leaving
torsion and bending aside. The reason is that most constitutive laws for contacts do not use the latter
two.

Normal deformation

Constants

Let us consider two spheres with initial centers C̄1, C̄2 and radii r1, r2 that enter into contact. The
order of spheres within the contact is arbitrary and has no influence on the behavior. Then we define
lengths

d0 = |C̄2 − C̄1|

d1 = r1 +
d0 − r1 − r2

2
, d2 = d0 − d1.

These quantities are constant throughout the life of the interaction and are computed only once when
the interaction is established. The distance d0 is the reference distance and is used for the conversion

2.1. DEM formulation 67

Yade Documentation, Release 3rd ed.

initial configuration

twisting (1DoF)

normal straining (1DoF) shearing (2 DoFs)

bending (2 DoFs)

Fig. 3: Degrees of freedom of configuration of two spheres. Normal motion appears if there is a difference
of linear velocity along the interaction axis (n); shearing originates from the difference of linear velocities
perpendicular to n and from the part of ω1 +ω2 perpendicular to n; twisting is caused by the part of
ω1 −ω2 parallel with n; bending comes from the part of ω1 −ω2 perpendicular to n.

of absolute displacements to dimensionless strain, for instance. It is also the distance where (for usual
contact laws) there is neither repulsive nor attractive force between the spheres, whence the name
equilibrium distance.

d0 = d1 + d2

C̄2C̄1

d1 d2

r1

r2

C̄

Fig. 4: Geometry of the initial contact of 2 spheres; this case pictures spheres which already overlap
when the contact is created (which can be the case at the beginning of a simulation) for the sake of
generality. The initial contact point C̄ is in the middle of the overlap zone.

Distances d1 and d2 define reduced (or expanded) radii of spheres; geometrical radii r1 and r2 are used
only for collision detection and may not be the same as d1 and d2, as shown in fig. fig-sphere-sphere.
This difference is exploited in cases where the average number of contacts between spheres should be
increased, e.g. to influence the response in compression or to stabilize the packing. In such case,
interactions will be created also for spheres that do not geometrically overlap based on the interaction
radius RI, a dimensionless parameter determining „non-locality“ of contact detection. For RI = 1, only
spheres that touch are considered in contact; the general condition reads

d0 ≤ RI(r1 + r2). (2.5)

The value of RI directly influences the average number of interactions per sphere (percolation), which
for some models is necessary in order to achieve realistic results. In such cases, Aabb (or P̃i predicates
in general) must be enlarged accordingly (Bo1_Sphere_Aabb.aabbEnlargeFactor).

68 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Contact cross-section

Some constitutive laws are formulated with strains and stresses (Law2_ScGeom_CpmPhys_Cpm, the
concrete model described later, for instance); in that case, equivalent cross-section of the contact must
be introduced for the sake of dimensionality. The exact definition is rather arbitrary; the CPM model
(Ip2_CpmMat_CpmMat_CpmPhys) uses the relation

Aeq = πmin(r1, r2)2 (2.6)

which will be used to convert stresses to forces, if the constitutive law used is formulated in terms of
stresses and strains. Note that other values than π can be used; it will merely scale macroscopic packing
stiffness; it is only for the intuitive notion of a truss-like element between the particle centers that we
choose Aeq representing the circle area. Besides that, another function than min(r1, r2) can be used,
although the result should depend linearly on r1 and r2 so that the equation gives consistent results if
the particle dimensions are scaled.

Variables

The following state variables are updated as spheres undergo motion during the simulation (as C◦
1 and

C◦
2 change):

n◦ =
C◦

2 −C◦
1

|C◦
2 −C◦

1|
≡ ̂C◦

2 −C◦
1 (2.7)

and

C◦ = C◦
1 +

(
d1 −

d0 − |C◦
2 −C◦

1|

2

)
n. (2.8)

The contact point C◦ is always in the middle of the spheres’ overlap zone (even if the overlap is neg-
ative, when it is in the middle of the empty space between the spheres). The contact plane is always
perpendicular to the contact plane normal n◦ and passes through C◦.

Normal displacement and strain can be defined as

uN = |C◦
2 −C◦

1|− d0,

εN =
uN

d0

=
|C◦

2 −C◦
1|

d0

− 1.

Since uN is always aligned with n, it can be stored as a scalar value multiplied by n if necessary.

For massively compressive simulations, it might be beneficial to use the logarithmic strain, such that the
strain tends to −∞ (rather than −1) as centers of both spheres approach. Otherwise, repulsive force
would remain finite and the spheres could penetrate through each other. Therefore, we can adjust the
definition of normal strain as follows:

εN =

{
log
(

|C◦
2−C◦

1|

d0

)
if |C◦

2 −C◦
1| < d0

|C◦
2−C◦

1|

d0
− 1 otherwise.

Such definition, however, has the disadvantage of effectively increasing rigidity (up to infinity) of contacts,
requiring ∆t to be adjusted, lest the simulation becomes unstable. Such dynamic adjustment is possible
using a stiffness-based time-stepper (GlobalStiffnessTimeStepper in Yade).

2.1. DEM formulation 69

Yade Documentation, Release 3rd ed.

Shear deformation

In order to keep uT consistent (e.g. that uT must be constant if two spheres retain mutually constant
configuration but move arbitrarily in space), then either uT must track spheres’ spatial motion or must
(somehow) rely on sphere-local data exclusively.

Geometrical meaning of shear strain is shown in fig-shear-2d.

uT

C

n

Fig. 5: Evolution of shear displacement uT due to mutual motion of spheres, both linear and rotational.
Left configuration is the initial contact, right configuration is after displacement and rotation of one
particle.

The classical incremental algorithm is widely used in DEM codes and is described frequently
([Luding2008], [Alonso2004]). Yade implements this algorithm in the ScGeom class. At each step,
shear displacement uT is updated; the update increment can be decomposed in 2 parts: motion of the
interaction (i.e. C and n) in global space and mutual motion of spheres.

1. Contact moves dues to changes of the spheres’ positions C1 and C2, which updates current C◦

and n◦ as per (2.8) and (2.7). u−
T is perpendicular to the contact plane at the previous step n−

and must be updated so that u−
T + (∆uT) = u◦

T ⊥ n◦; this is done by perpendicular projection to
the plane first (which might decrease |uT |) and adding what corresponds to spatial rotation of the
interaction instead:

(∆uT)1 = −u−
T × (n− × n◦)

(∆uT)2 = −u−
T ×

(
∆t

2
n◦ · (ω⊖

1 +ω⊖
2)

)
n◦

2. Mutual movement of spheres, using only its part perpendicular to n◦; v12 denotes mutual velocity
of spheres at the contact point:

v12 =
(
v⊖2 +ω⊖

2 × (−d2n
◦)
)
−
(
v⊖1 +ω⊖

1 × (d1n
◦)
)

v⊥12 = v12 − (n◦ · v12)n◦

(∆uT)3 = −∆tv⊥12

Finally, we compute

u◦
T = u−

T + (∆uT)1 + (∆uT)2 + (∆uT)3.

70 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.1.4 Contact model (example)

The kinematic variables of an interaction are used to determine the forces acting on both spheres via
a constitutive law. In DEM generally, some constitutive laws are expressed using strains and stresses
while others prefer displacement/force formulation. The law described here falls in the latter category.

The constitutive law presented here is the most common in DEM, originally proposed by Cundall. While
the kinematic variables are described in the previous section regardless of the contact model, the force
evaluation depends on the nature of the material being modeled. The constitutive law presented here is
the simplest non-cohesive elastic-frictional contact model, which Yade implements in Law2_ScGeom_-
FrictPhys_CundallStrack (all constitutive laws derive from base class LawFunctor).

When new contact is established (discussed in Engines) it has its properties (IPhys) computed from
Materials associated with both particles. In the simple case of frictional material FrictMat, Ip2_-
FrictMat_FrictMat_FrictPhys creates a new FrictPhys instance, which defines normal stiffness KN,
shear stiffness KT and friction angle φ.

At each step, given normal and shear displacements uN, uT , normal and shear forces are computed (if
uN > 0, the contact is deleted without generating any forces):

FN = KNuNn,

FtT = KTuT

where FN is normal force and FtT is trial shear force. A simple non-associated stress return algorithm is
applied to compute final shear force

FT =

{
FtT

|FN| tan φ

|Ft
T
|

if |FtT | > |FN| tanφ,

FtT otherwise.

Summary force F = FN + FT is then applied to both particles – each particle accumulates forces and
torques acting on it in the course of each step. Because the force computed acts at contact point C,
which is difference from spheres’ centers, torque generated by F must also be considered.

F1+ = F F2+ = −F

T1+ = d1(−n)× F T2+ = d2n× F.

Here, d1 and d2 are given by (2.1.3). Forces and torques must be applied to the same (contact) point for
both particles. Otherwise, an artificial torque will appear and break conservation of angular momentum.

2.1.5 Motion integration

Each particle accumulates generalized forces (forces and torques) from the contacts in which it partici-
pates. These generalized forces are then used to integrate motion equations for each particle separately;
therefore, we omit i indices denoting the i-th particle in this section.

The customary leapfrog scheme (also known as the Verlet scheme) is used, with some adjustments for
rotation of non-spherical particles, as explained below. The “leapfrog” name comes from the fact that
even derivatives of position/orientation are known at on-step points, whereas odd derivatives are known
at mid-step points. Let us recall that we use a−, a◦, a+ for on-step values of a at t− ∆t, t and t+ ∆t

respectively; and a⊖, a⊕ for mid-step values of a at t− ∆t/2, t+ ∆t/2.

Described integration algorithms are implemented in the NewtonIntegrator class in Yade.

2.1. DEM formulation 71

Yade Documentation, Release 3rd ed.

Position

Integrating motion consists in using current acceleration ü
◦ on a particle to update its position from the

current value u◦ to its value at the next timestep u+. Computation of acceleration, knowing current
forces F acting on the particle in question and its mass m, is simply

ü
◦ = F/m.

Using the 2nd order finite difference with step ∆t, we obtain

ü
◦ ∼=

u− − 2u◦ + u+

∆t2

from which we express

u+ = 2u◦ − u− + ü
◦
∆t2 =

= u◦ + ∆t

(
u◦ − u−

∆t
+ ü

◦
∆t

)
︸ ︷︷ ︸

(†)

.

Typically, u− is already not known (only u◦ is); we notice, however, that

u̇
⊖ ≃ u◦ − u−

∆t
,

i.e. the mean velocity during the previous step, which is known. Plugging this approximate into the (†)
term, we also notice that mean velocity during the current step can be approximated as

u̇
⊕ ≃ u̇

⊖ + ü
◦
∆t,

which is (†); we arrive finally at

u+ = u◦ + ∆t
(
u̇
⊖ + ü

◦
∆t
)
.

The algorithm can then be written down by first computing current mean velocity u̇
⊕ which we need to

store for the next step (just as we use its old value u̇
⊖ now), then computing the position for the next

time step u+:

u̇
⊕ = u̇

⊖ + ü
◦
∆t

u+ = u◦ + u̇
⊕
∆t.

Positions are known at times i∆t (if ∆t is constant) while velocities are known at i∆t+ ∆t
2
. The fact that

they interleave (jump over each other) in such way gave rise to the colloquial name “leapfrog” scheme.

Orientation

YADE has three different algorithms for integrating the rotational motion of non-spherical particles and
one for spherical particles.

Orientation (spherical)

Updating particle orientation q◦ proceeds in an analogous way to position update. First, we compute
current angular acceleration ω̇

◦ from known current torque T . For spherical particles where the inertia
tensor is diagonal in any orientation (therefore also in current global orientation), satisfying I11 = I22 =
I33, we can write

ω̇
◦
i = T i/I11,

72 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

We use the same approximation scheme, obtaining an equation analogous to (2.1.5)

ω⊕ = ω⊖ + ∆tω̇
◦
.

The quaternion ∆q representing rotation vector ω⊕∆t is constructed, i.e. such that

(∆q)ϑ = |ω⊕|,

(∆q)u = ω̂⊕

Finally, we compute the next orientation q+ by rotation composition

q+ = ∆qq◦.

Orientation (aspherical)

Integrating the rotation of aspherical particles is considerably more complicated than their position,
as their local reference frame is not inertial. Rotation of rigid body in the local frame, where inertia
matrix I is diagonal, is described in the continuous form by Euler’s equations (i ∈ {1, 2, 3} and i, j, k are
subsequent indices):

T i = Iiiω̇i + (Ikk − Ijj)ωjωk.

Due to the presence of both ω and ω̇, the equation cannot be solved using the standard leapfrog
algorithm (that was the case for translational motion and also for the spherical bodies’ rotation where
this equation reduced to T = Iω̇). The different integration algorithms for non-spherical particles can
be selected using the NewtonIntegrator.rotAlgorithm argument of the NewtonIntegrator.

The default algorithm and the most accurate one was proposed by [delValle2023]. The algorithm uses a
leapfrog formulation that conserves the norm of the quaternion. [Omelyan1998], a more general version
of [Omelyan1999] algorithm, is also implemented. Previously, YADE used the algorithm described by
[Allen1989] (pg. 84–89) and designed by [Fincham1992] for molecular dynamics problems; it consists of
extending the leapfrog algorithm by mid-step/on-step estimators of quantities known at on-step/mid-
step points in the basic formulation. Although it has received criticism and more precise algorithms
were known ([Omelyan1999], [Neto2006], [Johnson2008]), this algorithm is implemented in Yade for its
relative simplicity.

Each body has its local coordinate system based on the principal axes of inertia for that body. We use •̃ to
denote vectors in local coordinates. The orientation of the local system is given by the current particle’s
orientation q◦ as a quaternion; this quaternion can be expressed as the (current) rotation matrix A.
Therefore, every vector a is transformed as ã = qaq∗ = Aa. Since A is a rotation (orthogonal) matrix,
the inverse rotation A−1 = AT .

For a given particle, we know

• Ĩ
◦
(constant) inertia matrix; diagonal, since in local, principal coordinates,

• T◦ external torque,

• q◦ current orientation (and its equivalent rotation matrix A),

• ω⊖ mid-step angular velocity,

• L⊖ mid-step angular momentum; this is an auxiliary variable needed in Fincham’s algorithm. It
will be zero in the initial step.

2.1. DEM formulation 73

Yade Documentation, Release 3rd ed.

SPIRAL Algorithm ([delValle2023])

Our goal is to compute new values of the latter three, that is, L⊕, q+, ω⊕. We first estimate the current
angular velocity:

K1 = dt ˙̃ω(ω̃
⊖
, T̃

◦
),

K2 = dt ˙̃ω(ω̃
⊖
+K1, T̃

◦
),

K3 = dt ˙̃ω(ω̃
⊖
+

1

4
(K1 +K2), T̃

◦
),

ω̃
⊕
= ω̃

⊖
+

1

6
(K1 +K2 + 4K3),

where ˜̇ω is given by Euler’s equation of motion, and we treat it as a function of angular velocity and
torque. This way of integrating the angular velocity is similar to the Strong Stability Preserving Runge-
Kutta-3 (SSPRK3) scheme but keeps the torque constant during the time step to avoid costly force
recalculations. Then, we compute q+, using q◦ and ω̃

⊕:

q+ = q◦(cos ϑ+
ω̃

⊕

|ω̃
⊕
|
sin ϑ),

ϑ =
dt

2
|ω̃

⊕
|,

where the quantity inside the parenthesis is a quaternion represented by its scalar part and its imaginary
(vectorial) part. The algorithm offers a third-order approximation for both the quaternion and angular
velocity calculations. As this formulation conserves the norm of the quaternion, it does not need to be
normalized every time step. It is normalized every NewtonIntegrator.normalizeEvery steps. To finish,
we compute the angular velocity and momentum in the global reference frame:

ω⊕ = A−1ω̃
⊕
.

L⊕ = A−1(Ĩ
◦
ω̃

⊕
).

Omelyan Algorithm

[Omelyan1999] algorithm is also a leapfrog formulation. However, note that in a leapfrog formulation,
we require the mid-step velocity and the current derivative of the velocity. But, in the case of Euler’s
equation, the current angular acceleration depends on the current angular velocity, which is unknown.
Then, Omelyan proposes to interpolate the current angular velocity product as ω̃

◦
j ω̃

◦
k ≈ 1

2
(ω̃

⊖
j ω̃

⊖
k +

ω̃
⊕
j ω̃

⊕
k). This leads to a non-linear system of equations that can efficiently be solved by iteration:

ω̃
⊕
i,n+1 = ω̃

⊖
i +

dt

Iii

(
T̃
◦
i −

1

2
(Ikk − Ijj)(ω̃

⊖
j ω̃

⊖
k + ω̃

⊕
j,nω̃

⊕
k,n)

)
.

Then, we can compute the orientation of the particle with

q+ =
1− dt2

16
|ω̃

⊕
|2

1+ dt2

16
|ω̃

⊕
|2
q◦ +

dtq̇◦

1+ dt2

16
|ω̃

⊕
|2
.

The norm-conserving derivative of a quaternion can be calculated as

q̇◦ =
1

2
q◦ω̃⊕,

where ω̃⊕ is a quaternion with a real part equal to zero and an imaginary part equal to the angular
velocity. This can also be written as

q̇◦
w

q̇◦
x

q̇◦
y

q̇◦
z

 =
1

2


q◦
w −q◦

x −q◦
y −q◦

z

q◦
x q◦

w −q◦
z q◦

y

q◦
y q◦

z q◦
w −q◦

x

q◦
z −q◦

y q◦
x q◦

w




0

ω̃
◦
x

ω̃
◦
y

ω̃
◦
z

 ,

74 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

In the same way as the last algorithm, it is a third-order approximation, and the formulation is orthonor-
mal, meaning that the norm of the quaternion is conserved. However, this formulation is numerically
not as stable as the previous one.

Fincham Algorithm

Unlike the other two algorithms, [Fincham1992] does not conserve the norm of the quaternion. Then,
NewtonIntegrator.normalizeEvery has no effect over this algorithm. This algorithm is second-order. The
algorithm goes as follows: first, we estimate the current angular momentum and compute the current
local angular velocity:

L◦ = L⊖ + T◦∆t

2
, L̃

◦
= AL◦,

L⊕ = L⊖ + T◦∆t, L̃
⊕
= AL⊕,

ω̃
◦
= Ĩ

◦−1L̃
◦
,

ω̃
⊕
= Ĩ

◦−1L̃
⊕
.

Then, we evaluate q̇⊕ from q⊕ and ω̃
⊕ in the same way as in (2.1.5) but shifted by ∆t/2 ahead. Then

we can finally compute the desired values

q+ = q◦ + q̇⊕∆t,

ω⊕ = A−1ω̃
⊕
.

Clumps (rigid aggregates)

DEM simulations frequently make use of rigid aggregates of particles to model complex shapes [Price2007]
called clumps, typically composed of many spheres. Dynamic properties of clumps are computed from
the properties of its members:

• For non-overlapping clump members the clump’s mass mc is summed over members, the inertia
tensor Ic is computed using the parallel axes theorem: Ic =

∑
i(mi ∗d2

i + Ii), where mi is the mass
of clump member i, di is the distance from center of clump member i to clump’s centroid and Ii
is the inertia tensor of the clump member i.

• For overlapping clump members the clump’s mass mc is summed over cells using a regular grid
spacing inside axis-aligned bounding box (Aabb) of the clump, the inertia tensor is computed using
the parallel axes theorem: Ic =

∑
j(mj ∗ d2

j + Ij), where mj is the mass of cell j, dj is the distance
from cell center to clump’s centroid and Ij is the inertia tensor of the cell j.

Local axes are oriented such that they are principal and inertia tensor is diagonal and clump’s orientation
is changed to compensate rotation of the local system, as to not change the clump members’ positions
in global space. Initial positions and orientations of all clump members in local coordinate system are
stored.

In Yade (class Clump), clump members behave as stand-alone particles during simulation for purposes of
collision detection and contact resolution, except that they have no contacts created among themselves
within one clump. It is at the stage of motion integration that they are treated specially. Instead of inte-
grating each of them separately, forces/torques on those particles Fi, T i are converted to forces/torques
on the clump itself. Let us denote ri relative position of each particle with regards to clump’s centroid,
in global orientation. Then summary force and torque on the clump are

Fc =
∑

Fi,

Tc =
∑

ri × Fi + Ti.

Motion of the clump is then integrated, using aspherical rotation integration. Afterwards, clump members
are displaced in global space, to keep their initial positions and orientations in the clump’s local coordinate

2.1. DEM formulation 75

Yade Documentation, Release 3rd ed.

system. In such a way, relative positions of clump members are always the same, resulting in the behavior
of a rigid aggregate.

Numerical damping

In simulations of quasi-static phenomena, it it desirable to dissipate kinetic energy of particles. Since most
constitutive laws (including Law_ScGeom_FrictPhys_Basic shown above, Contact model (example)) do
not include velocity-based damping (such as one in [Addetta2001]), it is possible to use artificial numerical
damping. The formulation is described in [Pfc3dManual30], although our version is slightly adapted. The
basic idea is to decrease forces which increase the particle velocities and vice versa by (∆F)d, comparing
the current acceleration sense and particle velocity sense. This is done by component, which makes the
damping scheme clearly non-physical, as it is not invariant with respect to coordinate system rotation;
on the other hand, it is very easy to compute. Cundall proposed the form (we omit particle indices i

since it applies to all of them separately):

(∆F)dw
Fw

= −λd sgn(Fwu̇
⊖
w), w ∈ {x, y, z}

where λd is the damping coefficient. This formulation has several advantages [Hentz2003]:

• it acts on forces (accelerations), not constraining uniform motion;

• it is independent of eigenfrequencies of particles, they will be all damped equally;

• it needs only the dimensionless parameter λd which does not have to be scaled.

In Yade, we use the adapted form

(∆F)dw
Fw

= −λd sgn Fw
(
u̇⊖
w +

ü
◦
w∆t

2

)
︸ ︷︷ ︸

≃u̇◦
w

,
(2.9)

where we replaced the previous mid-step velocity u̇⊖ by its on-step estimate in parentheses. This is to
avoid locked-in forces that appear if the velocity changes its sign due to force application at each step,
i.e. when the particle in question oscillates around the position of equilibrium with 2∆t period.

In Yade, damping (2.9) is implemented in the NewtonIntegrator engine; the damping coefficient λd is
NewtonIntegrator.damping.

Stability considerations

Critical timestep

In order to ensure stability for the explicit integration sceheme, an upper limit is imposed on ∆t:

∆tcr =
2

ωmax
(2.10)

where ωmax is the highest eigenfrequency within the system.

Single mass-spring system

Single 1D mass-spring system with mass m and stiffness K is governed by the equation

mẍ = −Kx

where x is displacement from the mean (equilibrium) position. The solution of harmonic oscillation is
x(t) = A cos(ωt+φ) where phase φ and amplitude A are determined by initial conditions. The angular
frequency

ω(1) =

√
K

m
(2.11)

76 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

does not depend on initial conditions. Since there is one single mass, ω(1)
max = ω(1). Plugging (2.11) into

(2.10), we obtain

∆t(1)cr = 2/ω(1)
max = 2

√
m/K

for a single oscillator.

General mass-spring system

In a general mass-spring system, the highest frequency occurs if two connected masses mi, mj are in
opposite motion; let us suppose they have equal velocities (which is conservative) and they are connected
by a spring with stiffness Ki: displacement ∆xi of mi will be accompained by ∆xj = −∆xi of mj, giving
∆Fi = −Ki(∆xi − (−∆xi)) = −2Ki∆xi. That results in apparent stiffness K

(2)
i = 2Ki, giving maximum

eigenfrequency of the whole system

ωmax = max
i

√
K
(2)
i /mi.

The overall critical timestep is then

∆tcr =
2

ωmax
= min

i
2

√
mi

K
(2)
i

= min
i

2

√
mi

2Ki

= min
i

√
2

√
mi

Ki

. (2.12)

This equation can be used for all 6 degrees of freedom (DOF) in translation and rotation, by considering
generalized mass and stiffness matrices M and K, and replacing fractions mi

Ki
by eigen values of M.K−1.

The critical timestep is then associated to the eigen mode with highest frequency :

∆tcr = min∆tcrk, k ∈ {1, ..., 6}. (2.13)

DEM simulations

In DEM simulations, per-particle stiffness Kij is determined from the stiffnesses of contacts in which it
participates. Suppose each contact has normal stiffness KNk, shear stiffness KTk = ξKNk and is oriented
by normal nk. A translational stiffness matrix Kij can be defined as the sum of contributions of all
contacts in which it participates (indices k), as [Chareyre2005].

Kij =
∑
k

(KNk − KTk)ninj + KTk =
∑
j

KNk ((1− ξ)ninj + ξ) (2.14)

with i and j ∈ {x, y, z}. Equations (2.13) and (2.14) determine ∆tcr in a simulation. A similar ap-
proach generalized to all 6 DOFs is implemented by the GlobalStiffnessTimeStepper engine in Yade.
The derivation of generalized stiffness including rotational terms is very similar and can be found in
[AboulHosn2017].

Note that for computation efficiency reasons, eigenvalues of the stiffness matrices are not computed. They
are only approximated assuming than DOF’s are uncoupled, and using the diagonal terms of K.M−1.
They give good approximates in typical mechanical systems.

There is one important condition thatωmax > 0: if there are no contacts between particles andωmax = 0,
we would obtain value ∆tcr = ∞. While formally correct, this value is numerically erroneous: we were
silently supposing that stiffness remains constant during each timestep, which is not true if contacts are
created as particles collide. In case of no contact, therefore, stiffness must be pre-estimated based on
future interactions, as shown in the next section.

2.1. DEM formulation 77

Yade Documentation, Release 3rd ed.

Estimation of ∆tcr by wave propagation speed

Estimating timestep in absence of interactions is based on the connection between interaction stiffnesses
and the particle’s properties. Note that in this section, symbols E and ρ refer exceptionally to Young’s
modulus and density of particles, not of macroscopic arrangement.

In Yade, particles have associated Material which defines density ρ (Material.density), and also may
define (in ElastMat and derived classes) particle’s “Young’s modulus” E (ElastMat.young). ρ is used
when particle’s mass m is initially computed from its ρ, while E is taken in account when creating new
interaction between particles, affecting stiffness KN. Knowing m and KN, we can estimate (2.14) for
each particle; we obviously neglect

• number of interactions per particle Ni; for a “reasonable” radius distribution, however, there is a
geometrically imposed upper limit (12 for a packing of spheres with equal radii, for instance);

• the exact relationship the between particles’ rigidities Ei, Ej, supposing only that KN is somehow
proportional to them.

By defining E and ρ, particles have continuum-like quantities. Explicit integration schemes for continuum
equations impose a critical timestep based on sonic speed

√
E/ρ; the elastic wave must not propagate

farther than the minimum distance of integration points lmin during one step. Since E, ρ are parameters
of the elastic continuum and lmin is fixed beforehand, we obtain

∆t(c)cr = lmin

√
ρ

E
.

For our purposes, we define E and ρ for each particle separately; lmin can be replaced by the sphere’s
radius Ri; technically, lmin = 2Ri could be used, but because of possible interactions of spheres and facets
(which have zero thickness), we consider lmin = Ri instead. Then

∆t(p)cr = min
i

Ri

√
ρi

Ei

.

This algorithm is implemented in the utils.PWaveTimeStep function.

Let us compare this result to (2.12); this necessitates making several simplifying hypotheses:

• all particles are spherical and have the same radius R;

• the sphere’s material has the same E and ρ;

• the average number of contacts per sphere is N;

• the contacts have sufficiently uniform spatial distribution around each particle;

• the ξ = KN/KT ratio is constant for all interactions;

• contact stiffness KN is computed from E using a formula of the form

KN = Eπ ′R ′, (2.15)

where π ′ is some constant depending on the algorithm in usefootnote{For example, π ′ = π/2 in the
concrete particle model (Ip2_CpmMat_CpmMat_CpmPhys), while π ′ = 2 in the classical DEM
model (Ip2_FrictMat_FrictMat_FrictPhys) as implemented in Yade.} and R ′ is half-distance
between spheres in contact, equal to R for the case of interaction radius RI = 1. If RI = 1 (and
R ′ ≡ R by consequence), all interactions will have the same stiffness KN. In other cases, we will
consider KN as the average stiffness computed from average R ′ (see below).

As all particles have the same parameters, we drop the i index in the following formulas.

We try to express the average per-particle stiffness from (2.14). It is a sum over all interactions where KN

and ξ are scalars that will not rotate with interaction, while nw is w-th component of unit interaction
normal n. Since we supposed uniform spatial distribution, we can replace n2

w by its average value n2
w.

Recognizing components of n as direction cosines, the average values of n2
w is 1/3. We find the average

value by integrating over all possible orientations, which are uniformly distributed in space:

78 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Moreover, since all directions are equal, we can write the per-body stiffness as K = Kw for all w ∈ {x, y, z}.
We obtain

K =
∑

KN

(
(1− ξ)

1

3
+ ξ

)
=

∑
KN

1+ 2ξ

3

and can put constant terms (everything) in front of the summation.
∑

1 equals the number of contacts
per sphere, i.e. N. Arriving at

K = NKN

1− 2ξ

3
,

we substitute K into (2.12) using (2.15):

∆tcr =
√
2

√
m

K
=

√
2

√
4
3
πR3ρ

NEπ ′R1−2ξ
3

= R

√
ρ

E︸ ︷︷ ︸
∆t

(p)
cr

2

√
π/π ′

N(1− 2ξ)
.

The ratio of timestep ∆t
(p)
cr predicted by the p-wave velocity and numerically stable timestep ∆tcr is the

inverse value of the last (dimensionless) term:

∆t
(p)
cr

∆tcr
= 2

√
N(1+ ξ)

π/π ′ .

Actual values of this ratio depend on characteristics of packing N, KN/KT = ξ ratio and the way of
computing contact stiffness from particle rigidity. Let us show it for two models in Yade:

Concrete particle model
computes contact stiffness from the equivalent area Aeq first (2.6),

Aeq = πR2KN =
AeqE

d0

.

d0 is the initial contact length, which will be, for interaction radius (2.5) RI > 1, in average larger
than 2R. For RI = 1.5 ,we can roughly estimate d0 = 1.25 · 2R = 5

2
R, getting

KN = E

(
2

5
π

)
R

where 2
5
π = π ′ by comparison with (2.15).

Interaction radius RI = 1.5 leads to average N ≈ 12 interactions per sphere for dense packing of
spheres with the same radius R. ξ = 0.2 is calibrated to match the desired macroscopic Poisson’s
ratio ν = 0.2.

Finally, we obtain the ratio

∆t
(p)
cr

∆tcr
= 2

√
12(1− 2 · 0.2)

π
(2/5)π

= 3.39,

showing significant overestimation by the p-wave algorithm.

Non-cohesive dry friction model
is the basic model proposed by Cundall explained in Contact model (example). Supposing almost-
constant sphere radius R and rather dense packing, each sphere will have N = 6 interactions on
average (that corresponds to maximally dense packing of spheres with a constant radius). If we use
the Ip2_FrictMat_FrictMat_FrictPhys class, we have π ′ = 2, as KN = E2R; we again use ξ = 0.2

(for lack of a more significant value). In this case, we obtain the result

∆t
(p)
cr

∆tcr
= 2

√
6(1− 2 · 0.2)

π/2
= 3.02

which again overestimates the numerical critical timestep.

To conclude, p-wave timestep gives estimate proportional to the real ∆tcr, but in the cases shown, the
value of about ∆t = 0.3∆t

(p)
cr should be used to guarantee stable simulation.

2.1. DEM formulation 79

Yade Documentation, Release 3rd ed.

Non-elastic ∆t constraints

Let us note at this place that not only ∆tcr assuring numerical stability of motion integration is a
constraint. In systems where particles move at relatively high velocities, position change during one
timestep can lead to non-elastic irreversible effects such as damage. The ∆t needed for reasonable result
can be lower ∆tcr. We have no rigorously derived rules for such cases.

2.1.6 Periodic boundary conditions

While most DEM simulations happen in R3 space, it is frequently useful to avoid boundary effects by
using periodic space instead. In order to satisfy periodicity conditions, periodic space is created by
repetition of parallelepiped-shaped cell. In Yade, periodic space is implemented in the Cell class. The
geometry of the cell in the reference coordinates system is defined by three edges of the parallepiped.
The corresponding base vectors are stored in the columns of matrix H (Cell.hSize).

The initial H can be explicitly defined as a 3x3 matrix at the beginning of the simulation. There are no
restricitions on the possible shapes: any parallelepiped is accepted as the initial cell. If the base vectors
are axis-aligned, defining only their sizes can be more convenient than defining the full H matrix; in that
case it is enough to define the norms of columns in H (see Cell.size).

After the definition of the initial cell’s geometry, H should generally not be modified by direct assignment.
Instead, its deformation rate will be defined via the velocity gradient Cell.velGrad described below. It
is the only variable that let the period deformation be correctly accounted for in constitutive laws and
Newton integrator (NewtonIntegrator).

Deformations handling

The deformation of the cell over time is defined via a tensor representing the gradient of an homoge-
neous velocity field ∇v (Cell.velGrad). This gradient represents arbitrary combinations of rotations and
stretches. It can be imposed externaly or updated by boundary controllers (see PeriTriaxController or
Peri3dController) in order to reach target strain values or to maintain some prescribed stress.

The velocity gradient is integrated automatically over time, and the cumulated transformation is re-
flected in the transformation matrix F (Cell.trsf) and the current shape of the cell H. The per-step
transformation update reads (it is similar for H), with I the identity matrix:

F+ = (I+∇v∆t)F◦.

F is initially equal to identity and can be set back to the latter at any point in simulations, in order to
define the current state as reference for strains definition in boundary controllers. It will have no effect
on H.

Along with the automatic integration of cell transformation, there is an option to homothetically displace
all particles so that ∇v is applied over the whole simulation (enabled via Cell.homoDeform). This avoids
all boundary effects coming from change of the velocity gradient.

Collision detection in periodic cell

In usual implementations, particle positions are forced to be inside the cell by wrapping their positions
if they get over the boundary (so that they appear on the other side). As we wanted to avoid abrupt
changes of position (it would make particle’s velocity inconsistent with step displacement change), a
different method was chosen.

80 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Approximate collision detection

Pass 1 collision detection (based on sweep and prune algorithm, sect. Sweep and prune) operates on
axis-aligned bounding boxes (Aabb) of particles. During the collision detection phase, bounds of all
Aabb’s are wrapped inside the cell in the first step. At subsequent runs, every bound remembers by how
many cells it was initially shifted from coordinate given by the Aabb and uses this offset repeatedly as
it is being updated from Aabb during particle’s motion. Bounds are sorted using the periodic insertion
sort algorithm (sect. Periodic insertion sort algorithm), which tracks periodic cell boundary ||.

Upon inversion of two Aabb’s, their collision along all three axes is checked, wrapping real coordinates
inside the cell for that purpose.

This algorithm detects collisions as if all particles were inside the cell but without the need of constructing
“ghost particles” (to represent periodic image of a particle which enters the cell from the other side) or
changing the particle’s positions.

It is required by the implementation (and partly by the algorithm itself) that particles do not span more
than half of the current cell size along any axis; the reason is that otherwise two (or more) contacts
between both particles could appear, on each side. Since Yade identifies contacts by Body.id of both
bodies, they would not be distinguishable.

In presence of shear, the sweep-and-prune collider could not sort bounds independently along three axes:
collision along x axis depends on the mutual position of particles on the y axis. Therefore, bounding
boxes are expressed in transformed coordinates which are perpendicular in the sense of collision detection.
This requires some extra computation: Aabb of sphere in transformed coordinates will no longer be cube,
but cuboid, as the sphere itself will appear as ellipsoid after transformation. Inversely, the sphere in
simulation space will have a parallelepiped bounding “box”, which is cuboid around the ellipsoid in
transformed axes (the Aabb has axes aligned with transformed cell basis). This is shown in fig. fig-cell-
shear-aabb.

y ≡ y ′ y y ′

x ≡ x ′ x

x ′

Fig. 6: Constructing axis-aligned bounding box (Aabb) of a sphere in simulation space coordinates
(without periodic cell – left) and transformed cell coordinates (right), where collision detection axes x ′,
y ′ are not identical with simulation space axes x, y. Bounds’ projection to axes is shown by orange lines.

The restriction of a single particle not spanning more than half of the transformed axis becomes stringent
as Aabb is enlarged due to shear. Considering Aabb of a sphere with radius r in the cell where x ′ ≡ x,
z ′ ≡ z, but ∠(y, y ′) = φ, the x-span of the Aabb will be multiplied by 1/ cosφ. For the infinite shear
φ → π/2, which can be desirable to simulate, we have 1/ cosφ → ∞. Fortunately, this limitation can be
easily circumvented by realizing the quasi-identity of all periodic cells which, if repeated in space, create
the same grid with their corners: the periodic cell can be flipped, keeping all particle interactions intact,
as shown in fig. fig-cell-flip. It only necessitates adjusting the Interaction.cellDist of interactions and
re-initialization of the collider (Collider::invalidatePersistentData). Cell flipping is implemented
in the Cell.flipCell function. Automatic flip can be enabled using Cell.flipFlippable.

This algorithm is implemented in InsertionSortCollider and is used whenever simulation is periodic
(Omega.isPeriodic); individual BoundFunctor’s are responsible for computing sheared Aabb’s; currently
it is implemented for spheres and facets (in Bo1_Sphere_Aabb and Bo1_Facet_Aabb respectively).

2.1. DEM formulation 81

Yade Documentation, Release 3rd ed.

y ′
1

y ′
2

x ′
1 x ′

2 ≡ x ′
1

ϕ1

y y
ϕ2

Fig. 7: Flipping cell (Cell.flipCell) to avoid infinite stretch of the bounding boxes’ spans with growing φ.
Cell flip does not affect interactions from the point of view of the simulation. The periodic arrangement
on the left is the same as the one on the right, only the cell is situated differently between identical grid
points of repetition; at the same time |φ2| < |φ1| and sphere bounding box’s x-span stretched by 1/ cosφ
becomes smaller. Flipping can be repeated, making effective infinite shear possible.

Exact collision detection

When the collider detects approximate contact (on the Aabb level) and the contact does not yet exist,
it creates potential contact, which is subsequently checked by exact collision algorithms (depending on
the combination of Shapes). Since particles can interact over many periodic cells (recall we never change
their positions in simulation space), the collider embeds the relative cell coordinate of particles in the
interaction itself (Interaction.cellDist) as an integer vector c. Multiplying current cell size Ts by c

component-wise, we obtain particle offset ∆x in aperiodic R3; this value is passed (from InteractionLoop)
to the functor computing exact collision (IGeomFunctor), which adds it to the position of the particle
Interaction.id2.

By storing the integral offset c, ∆x automatically updates as cell parameters change.

Periodic insertion sort algorithm

The extension of sweep and prune algorithm (described in Sweep and prune) to periodic boundary
conditions is non-trivial. Its cornerstone is a periodic variant of the insertion sort algorithm, which
involves keeping track of the “period” of each boundary; e.g. taking period ⟨0, 10), then 81 ≡ −22 < 22
(subscript indicating period). Doing so efficiently (without shuffling data in memory around as bound
wraps from one period to another) requires moving period boundary rather than bounds themselves and
making the comparison work transparently at the edge of the container.

This algorithm was also extended to handle non-orthogonal periodic Cell boundaries by working in trans-
formed rather than Cartesian coordinates; this modifies computation of Aabb from Cartesian coordinates
in which bodies are positioned (treated in detail in Approximate collision detection).

The sort algorithm is tracking Aabb extrema along all axes. At the collider’s initialization, each value is
assigned an integral period, i.e. its distance from the cell’s interior expressed in the cell’s dimension along
its respective axis, and is wrapped to a value inside the cell. We put the period number in subscript.

Let us give an example of coordinate sequence along x axis (in a real case, the number of elements would
be even, as there is maximum and minimum value couple for each particle; this demonstration only
shows the sorting algorithm, however.)

82 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

with cell x-size sx = 10. The 41 value then means that the real coordinate xi of this extremum is
xi + 1 · 10 = 4, i.e. xi = −4. The || symbol denotes the periodic cell boundary.

Sorting starts from the first element in the cell, i.e. right of ||, and inverts elements as in the aperiodic
variant. The rules are, however, more complicated due to the presence of the boundary ||:

(≤) stop inverting if neighbors are ordered;
(||•) current element left of || is below 0 (lower period boundary); in this case, decrement element’s

period, decrease its coordinate by sx and move || right;
(•||) current element right of || is above sx (upper period boundary); increment element’s period,

increase its coordinate by sx and move || left;
(||<) inversion across || must subtract sx from the left coordinate during comparison. If the elements

are not in order, they are swapped, but they must have their periods changed as they traverse
||. Apply (||◦) if necessary;

(||◦) if after (||<) the element that is now right of || has xi < sx, decrease its coordinate by sx and
decrement its period. Do not move ||.

In the first step, (||•) is applied, and inversion with 122 happens; then we stop because of (≤):

We move to next element −24 ; first, we apply (||•), then invert until (≤):

The next element is 50 ; we satisfy (||<), therefore instead of comparing 122 > 50, we must do (122−sx) =

23 ≤ 5; we adjust periods when swapping over || and apply (||◦), turning 122 into 23; then we keep
inverting, until (≤):

2.1. DEM formulation 83

Yade Documentation, Release 3rd ed.

We move (wrapping around) to 41 , which is ordered:

and so is the last element

2.1.7 Computational aspects

Cost

The DEM computation using an explicit integration scheme demands a relatively high number of steps
during simulation, compared to implicit scehemes. The total computation time Z of simulation spanning
T seconds (of simulated time), containing N particles in volume V depends on:

• linearly, the number of steps i = T/(st∆tcr), where st is timestep safety factor; ∆tcr can be
estimated by p-wave velocity using E and ρ (sect. Estimation of \Dtcr by wave propagation speed)
as ∆t(p)cr = r

√
ρ
E
. Therefore

i =
T

str

√
E

ρ
.

• the number of particles N; for fixed value of simulated domain volume V and particle radius r

N = p
V

4
3
πr3

,

where p is packing porosity, roughly 1
2
for dense irregular packings of spheres of similar radius.

84 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

The dependency is not strictly linear (which would be the best case), as some algorithms do not
scale linearly; a case in point is the sweep and prune collision detection algorithm introduced in
sect. Sweep and prune, with scaling roughly O(N logN).

The number of interactions scales with N, as long as packing characteristics are the same.

• the number of computational cores ncpu; in the ideal case, the dependency would be inverse-linear
were all algorithms parallelized (in Yade, collision detection is not).

Let us suppose linear scaling. Additionally, let us suppose that the material to be simulated (E, ρ) and
the simulation setup (V , T) are given in advance. Finally, dimensionless constants st, p and ncpu will
have a fixed value. This leaves us with one last degree of freedom, r. We may write

Z ∝ iN
1

ncpu
=

T

str

√
E

ρ
p

V
4
3
πr3

1

ncpu
∝ 1

r

1

r3
=

1

r4
.

This (rather trivial) result is essential to realize DEM scaling; if we want to have finer results, refining
the “mesh” by halving r, the computation time will grow 24 = 16 times.

For very crude estimates, one can use a known simulation to obtain a machine “constant”

µ =
Z

Ni

with the meaning of time per particle and per timestep (in the order of 10−6 s for current machines).
µ will be only useful if simulation characteristics are similar and non-linearities in scaling do not have
major influence, i.e. N should be in the same order of magnitude as in the reference case.

Result indeterminism

It is naturally expected that running the same simulation several times will give exactly the same results:
although the computation is done with finite precision, round-off errors would be deterministically the
same at every run. While this is true for single-threaded computation where exact order of all operations
is given by the simulation itself, it is not true anymore in multi-threaded computation which is described
in detail in later sections.

The straight-forward manner of parallel processing in explicit DEM is given by the possibility of treating
interactions in arbitrary order. Strain and stress is evaluated for each interaction independently, but
forces from interactions have to be summed up. If summation order is also arbitrary (in Yade, forces are
accumulated for each thread in the order interactions are processed, then summed together), then the
results can be slightly different. For instance

(1/10.)+(1/13.)+(1/17.)=0.23574660633484162
(1/17.)+(1/13.)+(1/10.)=0.23574660633484165

As forces generated by interactions are assigned to bodies in quasi-random order, summary force Fi on
the body can be different between single-threaded and multi-threaded computations, but also between
different runs of multi-threaded computation with exactly the same parameters. Exact thread scheduling
by the kernel is not predictable since it depends on asynchronous events (hardware interrupts) and other
unrelated tasks running on the system; and it is thread scheduling that ultimately determines summation
order of force contributions from interactions.

2.1. DEM formulation 85

Yade Documentation, Release 3rd ed.

2.2 User’s manual

2.2.1 Scene construction

Adding particles

The BodyContainer holds Body objects in the simulation; it is accessible as O.bodies.

Creating Body objects

Body objects are only rarely constructed by hand by their components (Shape, Bound, State, Material);
instead, convenience functions sphere, facet and wall are used to create them. Using these functions also
ensures better future compatibility, if internals of Body change in some way. These functions receive
geometry of the particle and several other characteristics. See their documentation for details. If the
same Material is used for several (or many) bodies, it can be shared by adding it in O.materials, as
explained below.

Defining materials

The O.materials object (instance of Omega.materials) holds defined shared materials for bodies. It
only supports addition, and will typically hold only a few instances (though there is no limit).

label given to each material is optional, but can be passed to sphere and other functions for constructing
body. The value returned by O.materials.append is an id of the material, which can be also passed to
sphere – it is a little bit faster than using label, though not noticeable for small number of particles and
perhaps less convenient.

If no Material is specified when calling sphere, the last defined material is used; that is a convenient
default. If no material is defined yet (hence there is no last material), a default material will be created:
FrictMat(density=1e3,young=1e7,poisson=.3,frictionAngle=.5). This should not happen for serious sim-
ulations, but is handy in simple scripts, where exact material properties are more or less irrelevant.

Yade [1]: len(O.materials)
Out[1]: 0

Yade [2]: idConcrete=O.materials.append(FrictMat(young=30e9,poisson=.2,frictionAngle=.
↪→6,label="concrete"))

Yade [3]: O.materials[idConcrete]
Out[3]: <FrictMat instance at 0x4910410>

uses the last defined material
Yade [4]: O.bodies.append(sphere(center=(0,0,0),radius=1))
Out[4]: 0

material given by id
Yade [5]: O.bodies.append(sphere((0,0,2),1,material=idConcrete))
Out[5]: 1

material given by label
Yade [6]: O.bodies.append(sphere((0,2,0),1,material="concrete"))
Out[6]: 2

Yade [7]: idSteel=O.materials.append(FrictMat(young=210e9,poisson=.25,frictionAngle=.
↪→8,label="steel"))

(continues on next page)

86 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

(continued from previous page)

Yade [8]: len(O.materials)
Out[8]: 2

implicitly uses "steel" material, as it is the last one now
Yade [9]: O.bodies.append(facet([(1,0,0),(0,1,0),(-1,-1,0)]))
Out[9]: 3

Adding multiple particles

As shown above, bodies are added one by one or several at the same time using the append method:

Yade [10]: O.bodies.append(sphere((0,10,0),1))
Out[10]: 0

Yade [11]: O.bodies.append(sphere((0,0,2),1))
Out[11]: 1

this is the same, but in one function call
Yade [12]: O.bodies.append([

....: sphere((0,0,0),1),

....: sphere((1,1,3),1)

....:])

....:
Out[12]: [2, 3]

Many functions introduced in next sections return list of bodies which can be readily added to the
simulation, including

• packing generators, such as pack.randomDensePack, pack.regularHexa

• surface function pack.gtsSurface2Facets

• import functions ymport.gmsh, ymport.stl, …

As those functions use sphere and facet internally, they accept additional arguments passed to those
functions. In particular, material for each body is selected following the rules above (last one if not
specified, by label, by index, etc.).

Clumping particles together

In some cases, you might want to create rigid aggregate of individual particles (i.e. particles will retain
their mutual position during simulation). This we call a clump. A clump is internally represented by a
special body, referenced by clumpId of its members (see also isClump, isClumpMember and isStandalone).
Like every body a clump has a position, which is the (mass) balance point between all members. A
clump body itself has no interactions with other bodies. Interactions between clumps is represented by
interactions between clump members. There are no interactions between clump members of the same
clump.

YADE supports different ways of creating clumps:

• Create clumps and spheres (clump members) directly with one command:

The function appendClumped() is designed for this task. For instance, we might add 2 spheres tied
together:

2.2. User’s manual 87

Yade Documentation, Release 3rd ed.

Yade [13]: O.bodies.appendClumped([
....: sphere([0,0,0],1),
....: sphere([0,0,2],1)
....:])
....:

Out[13]: (2, [0, 1])

Yade [14]: len(O.bodies)
Out[14]: 3

Yade [15]: O.bodies[1].isClumpMember, O.bodies[2].clumpId
Out[15]: (True, 2)

Yade [16]: O.bodies[2].isClump, O.bodies[2].clumpId
Out[16]: (True, 2)

-> appendClumped() returns a tuple of ids (clumpId,[memberId1,memberId2,...])

• Use existing spheres and clump them together:

For this case the function clump() can be applied on a list of existing bodies:

Yade [17]: bodyList = []

Yade [18]: for ii in range(0,5):
....: bodyList.append(O.bodies.append(sphere([ii,0,1],.5)))#create a "chain" of␣

↪→5 spheres
....:

Yade [19]: print(bodyList)
[0, 1, 2, 3, 4]

Yade [20]: idClump=O.bodies.clump(bodyList)

-> clump() returns clumpId

• Another option is to replace standalone spheres from a given packing (see SpherePack and make-
Cloud) by clumps using clump templates.

This is done by a function called replaceByClumps(). This function takes a list of clumpTemplates() and
a list of amounts and replaces spheres by clumps. The volume of a new clump will be the same as the
volume of the sphere, that was replaced (clump volume/mass/inertia is accounting for overlaps assuming
that there are only pair overlaps).

-> replaceByClumps() returns a list of tuples: [(clumpId1,[memberId1,memberId2,...]),(clumpId2,
[memberId1,memberId2,...]),...]

It is also possible to add bodies to a clump and release bodies from a clump. Also you can erase the
clump (clump members will become standalone).

Additionally YADE allows to achieve the roundness of a clump or roundness coefficient of a packing.
Parts of the packing can be excluded from roundness measurement via exclude list.

Yade [21]: bodyList = []

Yade [22]: for ii in range(1,5):
....: bodyList.append(O.bodies.append(sphere([ii,ii,ii],.5)))
....:

Yade [23]: O.bodies.clump(bodyList)
Out[23]: 4

(continues on next page)

88 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

(continued from previous page)

Yade [24]: RC=O.bodies.getRoundness()

Yade [25]: print(RC)
0.25619141423166986

-> getRoundness() returns roundness coefficient RC of a packing or a part of the packing

Note: Have a look at examples/clumps/ folder. There you will find some examples, that show usage
of different functions for clumps.

Sphere packings

Representing a solid of an arbitrary shape by arrangement of spheres presents the problem of sphere
packing, i.e. spatial arrangement of spheres such that a given solid is approximately filled with them.
For the purposes of DEM simulation, there can be several requirements.

1. Distribution of spheres’ radii. Arbitrary volume can be filled completely with spheres provided
there are no restrictions on their radius; in such case, number of spheres can be infinite and their
radii approach zero. Since both number of particles and minimum sphere radius (via critical
timestep) determine computation cost, radius distribution has to be given mandatorily. The most
typical distribution is uniform: mean±dispersion; if dispersion is zero, all spheres will have the
same radius.

2. Smooth boundary. Some algorithms treat boundaries in such way that spheres are aligned on them,
making them smoother as surface.

3. Packing density, or the ratio of spheres volume and solid size. It is closely related to radius
distribution.

4. Coordination number, (average) number of contacts per sphere.

5. Isotropy (related to regularity/irregularity); packings with preferred directions are usually not
desirable, unless the modeled solid also has such preference.

6. Permissible Spheres’ overlap; some algorithms might create packing where spheres slightly overlap;
since overlap usually causes forces in DEM, overlap-free packings are sometimes called “stress-free�.

Volume representation

There are 2 methods for representing exact volume of the solid in question in Yade: boundary repre-
sentation and constructive solid geometry. Despite their fundamental differences, they are abstracted in
Yade in the Predicate class. Predicate provides the following functionality:

1. defines axis-aligned bounding box for the associated solid (optionally defines oriented bounding
box);

2. can decide whether given point is inside or outside the solid; most predicates can also (exactly or
approximately) tell whether the point is inside and satisfies some given padding distance from the
represented solid boundary (so that sphere of that volume doesn’t stick out of the solid).

2.2. User’s manual 89

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/

Yade Documentation, Release 3rd ed.

Constructive Solid Geometry (CSG)

CSG approach describes volume by geometric primitives or primitive solids (sphere, cylinder, box, cone,
…) and boolean operations on them. Primitives defined in Yade include inCylinder, inSphere, inEllipsoid,
inHyperboloid, notInNotch.

For instance, hyperboloid (dogbone) specimen for tension-compression test can be constructed in this
way (shown at img. img-hyperboloid):

from yade import pack

construct the predicate first
pred=pack.inHyperboloid(centerBottom=(0,0,-.1),centerTop=(0,0,.1),radius=.05,skirt=.
↪→03)
alternatively: pack.inHyperboloid((0,0,-.1),(0,0,.1),.05,.03)

pack the predicate with spheres (will be explained later)
spheres=pack.randomDensePack(pred,spheresInCell=2000,radius=3.5e-3)

add spheres to simulation
O.bodies.append(spheres)

Fig. 8: Specimen constructed with the pack.inHyperboloid predicate, packed with
pack.randomDensePack.

Boundary representation (BREP)

Representing a solid by its boundary is much more flexible than CSG volumes, but is mostly only ap-
proximate. Yade interfaces to GNU Triangulated Surface Library (GTS) to import surfaces readable by
GTS, but also to construct them explicitly from within simulation scripts. This makes possible para-
metric construction of rather complicated shapes; there are functions to create set of 3d polylines from
2d polyline (pack.revolutionSurfaceMeridians), to triangulate surface between such set of 3d polylines
(pack.sweptPolylines2gtsSurface).

For example, we can construct a simple funnel (examples/funnel.py, shown at img-funnel):

from numpy import linspace
from yade import pack

angles for points on circles
thetas=linspace(0,2*pi,num=16,endpoint=True)

(continues on next page)

90 Chapter 2. Yade for users

http://gts.sourceforge.net
https://gitlab.com/yade-dev/trunk/blob/master/examples/funnel.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

creates list of polylines in 3d from list of 2d projections
turned from 0 to �
meridians=pack.revolutionSurfaceMeridians(

[[(3+rad*sin(th),10*rad+rad*cos(th)) for th in thetas] for rad in linspace(1,
↪→2,num=10)],

linspace(0,pi,num=10)
)

create surface
surf=pack.sweptPolylines2gtsSurface(

meridians
+[[Vector3(5*sin(-th),-10+5*cos(-th),30) for th in thetas]] # add funnel top

)

add to simulation
O.bodies.append(pack.gtsSurface2Facets(surf))

Fig. 9: Triangulated funnel, constructed with the examples/funnel.py script.

GTS surface objects can be used for 2 things:

1. pack.gtsSurface2Facets function can create the triangulated surface (from Facet particles) in the
simulation itself, as shown in the funnel example. (Triangulated surface can also be imported
directly from a STL file using ymport.stl.)

2. pack.inGtsSurface predicate can be created, using the surface as boundary representation of the
enclosed volume.

The examples/gts-horse/gts-horse.py (img. img-horse) shows both possibilities; first, a GTS surface is
imported:

import gts
surf=gts.read(open('horse.coarse.gts'))

That surface object is used as predicate for packing:

pred=pack.inGtsSurface(surf)
aabb=pred.aabb()
radius=(aabb[1][0]-aabb[0][0])/40
O.bodies.append(pack.regularHexa(pred,radius=radius,gap=radius/4.))

and then, after being translated, as base for triangulated surface in the simulation itself:

2.2. User’s manual 91

https://gitlab.com/yade-dev/trunk/blob/master/examples/funnel.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-horse.py

Yade Documentation, Release 3rd ed.

surf.translate(0,0,-(aabb[1][2]-aabb[0][2]))
O.bodies.append(pack.gtsSurface2Facets(surf,wire=True))

Fig. 10: Imported GTS surface (horse) used as packing predicate (top) and surface constructed from
facets (bottom). See http://www.youtube.com/watch?v=PZVruIlUX1A for movie of this simulation.

Boolean operations on predicates

Boolean operations on pair of predicates (noted A and B) are defined:

• intersection A & B (conjunction): point must be in both predicates involved.

• union A | B (disjunction): point must be in the first or in the second predicate.

• difference A - B (conjunction with second predicate negated): the point must be in the first pred-
icate and not in the second one.

• symmetric difference A ^ B (exclusive disjunction): point must be in exactly one of the two pred-
icates.

Composed predicates also properly define their bounding box. For example, we can take box and remove
cylinder from inside, using the A - B operation (img. img-predicate-difference):

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack(pred,spheresInCell=2000,radius=.1,rRelFuzz=.4,
↪→returnSpherePack=True)
spheres.toSimulation()

92 Chapter 2. Yade for users

http://www.youtube.com/watch?v=PZVruIlUX1A

Yade Documentation, Release 3rd ed.

Fig. 11: Box with cylinder removed from inside, using difference of these two predicates.

Packing algorithms

Algorithms presented below operate on geometric spheres, defined by their center and radius. With a
few exception documented below, the procedure is as follows:

1. Sphere positions and radii are computed (some functions use volume predicate for this, some do
not)

2. sphere is called for each position and radius computed; it receives extra keyword arguments of the
packing function (i.e. arguments that the packing function doesn’t specify in its definition; they
are noted **kw). Each sphere call creates actual Body objects with Sphere shape. List of Body
objects is returned.

3. List returned from the packing function can be added to simulation using toSimulation(). Legacy
code used a call to O.bodies.append.

Taking the example of pierced box:

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack(pred,spheresInCell=2000,radius=.1,rRelFuzz=.4,wire=True,
↪→color=(0,0,1),material=1,returnSpherePack=True)

Keyword arguments wire, color and material are not declared in pack.randomDensePack, therefore
will be passed to sphere, where they are also documented. spheres is now a SpherePack object.:

spheres.toSimulation()

Packing algorithms described below produce dense packings. If one needs loose packing, SpherePack
class provides functions for generating loose packing, via its makeCloud() method. It is used internally
for generating initial configuration in dynamic algorithms. For instance:

from yade import pack
sp=pack.SpherePack()
sp.makeCloud(minCorner=(0,0,0),maxCorner=(3,3,3),rMean=.2,rRelFuzz=.5)

will fill given box with spheres, until no more spheres can be placed. The object can be used to add
spheres to simulation:

2.2. User’s manual 93

http://docs.python.org/glossary.html#term-keyword-argument

Yade Documentation, Release 3rd ed.

sp.toSimulation()

Geometric

Geometric algorithms compute packing without performing dynamic simulation; among their advantages
are

• speed;

• spheres touch exactly, there are no overlaps (what some people call “stress-free” packing);

their chief disadvantage is that radius distribution cannot be prescribed exactly, save in specific cases
(regular packings); sphere radii are given by the algorithm, which already makes the system determined.
If exact radius distribution is important for your problem, consider dynamic algorithms instead.

Regular

Yade defines packing generators for spheres with constant radii, which can be used with volume predicates
as described above. They are dense orthogonal packing (pack.regularOrtho) and dense hexagonal packing
(pack.regularHexa). The latter creates so-called “hexagonal close packing”, which achieves maximum
density (http://en.wikipedia.org/wiki/Close-packing_of_spheres).

Clear disadvantage of regular packings is that they have very strong directional preferences, which might
not be an issue in some cases.

Irregular

Random geometric algorithms do not integrate at all with volume predicates described above; rather,
they take their own boundary/volume definition, which is used during sphere positioning. On the other
hand, this makes it possible for them to respect boundary in the sense of making spheres touch it at
appropriate places, rather than leaving empty space in-between.

GenGeo
is library (python module) for packing generation developed with ESyS-Particle. It creates pack-
ing by random insertion of spheres with given radius range. Inserted spheres touch each other
exactly and, more importantly, they also touch the boundary, if in its neighbourhood. Boundary
is represented as special object of the GenGeo library (Sphere, cylinder, box, convex polyhedron,
…). Therefore, GenGeo cannot be used with volume represented by yade predicates as explained
above.

Packings generated by this module can be imported directly via ymport.gengeo, or from saved file via
ymport.gengeoFile. There is an example script examples/test/genCylLSM.py. Full documentation
for GenGeo can be found at ESyS documentation website.

There are debian packages esys-particle and python-demgengeo.

Dynamic

The most versatile algorithm for random dense packing is provided by pack.randomDensePack. Initial
loose packing of non-overlapping spheres is generated by randomly placing them in cuboid volume,
with radii given by requested (currently only uniform) radius distribution. When no more spheres can
be inserted, the packing is compressed and then uncompressed (see py/pack/pack.py for exact values
of these “stresses”) by running a DEM simulation; Omega.switchScene is used to not affect existing
simulation). Finally, resulting packing is clipped using provided predicate, as explained above.

By its nature, this method might take relatively long; and there are 2 provisions to make the computation
time shorter:

94 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Close-packing_of_spheres
http://www.launchpad.net/esys-particle
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/genCylLSM.py
http://esys.geocomp.uq.edu.au/esys-particle_python_doc/current/pythonapi/html/index.html
https://gitlab.com/yade-dev/trunk/blob/master/py/pack/pack.py

Yade Documentation, Release 3rd ed.

• If number of spheres using the spheresInCell parameter is specified, only smaller specimen with
periodic boundary is created and then repeated as to fill the predicate. This can provide high-
quality packing with low regularity, depending on the spheresInCell parameter (value of several
thousands is recommended).

• Providing memoizeDb parameter will make pack.randomDensePack first look into provided file
(SQLite database) for packings with similar parameters. On success, the packing is simply read
from database and returned. If there is no similar pre-existent packing, normal procedure is run,
and the result is saved in the database before being returned, so that subsequent calls with same
parameters will return quickly.

If you need to obtain full periodic packing (rather than packing clipped by predicate), you can use
pack.randomPeriPack.

In case of specific needs, you can create packing yourself, “by hand”. For instance, packing boundary
can be constructed from facets, letting randomly positioned spheres in space fall down under gravity.

Triangulated surfaces

Yade integrates with the the GNU Triangulated Surface library, exposed in python via GTS module. GTS
provides variety of functions for surface manipulation (coarsening, tesselation, simplification, import),
to be found in its documentation.

GTS surfaces are geometrical objects, which can be inserted into simulation as set of particles whose
Body.shape is of type Facet – single triangulation elements. pack.gtsSurface2Facets can be used to convert
GTS surface triangulation into list of bodies ready to be inserted into simulation via O.bodies.append.

Facet particles are created by default as non-Body.dynamic (they have zero inertial mass). That means
that they are fixed in space and will not move if subject to forces. You can however

• prescribe arbitrary movement to facets using a PartialEngine (such as TranslationEngine or Rota-
tionEngine);

• assign explicitly mass and inertia to that particle;

• make that particle part of a clump and assign mass and inertia of the clump itself (described
below).

Note: Facets can only (currently) interact with spheres, not with other facets, even if they are dynamic.
Collision of 2 facets will not create interaction, therefore no forces on facets.

Import

Yade currently offers 3 formats for importing triangulated surfaces from external files, in the ymport
module:

ymport.gts
text file in native GTS format.

ymport.stl
STereoLitography format, in either text or binary form; exported from Blender, but from many
CAD systems as well.

ymport.gmsh.
text file in native format for GMSH, popular open-source meshing program.

If you need to manipulate surfaces before creating list of facets, you can study the py/ymport.py file
where the import functions are defined. They are rather simple in most cases.

2.2. User’s manual 95

http://gts.sourceforge.net
http://www.blender.org
http://www.geuz.org/gmsh/
https://gitlab.com/yade-dev/trunk/blob/master/py/ymport.py

Yade Documentation, Release 3rd ed.

Parametric construction

The GTS module provides convenient way of creating surface by vertices, edges and triangles.

Frequently, though, the surface can be conveniently described as surface between polylines in space. For
instance, cylinder is surface between two polygons (closed polylines). The pack.sweptPolylines2gtsSurface
offers the functionality of connecting several polylines with triangulation.

Note: The implementation of pack.sweptPolylines2gtsSurface is rather simplistic: all polylines must be
of the same length, and they are connected with triangles between points following their indices within
each polyline (not by distance). On the other hand, points can be co-incident, if the threshold parameter
is positive: degenerate triangles with vertices closer that threshold are automatically eliminated.

Manipulating lists efficiently (in terms of code length) requires being familiar with list comprehensions
in python.

Another examples can be found in examples/mill.py (fully parametrized) or examples/funnel.py (with
hardcoded numbers).

Creating interactions

In typical cases, interactions are created during simulations as particles collide. This is done by a Collider
detecting approximate contact between particles and then an IGeomFunctor detecting exact collision.

Some material models (such as the concrete model) rely on initial interaction network which is denser
than geometrical contact of spheres: sphere’s radii as “enlarged” by a dimensionless factor called inter-
action radius (or interaction ratio) to create this initial network. This is done typically in this way (see
examples/concrete/uniax.py for an example):

1. Approximate collision detection is adjusted so that approximate contacts are detected also be-
tween particles within the interaction radius. This consists in setting value of Bo1_Sphere_-
Aabb.aabbEnlargeFactor to the interaction radius value.

2. The geometry functor (Ig2) would normally say that “there is no contact” if given 2 spheres that
are not in contact. Therefore, the same value as for Bo1_Sphere_Aabb.aabbEnlargeFactor must
be given to it (Ig2_Sphere_Sphere_ScGeom.interactionDetectionFactor).

Note that only Sphere + Sphere interactions are supported; there is no parameter analogous to
distFactor in Ig2_Facet_Sphere_ScGeom. This is on purpose, since the interaction radius is mean-
ingful in bulk material represented by sphere packing, whereas facets usually represent boundary
conditions which should be exempt from this dense interaction network.

3. Run one single step of the simulation so that the initial network is created.

4. Reset interaction radius in both Bo1 and Ig2 functors to their default value again.

5. Continue the simulation; interactions that are already established will not be deleted (the Law2
functor in use permitting).

In code, such scenario might look similar to this one (labeling is explained in Labeling things):

intRadius=1.5
damping=0.05

O.engines=[
ForceResetter(),
InsertionSortCollider([

enlarge here
Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius,label='bo1s'),
Bo1_Facet_Aabb(),

(continues on next page)

96 Chapter 2. Yade for users

http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://gitlab.com/yade-dev/trunk/blob/master/examples/mill.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/funnel.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

]),
InteractionLoop(

[
enlarge here
Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius,label='ig2ss'),
Ig2_Facet_Sphere_ScGeom(),

],
[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm(epsSoft=0)], # deactivated

),
NewtonIntegrator(damping=damping,label='damper'),

]

run one single step
O.step()

reset interaction radius to the default value
bo1s.aabbEnlargeFactor=1.0
ig2ss.interactionDetectionFactor=1.0

now continue simulation
O.run()

Individual interactions on demand

It is possible to create an interaction between a pair of particles independently of collision detection using
createInteraction. This function looks for and uses matching Ig2 and Ip2 functors. Interaction will be
created regardless of distance between given particles (by passing a special parameter to the Ig2 functor
to force creation of the interaction even without any geometrical contact). Appropriate constitutive law
should be used to avoid deletion of the interaction at the next simulation step.

Yade [26]: O.materials.append(FrictMat(young=3e10,poisson=.2,density=1000))
Out[26]: 0

Yade [27]: O.bodies.append([
....: sphere([0,0,0],1),
....: sphere([0,0,1000],1)
....:])
....:

Out[27]: [0, 1]

only add InteractionLoop, no other engines are needed now
Yade [28]: O.engines=[

....: InteractionLoop(

....: [Ig2_Sphere_Sphere_ScGeom(),],

....: [Ip2_FrictMat_FrictMat_FrictPhys()],

....: [] # not needed now

....:)

....:]

....:

Yade [29]: i=createInteraction(0,1)

created by functors in InteractionLoop
Yade [30]: i.geom, i.phys

(continues on next page)

2.2. User’s manual 97

Yade Documentation, Release 3rd ed.

(continued from previous page)

Out[30]: (<ScGeom instance at 0x4a70070>, <FrictPhys instance at 0x4a40300>)

This method will be rather slow if many interactions are to be created (the functor lookup will be repeated
for each of them). In such case, ask on yade-dev@lists.launchpad.net to have the createInteraction
function accept list of pairs id’s as well.

Assigning cohesive bonds (possibly between distant bodies)

A particular case of interactions on demand is when cohesive strength needs to be assigned to interactions
when using Law2_ScGeom6D_CohFrictPhys_CohesionMoment.

• For existing interactions, it can be done using setCohesion. If physFunctor is physics functor of
type Ip2_CohFrictMat_CohFrictMat_CohFrictPhys and i an existing, cohesionless, interaction,
this line would assign cohesion without changing the current contact force/moments:

physFunctor.setCohesion(i,cohesive=True,resetDisp=False)

• For creating new interactions (particularly when the interaction needs to be created between distant
bodies), the interaction needs to be created, first, then cohesion can be assigned:

i=createInteraction(i.id1,i.id2)
physFunctor.setCohesion(i,cohesive=True,resetDisp=False)

If the above lines are executed between distant bodies, the interaction will be initially in traction. In
order to make it force free we need to use current distance as equilibrium distance, this is achieved with
resetDisp=True.

• Creating cohesive bonds with this method between many thousand of distant bodies can be
a challenge since it needs to identify the candidate pairs. In such situation, it is suggested
to exploit the collision detection engine to establish the list of close - though distant - neigh-
bours. Indeed, the collider can be executed outside the time-integration loop, with a user-
defined detection distance, in order to produce that list. This technique is examplified in ex-
amples/cohesion/assignCohesionRemote.py.

Base engines

A typical DEM simulation in Yade does at least the following at each step (see Function components for
details):

1. Reset forces from previous step

2. Detect new collisions

3. Handle interactions

4. Apply forces and update positions of particles

Each of these points corresponds to one or several engines:

O.engines=[
ForceResetter(), # reset forces
InsertionSortCollider([...]), # approximate collision detection
InteractionLoop([...],[...],[...]) # handle interactions
NewtonIntegrator() # apply forces and update positions

]

The order of engines is important. In majority of cases, you will put any additional engine after Inter-
actionLoop:

• if it applies force, it should come before NewtonIntegrator, otherwise the force will never be effective.

98 Chapter 2. Yade for users

mailto:yade-dev@lists.launchpad.net
https://gitlab.com/yade-dev/trunk/blob/master/examples/cohesion/assignCohesionRemote.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/cohesion/assignCohesionRemote.py

Yade Documentation, Release 3rd ed.

• if it makes use of bodies’ positions, it should also come before NewtonIntegrator, otherwise, posi-
tions at the next step will be used (this might not be critical in many cases, such as output for
visualization with VTKRecorder).

The O.engines sequence must be always assigned at once (the reason is in the fact that although engines
themselves are passed by reference, the sequence is copied from c++ to Python or from Python to c++).
This includes modifying an existing O.engines; therefore

O.engines.append(SomeEngine()) # wrong

will not work;

O.engines=O.engines+[SomeEngine()] # ok

must be used instead. For inserting an engine after position #2 (for example), use python slice notation:

O.engines=O.engines[:2]+[SomeEngine()]+O.engines[2:]

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and
facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in examples/simple-scene/simple-scene-default-engines.py.

Functors choice

In the above example, we omited functors, only writing ellipses ... instead. As explained in Dispatchers
and functors, there are 4 kinds of functors and associated dispatchers. User can choose which ones to
use, though the choice must be consistent.

Bo1 functors

Bo1 functors must be chosen depending on the collider in use; they are given directly to the collider
(which internally uses BoundDispatcher).

At this moment (January 2019), the most common choice is InsertionSortCollider, which uses Aabb;
functors creating Aabb must be used in that case. Depending on particle shapes in your simulation,
choose appropriate functors:

O.engines=[...,
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]),
...

]

Using more functors than necessary (such as Bo1_Facet_Aabb if there are no facets in the simulation)
has no performance penalty. On the other hand, missing functors for existing shapes will cause those
bodies to not collide with other bodies (they will freely interpenetrate).

There are other colliders as well, though their usage is only experimental:

• SpatialQuickSortCollider is correctness-reference collider operating on Aabb; it is significantly slower
than InsertionSortCollider.

• PersistentTriangulationCollider only works on spheres; it does not use a BoundDispatcher, as it
operates on spheres directly.

• FlatGridCollider is proof-of-concept grid-based collider, which computes grid positions internally
(no BoundDispatcher either)

2.2. User’s manual 99

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-default-engines.py

Yade Documentation, Release 3rd ed.

Ig2 functors

Ig2 functor choice (all of them derive from IGeomFunctor) depends on

1. shape combinations that should collide; for instance:

InteractionLoop([Ig2_Sphere_Sphere_ScGeom()],[],[])

will handle collisions for Sphere + Sphere, but not for Facet + Sphere – if that is desired, an
additional functor must be used:

InteractionLoop([
Ig2_Sphere_Sphere_ScGeom(),
Ig2_Facet_Sphere_ScGeom()

],[],[])

Again, missing combination will cause given shape combinations to freely interpenetrate one an-
other. There are several possible choices of a functor for each pair, hence they cannot be put into
InsertionSortCollider by default. A common mistake for bodies going through each other is that
the necessary functor was not added.

2. IGeom type accepted by the Law2 functor (below); it is the first part of functor’s name after Law2
(for instance, Law2_ScGeom_CpmPhys_Cpm accepts ScGeom).

Ip2 functors

Ip2 functors (deriving from IPhysFunctor) must be chosen depending on

1. Material combinations within the simulation. In most cases, Ip2 functors handle 2 instances of the
same Material class (such as Ip2_FrictMat_FrictMat_FrictPhys for 2 bodies with FrictMat)

2. IPhys accepted by the constitutive law (Law2 functor), which is the second part of the Law2 functor’s
name (e.g. Law2_ScGeom_FrictPhys_CundallStrack accepts FrictPhys)

Note: Unlike with Bo1 and Ig2 functors, unhandled combination of Materials is an error condition
signaled by an exception.

Law2 functor(s)

Law2 functor was the ultimate criterion for the choice of Ig2 and Ip2 functors; there are no restrictions
on its choice in itself, as it only applies forces without creating new objects.

In most simulations, only one Law2 functor will be in use; it is possible, though, to have several of them,
dispatched based on combination of IGeom and IPhys produced previously by Ig2 and Ip2 functors
respectively (in turn based on combination of Shapes and Materials).

Note: As in the case of Ip2 functors, receiving a combination of IGeom and IPhys which is not handled
by any Law2 functor is an error.

Warning: Many Law2 exist in Yade, and new ones can appear at any time. In some cases different
functors are only different implementations of the same contact law (e.g. Law2_ScGeom_FrictPhys_-
CundallStrack and Law2_L3Geom_FrictPhys_ElPerfPl). Also, sometimes, the peculiarity of one
functor may be reproduced as a special case of a more general one. Therefore, for a given constitutive
behavior, the user may have the choice between different functors. It is strongly recommended to

100 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

favor the most used and most validated implementation when facing such choice. A list of available
functors classified from mature to unmaintained is updated here to guide this choice.

Examples

Let us give several examples of the chain of created and accepted types.

Basic DEM model

Suppose we want to use the Law2_ScGeom_FrictPhys_CundallStrack constitutive law. We see that

1. the Ig2 functors must create ScGeom. If we have for instance spheres and boxes in the simulation,
we will need functors accepting Sphere + Sphere and Box + Sphere combinations. We don’t want
interactions between boxes themselves (as a matter of fact, there is no such functor anyway). That
gives us Ig2_Sphere_Sphere_ScGeom and Ig2_Box_Sphere_ScGeom.

2. the Ip2 functors should create FrictPhys. Looking at InteractionPhysicsFunctors, there is only
Ip2_FrictMat_FrictMat_FrictPhys. That obliges us to use FrictMat for particles.

The result will be therefore:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

)

Concrete model

In this case, our goal is to use the Law2_ScGeom_CpmPhys_Cpm constitutive law.

• We use spheres and facets in the simulation, which selects Ig2 functors accepting those types and
producing ScGeom: Ig2_Sphere_Sphere_ScGeom and Ig2_Facet_Sphere_ScGeom.

• We have to use Material which can be used for creating CpmPhys. We find that CpmPhys is
only created by Ip2_CpmMat_CpmMat_CpmPhys, which determines the choice of CpmMat for
all particles.

Therefore, we will use:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Facet_Sphere_ScGeom()],
[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm()]

)

2.2. User’s manual 101

https://yade-dem.org/wiki/ConstitutiveLaws

Yade Documentation, Release 3rd ed.

Imposing conditions

In most simulations, it is not desired that all particles float freely in space. There are several ways of
imposing boundary conditions that block movement of all or some particles with regard to global space.

Note: When using Clump bodies discussed in above section Clumping particles together, the following
paragraphs apply to the Clump bodies themselves (not to their members).

Motion constraints

• Body.dynamic determines whether a body will be accelerated by NewtonIntegrator; it is mandatory
to make it false for bodies with zero mass, where applying non-zero force would result in infinite
displacement.

Facets are case in the point: facet makes them non-dynamic by default, as they have zero volume
and zero mass (this can be changed, by passing dynamic=True to facet or setting Body.dynamic;
setting State.mass to a non-zero value must be done as well). The same is true for wall.

Making sphere non-dynamic is achieved simply by:

b = sphere([x,y,z],radius,dynamic=False)
b.dynamic=True #revert the previous

• State.blockedDOFs permits selective blocking of any of 6 degrees of freedom in global space. For
instance, a sphere can be made to move only in the xy plane by saying:

Yade [31]: O.bodies.append(sphere((0,0,0),1))
Out[31]: 0

Yade [32]: O.bodies[0].state.blockedDOFs='zXY'

In contrast to Body.dynamic, blockedDOFs will only block forces (and acceleration) in se-
lected directions. Actually, b.dynamic=False is nearly only a shorthand for b.state.
blockedDOFs=='xyzXYZ' . A subtle difference is that the former does reset the velocity components
automaticaly, while the latest does not. If you prescribed linear or angular velocity, they will be
applied regardless of blockedDOFs. It also implies that if the velocity is not zero when degrees of
freedom are blocked via blockedDOFs assignements, the body will keep moving at the velocity it
has at the time of blocking. The differences are shown below:

Yade [33]: b1 = sphere([0,0,0],1,dynamic=True)

Yade [34]: b1.state.blockedDOFs
Out[34]: ''

Yade [35]: b1.state.vel = Vector3(1,0,0) #we want it to move...

Yade [36]: b1.dynamic = False #... at a constant velocity

Yade [37]: print(b1.state.blockedDOFs, b1.state.vel)
xyzXYZ Vector3(0,0,0)

Yade [38]: # oops, velocity has been reset when setting dynamic=False

Yade [39]: b1.state.vel = (1,0,0) # we can still assign it now

Yade [40]: print(b1.state.blockedDOFs, b1.state.vel)
(continues on next page)

102 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

(continued from previous page)

xyzXYZ Vector3(1,0,0)

Yade [41]: b2 = sphere([0,0,0],1,dynamic=True) #another try

Yade [42]: b2.state.vel = (1,0,0)

Yade [43]: b2.state.blockedDOFs = "xyzXYZ" #this time we assign blockedDOFs␣
↪→directly, velocity is unchanged

Yade [44]: print(b2.state.blockedDOFs, b2.state.vel)
xyzXYZ Vector3(1,0,0)

It might be desirable to constrain motion of some particles constructed from a generated sphere packing,
following some condition, such as being at the bottom of a specimen; this can be done by looping over
all bodies with a conditional:

for b in O.bodies:
block all particles with z coord below .5:
if b.state.pos[2]<.5: b.dynamic=False

Arbitrary spatial predicates introduced above can be expoited here as well:

from yade import pack
pred=pack.inAlignedBox(lowerCorner,upperCorner)
for b in O.bodies:

if not isinstance(b.shape,Sphere): continue # skip non-spheres
ask the predicate if we are inside
if pred(b.state.pos,b.shape.radius): b.dynamic=False

Imposing motion and forces

Imposed velocity

If a degree of freedom is blocked and a velocity is assigned along that direction (translational or rotational
velocity), then the body will move at constant velocity. This is the simpler and recommended method
to impose the motion of a body. This, for instance, will result in a constant velocity along x (it can still
be freely accelerated along y and z):

O.bodies.append(sphere((0,0,0),1))
O.bodies[0].state.blockedDOFs='x'
O.bodies[0].state.vel=(10,0,0)

Conversely, modifying the position directly is likely to break Yade’s algorithms, especially those related
to collision detection and contact laws, as they are based on bodies velocities. Therefore, unless you
really know what you are doing, don’t do that for imposing a motion:

O.bodies.append(sphere((0,0,0),1))
O.bodies[0].state.blockedDOFs='x'
O.bodies[0].state.pos=10*O.dt #REALLY BAD! Don't assign position

2.2. User’s manual 103

Yade Documentation, Release 3rd ed.

Imposed force

Applying a force or a torque on a body is done via functions of the ForceContainer. It is as simple as
this:

O.forces.addF(0,(1,0,0)) #applies for one step

This way, the force applies for one time step only, and is resetted at the beginning of each step. For this
reason, imposing a force at the begining of one step will have no effect at all, since it will be immediatly
resetted. The only way is to place a PyRunner inside the simulation loop.

Applying the force permanently is possible with another function (in this case it does not matter if the
command comes at the begining of the time step):

O.forces.setPermF(0,(1,0,0)) #applies permanently

The force will persist across iterations, until it is overwritten by another call to O.forces.setPermF(id,
f) or erased by O.forces.reset(resetAll=True). The permanent force on a body can be checked with
O.forces.permF(id).

Boundary controllers

Engines deriving from BoundaryController impose boundary conditions during simulation, either di-
rectly, or by influencing several bodies. You are referred to their individual documentation for details,
though you might find interesting in particular

• UniaxialStrainer for applying strain along one axis at constant rate; useful for plotting strain-stress
diagrams for uniaxial loading case. See examples/concrete/uniax.py for an example.

• TriaxialStressController which applies prescribed stress/strain along 3 perpendicular axes on
cuboid-shaped packing using 6 walls (Box objects)

• PeriTriaxController for applying stress/strain along 3 axes independently, for simulations using
periodic boundary conditions (Cell)

Field appliers

Engines deriving from FieldApplier are acting on all particles. The one most used is GravityEngine
applying uniform acceleration field (GravityEngine is deprecated, use NewtonIntegrator.gravity instead).

Partial engines

Engines deriving from PartialEngine define the ids attribute determining bodies which will be affected.
Several of them warrant explicit mention here:

• TranslationEngine and RotationEngine for applying constant speed linear and rotational motion
on subscribers.

• ForceEngine and TorqueEngine applying given values of force/torque on subscribed bodies at every
step.

• StepDisplacer for applying generalized displacement delta at every timestep; designed for precise
control of motion when testing constitutive laws on 2 particles.

The real value of partial engines is when you need to prescribe a complex type of force or displacement
field. For moving a body at constant velocity or for imposing a single force, the methods explained in

104 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

Imposing motion and forces are much simpler. There are several interpolating engines (InterpolatingDi-
rectedForceEngine for applying force with varying magnitude, InterpolatingHelixEngine for applying spi-
ral displacement with varying angular velocity; see examples/test/helix.py and possibly others); writing
a new interpolating engine is rather simple using examples of those that already exist.

Convenience features

Labeling things

Engines and functors can define a label attribute. Whenever the O.engines sequence is modified, python
variables of those names are created/updated; since it happens in the __builtins__ namespaces, these
names are immediately accessible from anywhere. This was used in Creating interactions to change
interaction radius in multiple functors at once.

Warning: Make sure you do not use label that will overwrite (or shadow) an object that you already
use under that variable name. Take care not to use syntactically wrong names, such as “er*452” or
“my engine”; only variable names permissible in Python can be used.

Simulation tags

Omega.tags is a dictionary (it behaves like a dictionary, although the implementation in C++ is different)
mapping keys to labels. Contrary to regular python dictionaries that you could create,

• O.tags is saved and loaded with simulation;

• O.tags has some values pre-initialized.

After Yade startup, O.tags contains the following:

Yade [45]: dict(O.tags) # convert to real dictionary
Out[45]:
{'author': 'root~(root@runner-abydjfj4-project-10133144-concurrent-6)',
'isoTime': '20250703T045554',
'id': '20250703T045554p258',
'd.id': '20250703T045554p258',
'id.d': '20250703T045554p258'}

author
Real name, username and machine as obtained from your system at simulation creation

id
Unique identifier of this Yade instance (or of the instance which created a loaded simulation). It
is composed of date, time and process number. Useful if you run simulations in parallel and want
to avoid overwriting each other’s outputs; embed O.tags['id'] in output filenames (either as
directory name, or as part of the file’s name itself) to avoid it. This is explained in Separating
output files from jobs in detail.

isoTime
Time when simulation was created (with second resolution).

d.id, id.d
Simulation description and id joined by period (and vice-versa). Description is used in batch jobs;
in non-batch jobs, these tags are identical to id.

You can add your own tags by simply assigning value, with the restriction that the left-hand side object
must be a string and must not contain =.

2.2. User’s manual 105

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/helix.py

Yade Documentation, Release 3rd ed.

Yade [46]: O.tags['anythingThat I lik3']='whatever'

Yade [47]: O.tags['anythingThat I lik3']
Out[47]: 'whatever'

Saving python variables

Python variable lifetime is limited; in particular, if you save simulation, variables will be lost after
reloading. Yade provides limited support for data persistence for this reason (internally, it uses special
values of O.tags). The functions in question are saveVars and loadVars.

saveVars takes dictionary (variable names and their values) and a mark (identification string for the
variable set); it saves the dictionary inside the simulation. These variables can be re-created (after the
simulation was loaded from a XML file, for instance) in the yade.params.mark namespace by calling
loadVars with the same identification mark:

Yade [48]: a=45; b=pi/3

Yade [49]: saveVars('ab',a=a,b=b)

save simulation (we could save to disk just as well)
Yade [49]: O.saveTmp()

Yade [51]: O.loadTmp()

Yade [52]: loadVars('ab')

Yade [53]: yade.params.ab.a
Out[53]: 45

import like this
Yade [54]: from yade.params import ab

Yade [55]: ab.a, ab.b
Out[55]: (45, 1.0471975511965976)

also possible
Yade [56]: from yade.params import *

Yade [57]: ab.a, ab.b
Out[57]: (45, 1.0471975511965976)

Enumeration of variables can be tedious if they are many; creating local scope (which is a function
definition in Python, for instance) can help:

def setGeomVars():
radius=4
thickness=22
p_t=4/3*pi
dim=Vector3(1.23,2.2,3)
#
define as much as you want here
it all appears in locals() (and nothing else does)
#
saveVars('geom',loadNow=True,**locals())

(continues on next page)

106 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

(continued from previous page)

setGeomVars()
from yade.params.geom import *
use the variables now

Note: Only types that can be pickled can be passed to saveVars.

2.2.2 Controlling simulation

Tracking variables

Running python code

A special engine PyRunner can be used to periodically call python code, specified via the command
parameter. Periodicity can be controlled by specifying computation time (realPeriod), virtual time
(virtPeriod) or iteration number (iterPeriod).

For instance, to print kinetic energy (using kineticEnergy) every 5 seconds, the following engine will be
put to O.engines:

PyRunner(command="print('kinetic energy',kineticEnergy())",realPeriod=5)

For running more complex commands, it is convenient to define an external function and only call it
from within the engine. Since the command is run in the script’s namespace, functions defined within
scripts can be called. Let us print information on interaction between bodies 0 and 1 periodically:

def intrInfo(id1,id2):
try:

i=O.interactions[id1,id2]
assuming it is a CpmPhys instance
print (d1,id2,i.phys.sigmaN)

except:
in case the interaction doesn't exist (yet?)
print("No interaction between",id1,id2)

O.engines=[...,
PyRunner(command="intrInfo(0,1)",realPeriod=5)

]

Warning: If a function was declared inside a live yade session (ipython) then an error NameError:
name 'intrInfo' is not defined will occur unless python globals() are updated with command

globals().update(locals())

More useful examples will be given below.

The plot module provides simple interface and storage for tracking various data. Although originally
conceived for plotting only, it is widely used for tracking variables in general.

The data are in plot.data dictionary, which maps variable names to list of their values; the plot.addData
function is used to add them.

Yade [58]: from yade import plot

Yade [59]: plot.data
(continues on next page)

2.2. User’s manual 107

http://docs.python.org/library/pickle.html
http://ipython.org

Yade Documentation, Release 3rd ed.

(continued from previous page)

Out[59]: {}

Yade [60]: plot.addData(sigma=12,eps=1e-4)

not adding sigma will add a NaN automatically
this assures all variables have the same number of records
Yade [61]: plot.addData(eps=1e-3)

adds NaNs to already existing sigma and eps columns
Yade [62]: plot.addData(force=1e3)

Yade [63]: plot.data
Out[63]:
{'sigma': [12, nan, nan],
'eps': [0.0001, 0.001, nan],
'force': [nan, nan, 1000.0]}

retrieve only one column
Yade [64]: plot.data['eps']
Out[64]: [0.0001, 0.001, nan]

get maximum eps
Yade [65]: max(plot.data['eps'])
Out[65]: 0.001

New record is added to all columns at every time plot.addData is called; this assures that lines in different
columns always match. The special value nan or NaN (Not a Number) is inserted to mark the record
invalid.

Note: It is not possible to have two columns with the same name, since data are stored as a dictionary.

To record data periodically, use PyRunner. This will record the z coordinate and velocity of body #1,
iteration number and simulation time (every 20 iterations):

O.engines=O.engines+[PyRunner(command='myAddData()', iterPeriod=20)]

from yade import plot
def myAddData():

b=O.bodies[1]
plot.addData(z1=b.state.pos[2], v1=b.state.vel.norm(), i=O.iter, t=O.time)

Note: Arbitrary string can be used as a column label for plot.data. However if the name has spaces
inside (e.g. my funny column) or is a reserved python keyword (e.g. for) the only way to pass it to
plot.addData is to use a dictionary:

plot.addData(**{'my funny column':1e3, 'for':0.3})

An exception are columns having leading of trailing whitespaces. They are handled specially in plot.plots
and should not be used (see below).

Labels can be conveniently used to access engines in the myAddData function:

O.engines=[...,
UniaxialStrainer(...,label='strainer')

(continues on next page)

108 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/NaN

Yade Documentation, Release 3rd ed.

(continued from previous page)

]
def myAddData():

plot.addData(sigma=strainer.avgStress,eps=strainer.strain)

In that case, naturally, the labeled object must define attributes which are used (UniaxialStrainer.strain
and UniaxialStrainer.avgStress in this case).

Plotting variables

Above, we explained how to track variables by storing them using plot.addData. These data can be
readily used for plotting. Yade provides a simple, quick to use, plotting in the plot module. Naturally,
since direct access to underlying data is possible via plot.data, these data can be processed in any other
way.

The plot.plots dictionary is a simple specification of plots. Keys are x-axis variable, and values are
tuple of y-axis variables, given as strings that were used for plot.addData; each entry in the dictionary
represents a separate figure:

plot.plots={
'i':('t',), # plot t(i)
't':('z1','v1') # z1(t) and v1(t)

}

Actual plot using data in plot.data and plot specification of plot.plots can be triggered by invoking the
plot.plot function.

Live updates of plots

Yade features live-updates of figures during calculations. It is controlled by following settings:

• plot.live - By setting yade.plot.live=True you can watch the plot being updated while the cal-
culations run. Set to False otherwise.

• plot.liveInterval - This is the interval in seconds between the plot updates.

• plot.autozoom - When set to True the plot will be automatically rezoomed.

Controlling line properties

In this subsection let us use a basic complete script like examples/simple-scene/simple-scene-plot.py,
which we will later modify to make the plots prettier. Line of interest from that file is, and generates a
picture presented below:

plot.plots={'i':('t'),'t':('z_sph',None,('v_sph','go-'),'z_sph_half')}

The line plots take an optional second string argument composed of a line color (eg. 'r', 'g' or
'b'), a line style (eg. '-', '–-' or ':') and a line marker ('o', 's' or 'd'). A red dotted line
with circle markers is created with ‘ro:’ argument. For a listing of all options please have a look at
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

For example using following plot.plots() command, will produce a following graph:

plot.plots={'i':(('t','xr:'),),'t':(('z_sph','r:'),None,('v_sph','g--'),('z_sph_half',
↪→'b-.'))}

And this one will produce a following graph:

2.2. User’s manual 109

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

Yade Documentation, Release 3rd ed.

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z_
sp

h

z_sph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
_s

p
h
,z

_s
p
h
_h

a
lf

v_sph

z_sph_half

Fig. 12: Figure generated by examples/simple-scene/simple-scene-plot.py.

110 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 3rd ed.

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z_
sp

h

z_sph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
_s

p
h
,z

_s
p
h
_h

a
lf

v_sph

z_sph_half

Fig. 13: Figure generated by changing parameters to plot.plots as above.

2.2. User’s manual 111

Yade Documentation, Release 3rd ed.

plot.plots={'i':(('t','xr:'),),'t':(('z_sph','Hr:'),None,('v_sph','+g--'),('z_sph_half
↪→','*b-.'))}

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z_
sp

h

z_sph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
_s

p
h
,z

_s
p
h
_h

a
lf

v_sph

z_sph_half

Fig. 14: Figure generated by changing parameters to plot.plots as above.

Note: You can learn more in matplotlib tutorial http://matplotlib.sourceforge.net/users/
pyplot_tutorial.html and documentation http://matplotlib.sourceforge.net/users/pyplot_tutorial.
html#controlling-line-properties

Note: Please note that there is an extra , in 'i':(('t','xr:'),), otherwise the 'xr:' wouldn’t be
recognized as a line style parameter, but would be treated as an extra data to plot.

Controlling text labels

It is possible to use TeX syntax in plot labels. For example using following two lines in examples/simple-
scene/simple-scene-plot.py, will produce a following picture:

plot.plots={'i':(('t','xr:'),),'t':(('z_sph','r:'),None,('v_sph','g--'),('z_sph_half',
↪→'b-.'))}
plot.labels={'z_sph':'z_{sph}' , 'v_sph':'v_{sph}' , 'z_sph_half':'$z_{sph}/2$'}

Greek letters are simply a 'α', 'β' etc. in those labels. To change the font style a
following command could be used:

112 Chapter 2. Yade for users

http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 3rd ed.

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z s
p
h

zsph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v s
p
h
,z
sp
h
/
2

vsph

zsph/2

Fig. 15: Figure generated by examples/simple-scene/simple-scene-plot.py, with TeX labels.

2.2. User’s manual 113

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 3rd ed.

yade.plot.matplotlib.rc('mathtext', fontset='stixsans')

But this is not part of yade, but a part of matplotlib, and if you want something more complex you really
should have a look at matplotlib users manual http://matplotlib.sourceforge.net/users/index.html

Multiple figures

Since plot.plots is a dictionary, multiple entries with the same key (x-axis variable) would not be possible,
since they overwrite each other:

Yade [66]: plot.plots={
....: 'i':('t',),
....: 'i':('z1','v1')
....: }
....:

Yade [67]: plot.plots
Out[67]: {'i': ('z1', 'v1')}

You can, however, distinguish them by prepending/appending space to the x-axis variable, which will be
removed automatically when looking for the variable in plot.data – both x-axes will use the i column:

Yade [68]: plot.plots={
....: 'i':('t',),
....: 'i ':('z1','v1') # note the space in 'i '
....: }
....:

Yade [69]: plot.plots
Out[69]: {'i': ('t',), 'i ': ('z1', 'v1')}

Split y1 y2 axes

To avoid big range differences on the y axis, it is possible to have left and right y axes separate (like
axes x1y2 in gnuplot). This is achieved by inserting None to the plot specifier; variables coming before
will be plot normally (on the left y-axis), while those after will appear on the right:

plot.plots={'i':('z1',None,'v1')}

Exporting

Plots and data can be exported to external files for later post-processing in Gnuplot via that
plot.saveGnuplot function. Note that all data you added via plot.addData is saved - even data that
you don’t plot live during simulation. By editing the generated .gnuplot file you can plot any of the
added Data afterwards.

• Data file is saved (compressed using bzip2) separately from the gnuplot file, so any other programs
can be used to process them. In particular, the numpy.genfromtxt (documented here) can be
useful to import those data back to python; the decompression happens automatically.

• The gnuplot file can be run through gnuplot to produce the figure; see plot.saveGnuplot documen-
tation for details.

For post-processing with other tools than gnuplot, saved data can also be exported in another kind of
text file with plot.saveDataTxt.

114 Chapter 2. Yade for users

http://matplotlib.sourceforge.net/users/index.html
http://www.gnuplot.info/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html

Yade Documentation, Release 3rd ed.

Stop conditions

For simulations with a pre-determined number of steps, it can be prescribed:

absolute iteration number
O.stopAtIter=35466
O.run()
O.wait()

or

number of iterations to run from now
O.run(35466,True) # wait=True

causes the simulation to run 35466 iterations, then stopping.

Frequently, decisions have to be made based on evolution of the simulation itself, which is not yet known.
In such case, a function checking some specific condition is called periodically; if the condition is satisfied,
O.pause or other functions can be called to stop the stimulation. See documentation for Omega.run,
Omega.pause, Omega.step, Omega.stopAtIter for details.

For simulations that seek static equilibrium, the unbalancedForce can provide a useful metrics (see its
documentation for details); for a desired value of 1e-2 or less, for instance, we can use:

def checkUnbalanced():
if unbalancedForce<1e-2: O.pause()

O.engines=O.engines+[PyRunner(command="checkUnbalanced()",iterPeriod=100)]

this would work as well, without the function defined apart:
PyRunner(command="if unablancedForce<1e-2: O.pause()",iterPeriod=100)

O.run(); O.wait()
will continue after O.pause() will have been called

Arbitrary functions can be periodically checked, and they can also use history of variables tracked via
plot.addData. For example, this is a simplified version of damage control in examples/concrete/uniax.py;
it stops when current stress is lower than half of the peak stress:

O.engines=[...,
UniaxialStrainer=(...,label='strainer'),
PyRunner(command='myAddData()',iterPeriod=100),
PyRunner(command='stopIfDamaged()',iterPeriod=100)

]

def myAddData():
plot.addData(t=O.time,eps=strainer.strain,sigma=strainer.stress)

def stopIfDamaged():
currSig=plot.data['sigma'][-1] # last sigma value
maxSig=max(plot.data['sigma']) # maximum sigma value
print something in any case, so that we know what is happening
print(plot.data['eps'][-1],currSig)
if currSig<.5*maxSig:

print("Damaged, stopping")
print('gnuplot',plot.saveGnuplot(O.tags['id']))
import sys
sys.exit(0)

(continues on next page)

2.2. User’s manual 115

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

O.run(); O.wait()
this place is never reached, since we call sys.exit(0) directly

Checkpoints

Occasionally, it is useful to revert to simulation at some past point and continue from it with different
parameters. For instance, tension/compression test will use the same initial state but load it in 2 different
directions. Two functions, Omega.saveTmp and Omega.loadTmp are provided for this purpose; memory
is used as storage medium, which means that saving is faster, and also that the simulation will disappear
when Yade finishes.

O.saveTmp()
do something
O.saveTmp('foo')
O.loadTmp() # loads the first state
O.loadTmp('foo') # loads the second state

Warning: O.loadTmp cannot be called from inside an engine, since before loading a simulation, the
old one must finish the current iteration; it would lead to deadlock, since O.loadTmp would wait for
the current iteration to finish, while the current iteration would be blocked on O.loadTmp.

A special trick must be used: a separate function to be run after the current iteration is defined and
is invoked from an independent thread launched only for that purpose:

O.engines=[...,PyRunner('myFunc()',iterPeriod=345)]

def myFunc():
if someCondition:

import thread
the () are arguments passed to the function
thread.start_new_thread(afterIterFunc,())

def afterIterFunc():
O.pause(); O.wait() # wait till the iteration really finishes
O.loadTmp()

O.saveTmp()
O.run()

Remote control

Yade can be controlled remotely over network. At yade startup, the following lines appear, among other
messages:

TCP python prompt on localhost:9000, auth cookie `dcekyu'
TCP info provider on localhost:21000

They inform about 2 ports on which connection of 2 different kind is accepted.

116 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Python prompt

TCP python prompt is telnet server with authenticated connection, providing full python command-line.
It listens on port 9000, or higher if already occupied (by another yade instance, for example).

Using the authentication cookie, connection can be made using telnet:

$ telnet localhost 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Enter auth cookie: dcekyu
__ __ ____ __ _____ ____ ____
\ \ / /_ _| _ \ ___ ___ / / |_ _/ ___| _ \
\ V / _` | | | |/ _ \ / _ \ / / | || | | |_) |
| | (_| | |_| | __/ | (_) / / | || |___| __/
|_|__,_|____/ ___| ___/_/ |_| ____|_|

(connected from 127.0.0.1:40372)
>>>

The python pseudo-prompt >>> lets you write commands to manipulate simulation in variety of ways as
usual. Two things to notice:

1. The new python interpreter (>>>) lives in a namespace separate from Yade [1]: command-line.
For your convenience, from yade import * is run in the new python instance first, but local and
global variables are not accessible (only builtins are).

2. The (fake) >>> interpreter does not have rich interactive feature of IPython, which handles the
usual command-line Yade [1]:; therefore, you will have no command history, ? help and so on.

Note: By giving access to python interpreter, full control of the system (including reading user’s files)
is possible. For this reason, connection is only allowed from localhost, not over network remotely.
Of course you can log into the system via SSH over network to get remote access.

Warning: Authentication cookie is trivial to crack via bruteforce attack. Although the listener
stalls for 5 seconds after every failed login attempt (and disconnects), the cookie could be guessed by
trial-and-error during very long simulations on a shared computer.

Info provider

TCP Info provider listens at port 21000 (or higher) and returns some basic information about current
simulation upon connection; the connection terminates immediately afterwards. The information is
python dictionary represented as string (serialized) using standard pickle module.

This functionality is used by the batch system (described below) to be informed about individual sim-
ulation progress and estimated times. If you want to access this information yourself, you can study
core/main/yade-batch.in for details.

2.2. User’s manual 117

http://docs.python.org/library/pickle.html
https://gitlab.com/yade-dev/trunk/blob/master/core/main/yade-batch.in

Yade Documentation, Release 3rd ed.

Batch queuing and execution (yade-batch)

Yade features light-weight system for running one simulation with different parameters; it handles as-
signment of parameter values to python variables in simulation script, scheduling jobs based on number
of available and required cores and more. The whole batch consists of 2 files:

simulation script
regular Yade script, which calls readParamsFromTable to obtain parameters from parameter table.
In order to make the script runnable outside the batch, readParamsFromTable takes default values
of parameters, which might be overridden from the parameter table.

readParamsFromTable knows which parameter file and which line to read by inspecting the PARAM_-
TABLE environment variable, set by the batch system.

parameter table
simple text file, each line representing one parameter set. This file is read by readParamsFromTable
(using TableParamReader class), called from simulation script, as explained above. For better read-
ing of the text file you can make use of tabulators, these will be ignored by readParamsFromTable.
Parameters are not restricted to numerical values. You can also make use of strings by "quoting"
them (' ' may also be used instead of " "). This can be useful for nominal parameters.

The batch can be run as

yade-batch parameters.table simulation.py

and it will intelligently run one simulation for each parameter table line. A minimal example is found in
examples/test/batch/params.table and examples/test/batch/sim.py, another example follows.

Example

Suppose we want to study influence of parameters density and initialVelocity on position of a sphere
falling on fixed box. We create parameter table like this:

description density initialVelocity # first non-empty line are column headings
reference 2400 10
hi_v = 20 # = to use value from previous line
lo_v = 5
comments are allowed
hi_rho 5000 10
blank lines as well:

hi_rho_v = 20
hi_rh0_lo_v = 5

Each line give one combination of these 2 parameters and assigns (which is optional) a description of
this simulation.

In the simulation file, we read parameters from table, at the beginning of the script; each parameter has
default value, which is used if not specified in the parameters file:

readParamsFromTable(
gravity=-9.81,
density=2400,
initialVelocity=20,
noTableOk=True # use default values if not run in batch

)
from yade.params.table import *
print(gravity, density, initialVelocity)

118 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/batch/params.table
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/batch/sim.py

Yade Documentation, Release 3rd ed.

after the call to readParamsFromTable, corresponding python variables are created in the yade.params.
table module and can be readily used in the script, e.g.

GravityEngine(gravity=(0,0,gravity))

Let us see what happens when running the batch:

$ yade-batch batch.table batch.py
Will run `/usr/local/bin/yade-trunk' on `batch.py' with nice value 10, output␣
↪→redirected to `batch.@.log', 4 jobs at a time.
Will use table `batch.table', with available lines 2, 3, 4, 5, 6, 7.
Will use lines 2 (reference), 3 (hi_v), 4 (lo_v), 5 (hi_rho), 6 (hi_rho_v), 7 (hi_
↪→rh0_lo_v).
Master process pid 7030

These lines inform us about general batch information: nice level, log file names, how many cores will be
used (4); table name, and line numbers that contain parameters; finally, which lines will be used; master
PID is useful for killing (stopping) the whole batch with the kill command.

Job summary:
#0 (reference/4): PARAM_TABLE=batch.table:2 DISPLAY= /usr/local/bin/yade-trunk --

↪→threads=4 --nice=10 -x batch.py > batch.reference.log 2>&1
#1 (hi_v/4): PARAM_TABLE=batch.table:3 DISPLAY= /usr/local/bin/yade-trunk --

↪→threads=4 --nice=10 -x batch.py > batch.hi_v.log 2>&1
#2 (lo_v/4): PARAM_TABLE=batch.table:4 DISPLAY= /usr/local/bin/yade-trunk --

↪→threads=4 --nice=10 -x batch.py > batch.lo_v.log 2>&1
#3 (hi_rho/4): PARAM_TABLE=batch.table:5 DISPLAY= /usr/local/bin/yade-trunk --

↪→threads=4 --nice=10 -x batch.py > batch.hi_rho.log 2>&1
#4 (hi_rho_v/4): PARAM_TABLE=batch.table:6 DISPLAY= /usr/local/bin/yade-trunk --

↪→threads=4 --nice=10 -x batch.py > batch.hi_rho_v.log 2>&1
#5 (hi_rh0_lo_v/4): PARAM_TABLE=batch.table:7 DISPLAY= /usr/local/bin/yade-trunk -

↪→-threads=4 --nice=10 -x batch.py > batch.hi_rh0_lo_v.log 2>&1

displays all jobs with command-lines that will be run for each of them. At this moment, the batch starts
to be run.

#0 (reference/4) started on Tue Apr 13 13:59:32 2010
#0 (reference/4) done (exit status 0), duration 00:00:01, log batch.reference.log
#1 (hi_v/4) started on Tue Apr 13 13:59:34 2010
#1 (hi_v/4) done (exit status 0), duration 00:00:01, log batch.hi_v.log
#2 (lo_v/4) started on Tue Apr 13 13:59:35 2010
#2 (lo_v/4) done (exit status 0), duration 00:00:01, log batch.lo_v.log
#3 (hi_rho/4) started on Tue Apr 13 13:59:37 2010
#3 (hi_rho/4) done (exit status 0), duration 00:00:01, log batch.hi_rho.log
#4 (hi_rho_v/4) started on Tue Apr 13 13:59:38 2010
#4 (hi_rho_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rho_v.log
#5 (hi_rh0_lo_v/4) started on Tue Apr 13 13:59:40 2010
#5 (hi_rh0_lo_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rh0_lo_v.
↪→log

information about job status changes is being printed, until:

All jobs finished, total time 00:00:08
Log files:
batch.reference.log batch.hi_v.log batch.lo_v.log batch.hi_rho.log batch.hi_rho_v.log␣
↪→batch.hi_rh0_lo_v.log
Bye.

2.2. User’s manual 119

http://en.wikipedia.org/wiki/Nice_%28Unix%29
http://en.wikipedia.org/wiki/Process_identifier

Yade Documentation, Release 3rd ed.

Separating output files from jobs

As one might output data to external files during simulation (using classes such as VTKRecorder), it is
important to name files in such way that they are not overwritten by next (or concurrent) job in the same
batch. A special tag O.tags['id'] is provided for such purposes: it is comprised of date, time and PID,
which makes it always unique (e.g. 20100413T144723p7625); additional advantage is that alphabetical
order of the id tag is also chronological. To add the used parameter set or the description of the job, if
set, you could add O.tags[‘params’] to the filename.

For smaller simulations, prepending all output file names with O.tags['id'] can be sufficient:

saveGnuplot(O.tags['id'])

For larger simulations, it is advisable to create separate directory of that name first, putting all files
inside afterwards:

os.mkdir(O.tags['id'])
O.engines=[

…
VTKRecorder(fileName=O.tags['id']+'/'+'vtk'),
…

]
…
O.saveGnuplot(O.tags['id']+'/'+'graph1')

Controlling parallel computation

Default total number of available cores is determined from /proc/cpuinfo (provided by Linux kernel);
in addition, if OMP_NUM_THREADS environment variable is set, minimum of these two is taken. The
-j/--jobs option can be used to override this number.

By default, each job uses all available cores for itself, which causes jobs to be effectively run in parallel.
Number of cores per job can be globally changed via the --job-threads option.

Table column named !OMP_NUM_THREADS (! prepended to column generally means to assign environment
variable, rather than python variable) controls number of threads for each job separately, if it exists.

If number of cores for a job exceeds total number of cores, warning is issued and only the total number
of cores is used instead.

Merging gnuplot from individual jobs

Frequently, it is desirable to obtain single figure for all jobs in the batch, for comparison purposes.
Somewhat heuristic way for this functionality is provided by the batch system. yade-batch must be run
with the --gnuplot option, specifying some file name that will be used for the merged figure:

yade-trunk --gnuplot merged.gnuplot batch.table batch.py

Data are collected in usual way during the simulation (using plot.addData) and saved to gnuplot file via
plot.saveGnuplot (it creates 2 files: gnuplot command file and compressed data file). The batch system
scans, once the job is finished, log file for line of the form gnuplot [something]. Therefore, in order to
print this magic line we put:

print('gnuplot',plot.saveGnuplot(O.tags['id']))

and the end of the script (even after waitIfBatch()) , which prints:

120 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

gnuplot 20100413T144723p7625.gnuplot

to the output (redirected to log file).

This file itself contains single graph:

Fig. 16: Figure from single job in the batch.

At the end, the batch system knows about all gnuplot files and tries to merge them together, by assembling
the merged.gnuplot file.

HTTP overview

While job is running, the batch system presents progress via simple HTTP server running at port 9080,
which can be acessed from a regular web browser (or e.g. lynx for a terminal usage) by requesting the
http://localhost:9080 URL. This page can be accessed remotely over network as well.

Batch execution on Job-based clusters (OAR)

On High Performance Computation (HPC) clusters with a scheduling system, the following script might
be useful. Exactly like yade-batch, it handles assignemnt of parameters value to python variables in
simulation script from a parameter table, and job submission. This script is written for oar-based
system , and may be extended to others ones. On those system, usually, a job can’t run forever and has
a specific duration allocation. The whole job submission consists of 3 files:

Simulation script:
Regular Yade script, which calls readParamsFromTable to obtain parameters from parameter table.
In order to make the script runnable outside the batch, readParamsFromTable takes default values
of parameters, which might be overridden from the parameter table.

2.2. User’s manual 121

http://oar.imag.fr

Yade Documentation, Release 3rd ed.

Fig. 17: Merged figure from all jobs in the batch. Note that labels are prepended by job description to
make lines distinguishable.

122 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Fig. 18: Summary page available at port 9080 as batch is processed (updates every 5 seconds automati-
cally). Possible job statuses are pending, running, done, failed.

2.2. User’s manual 123

Yade Documentation, Release 3rd ed.

readParamsFromTable knows which parameter file and which line to read by inspecting the PARAM_-
TABLE environment variable, set by the batch system.

Parameter table:
Simple text file, each line representing one parameter set. This file is read by readParamsFromTable
(using TableParamReader class), called from simulation script, as explained above. For better read-
ing of the text file you can make use of tabulators, these will be ignored by readParamsFromTable.
Parameters are not restricted to numerical values. You can also make use of strings by "quoting"
them (' ' may also be used instead of " "). This can be useful for nominal parameters.

Job script:
Bash script, which calls yade on computing nodes. This script eventually creates temp folders, save
data to storage server etc. The script must be formatted as a template where some tags will be
replaced by specific values at the execution time:

• __YADE_COMMAND__ will be replaced by the actual yade run command

• __YADE_LOGFILE__ will be replaced by the log file path (output to stdout)

• __YADE_ERRFILE__ will be replaced by the error file path (output to stderr)

• __YADE_JOBNO__ will be replaced by an identifier composed as (launch script pid)-(job order)

• __YADE_JOBID__ will be replaced by an identifier composed of all parameters values

The batch can be run as

yade-oar --oar-project=<your project name> --oar-script=job.sh --oar-
↪→walltime=hh:mm:ss parameters.table simulation.py

and it will generate one launch script and submit one job for each parameter table line. A minimal
example is found in examples/oar/params.table examples/oar/job.sh and examples/oar/sim.py.

Note: You have to specify either –oar-walltime or a !WALLTIME column in params.table. !WALLTIME
will override –oar-walltime

Warning: yade-oar is not compiled by default, use -DENABLE_OAR=1 option to cmake to enable
it. Please note also that submitting yade jobs (or yade-batch jobs) through OAR does not actually
require to use yade-oar. The point of yade-oar is about making yade submit a batch of OAR jobs,
instead of sumbitting a yade batch as one OAR job. Mind that it may be viewed as a hack of the
OAR scheduler itself by some HPC admins.

2.2.3 Postprocessing

3d rendering & videos

3D rendering is available at runtime to inspect the simulation, it uses QGLViewer library.

Many parameters of the rendering can be modified. See for instance background color bgColor in
OpenGLRenderer - also visible in the “Display” tab of Qt Controller, and the keys listed in QGLViewer’s
help (hit “h” when the 3D window is active). For instance, hit “t” to switch between orthographic /
perspective camera, or “m” to move particle around with the mouse.

colorStyle helps to quickly switch between predefined styles for particle color, background color, and
resolution of sphere representation. For images to be included in documents it is generally better to use
a white background:

colorStyle.setStyle("figureColor",True) # colorful particles on white background
colorStyle.setStyle("figureGrey",True) # grey levels for everything

124 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/oar/params.table
https://gitlab.com/yade-dev/trunk/blob/master/examples/oar/job.sh
https://gitlab.com/yade-dev/trunk/blob/master/examples/oar/sim.py

Yade Documentation, Release 3rd ed.

These two styles also have higher resolution for displaying the spheres. The style that was used pre-2024
is old. The available styles are listed in colorStyle.styles:

Yade [70]: colorStyle.styles
Out[70]:
{'sand': <yade.utils.YadeColorStyle at 0x7fa5f8a98d70>,
'old': <yade.utils.YadeColorStyle at 0x7fa5f8bb1040>,
'figureColor': <yade.utils.YadeColorStyle at 0x7fa5f8ca78c0>,
'figureGrey': <yade.utils.YadeColorStyle at 0x7fa5f8c315e0>,
'blue': <yade.utils.YadeColorStyle at 0x7fa5f8721940>,
'screenDisplayLowRes': <yade.utils.YadeColorStyle at 0x7fa5f8721970>}

3D rendering is one of several ways to produce videos of simulations:

1. Capture screen output (the 3d rendering window) during the simulation − there are tools available
for that (such as Istanbul or RecordMyDesktop, which are also packaged for most Linux distribu-
tions). The output is “what you see is what you get”, with all the advantages and disadvantages.

2. Periodic frame snapshot using SnapshotEngine (see examples/test/force-network-video.py, exam-
ples/bulldozer/bulldozer.py or examples/test/beam-l6geom.py for a complete example):

O.engines=[
#...
SnapshotEngine(iterPeriod=100,fileBase='/tmp/bulldozer-',viewNo=0,label=

↪→'snapshooter')
]

which will save numbered files like /tmp/bulldozer-0000.png. These files can be processed ex-
ternally (with mencoder and similar tools) or directly with the makeVideo:

makeVideo(frameSpec,out,renameNotOverwrite=True,fps=24,kbps=6000,bps=None)

The video is encoded using the default mencoder codec (mpeg4).

3. Specialized post-processing tools, notably Paraview. This is described in more detail in the follow-
ing section.

Paraview

Saving data during the simulation

Paraview is based on the Visualization Toolkit, which defines formats for saving various types of data.
One of them (with the .vtu extension) can be written by a special engine VTKRecorder. It is added to
the simulation loop:

O.engines=[
...
VTKRecorder(iterPeriod=100,recorders=['spheres','facets','colors'],fileName='/

↪→tmp/p1-')
]

• iterPeriod determines how often to save simulation data (besides iterPeriod, you can also use
virtPeriod or realPeriod). If the period is too high (and data are saved only few times), the video
will have few frames.

• fileName is the prefix for files being saved. In this case, output files will be named /tmp/
p1-spheres.0.vtu and /tmp/p1-facets.0.vtu, where the number is the number of iteration;
many files are created, putting them in a separate directory is advisable.

• recorders determines what data to save

2.2. User’s manual 125

http://www.linuceum.com/Desktop/istanbul.php
http://recordmydesktop.sourceforge.net/about.php
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/force-network-video.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/bulldozer/bulldozer.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/bulldozer/bulldozer.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/beam-l6geom.py
http://www.mplayerhq.hu
http://www.paraview.org
http://www.vtk.org

Yade Documentation, Release 3rd ed.

export.VTKExporter plays a similar role, with the difference that it is more flexible. It will save any user
defined variable associated to the bodies.

Loading data into Paraview

All sets of files (spheres, facets, …) must be opened one-by-one in Paraview. The open dialogue
automatically collapses numbered files in one, making it easy to select all of them:

Click on the “Apply” button in the “Object inspector” sub-window to make loaded objects visible. You
can see tree of displayed objects in the “Pipeline browser”:

Rendering spherical particles. Glyphs

Spheres will only appear as points. To make them look as spheres, you have to add “glyph” to the

p1-spheres.* item in the pipeline using the icon. Then set (in the Object inspector)

• “Glyph type” to Sphere

• “Radius” to 1

• “Scale mode” to Scalar (Scalar is set above to be the radii value saved in the file, therefore spheres
with radius 1 will be scaled by their true radius)

• “Set scale factor” to 1

• optionally uncheck “Mask points” and “Random mode” (they make some particles not to be ren-
dered for performance reasons, controlled by the “Maximum Number of Points”)

After clicking “Apply”, spheres will appear. They will be rendered over the original white points, which
you can disable by clicking on the eye icon next to p1-spheres.* in the Pipeline browser.

126 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.2. User’s manual 127

Yade Documentation, Release 3rd ed.

Rendering spherical particles. PointSprite

Another opportunity to display spheres is by using PointSprite plugin. This technique requires much
less RAM in comparison to Glyphs.

• “Tools -> Manage Plugins”

• “PointSprite_Plugin -> Load selected -> Close”

• Load VTU-files

• “Representation -> Point Sprite”

• “Point Sprite -> Scale By -> radii”

• “Edit Radius Transfer Function -> Proportional -> Multiplier = 1.0 -> Close”

Rendering interactions as force chain

Data saved by VTKRecorder (the steps below generates cones rather than tubes) or export.
VTKExporter(...).exportInteractions(what=dict(forceN='i.phys.normalForce.norm()')) (the
steps below generates per interaction tubes with constant radius):

• Load interactions VTP or VTK files

• Filters -> Cell Data To Point Data

• Filters -> Tube

• Set color by “forceN”

• Set “Vary Radius” to “By Scalar”

• Set “Radius” and “Radius Factor” such that the result looks OK (in 3D postprocessing tutorial
script, Radius=0.0005 and Radius Factor=100 looks reasonably)

Facet transparency

If you want to make facet objects transparent, select p1-facets.* in the Pipeline browser, then go to
the Object inspector on the Display tab. Under “Style”, you can set the “Opacity” value to something
smaller than 1.

Animation

You can move between frames (snapshots that were saved) via the “Animation” menu. After setting the
view angle, zoom etc to your satisfaction, the animation can be saved with File/Save animation.

Micro-stress and micro-strain

It is sometimes useful to visualize a DEM simulation through equivalent strain fields or stress fields. This
is possible with TesselationWrapper. This class handles the triangulation of spheres in a scene, build
tesselation on request, and give access to computed quantities: volume, porosity and local deformation for
each sphere. The definition of microstrain and microstress is at the scale of particle-centered subdomains
shown below, as explained in [Catalano2014a] .

128 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Micro-strain

Below is an output of the defToVtk function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.). The output is visualized with paraview, as explained in the previous section.
Similar results can be generated from simulations:

tt=TriaxialTest()
tt.generate("test.yade")
O.load("test.yade")
O.run(100,True)
TW=TesselationWrapper()
TW.triangulate() #compute regular Delaunay triangulation, don’t construct␣
↪→tesselation
TW.computeVolumes() #will silently tesselate the packing, then compute volume of␣
↪→each Voronoi cell
TW.volume(10) #get volume associated to sphere of id 10
TW.setState(0) #store current positions internaly for later use as the "0"␣
↪→state
O.run(100,True) #make particles move a little (let's hope they will!)
TW.setState(1) #store current positions internaly in the "1" (deformed) state
#Now we can define strain by comparing states 0 and 1, and average them at the␣
↪→particles scale
TW.defToVtk("strain.vtk")

2.2. User’s manual 129

Yade Documentation, Release 3rd ed.

Micro-stress

Stress fields can be generated by combining the volume returned by TesselationWrapper to per-particle
stress given by bodyStressTensors. Since the stress σ from bodyStressTensor implies a division by the
volume Vb of the solid particle, one has to re-normalize it in order to obtain the micro-stress as defined
in [Catalano2014a] (equation 39 therein), i.e. σk = σk × Vk

b/V
k
σ where Vk

σ is the volume assigned to
particle k in the tesselation. For instance:

#"b" being a body
TW=TesselationWrapper()
TW.setState()
TW.computeVolumes()
s=bodyStressTensors()
stress = s[b.id]*4.*pi/3.*b.shape.radius**3/TW.volume(b.id)

As any other value, the stress can be exported to a vtk file for display in Paraview using ex-
port.VTKExporter.

2.2.4 Python specialties and tricks

Importing Yade in other Python applications

Yade can be imported in other Python applications. To do so, you need somehow to make yade executable
.py extended. The easiest way is to create a symbolic link, i.e. (suppose your Yade executable file is
called “yade-trunk” and you want make it “yadeimport.py”):

$ cd /path/where/you/want/yadeimport
$ ln -s /path/to/yade/executable/yade-trunk yadeimport.py

Then you need to make your yadeimport.py findable by Python. You can export PYTHONPATH
environment variable, or simply use sys.path directly in Python script:

import sys
sys.path.append('/path/where/you/want/yadeimport')
from yadeimport import *

print(Matrix3(1,2,3, 4,5,6, 7,8,9))
(continues on next page)

130 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

(continued from previous page)

print(O.bodies)
any other Yade code

2.2.5 Extending Yade

• new particle shape

• new constitutive law

2.2.6 Troubleshooting

Crashes

It is possible that you encounter crash of Yade, i.e. Yade terminates with error message such as

Segmentation fault (core dumped)

without further explanation. Frequent causes of such conditions are

• program error in Yade itself;

• fatal condition in your particular simulation (such as impossible dispatch);

• problem with graphics card driver.

Try to reproduce the error (run the same script) with debug-enabled version of Yade. Debugger will
be automatically launched at crash, showing backtrace of the code (in this case, we triggered crash by
hand):

Yade [1]: import os,signal
Yade [2]: os.kill(os.getpid(),signal.SIGSEGV)
SIGSEGV/SIGABRT handler called; gdb batch file is `/tmp/yade-YwtfRY/tmp-0'
GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
[Thread debugging using libthread_db enabled]
[New Thread 0x7f0fb1268710 (LWP 16471)]
[New Thread 0x7f0fb29f2710 (LWP 16470)]
[New Thread 0x7f0fb31f3710 (LWP 16469)]

…

What looks as cryptic message is valuable information for developers to locate source of the bug. In
particular, there is (usually) line <signal handler called>; lines below it are source of the bug (at
least very likely so):

Thread 1 (Thread 0x7f0fcee53700 (LWP 16465)):
#0 0x00007f0fcd8f4f7d in __libc_waitpid (pid=16497, stat_loc=<value optimized out>,␣
↪→options=0) at ../sysdeps/unix/sysv/linux/waitpid.c:41
#1 0x00007f0fcd88c7e9 in do_system (line=<value optimized out>) at ../sysdeps/posix/
↪→system.c:149

(continues on next page)

2.2. User’s manual 131

Yade Documentation, Release 3rd ed.

(continued from previous page)

#2 0x00007f0fcd88cb20 in __libc_system (line=<value optimized out>) at ../sysdeps/
↪→posix/system.c:190
#3 0x00007f0fcd0b4b23 in crashHandler (sig=11) at core/main/pyboot.cpp:45
#4 <signal handler called>
#5 0x00007f0fcd87ed57 in kill () at ../sysdeps/unix/syscall-template.S:82
#6 0x000000000051336d in posix_kill (self=<value optimized out>, args=<value␣
↪→optimized out>) at ../Modules/posixmodule.c:4046
#7 0x00000000004a7c5e in call_function (f=Frame 0x1c54620, for file <ipython console>
↪→, line 1, in <module> (), throwflag=<value optimized out>) at ../Python/ceval.c:3750
#8 PyEval_EvalFrameEx (f=Frame 0x1c54620, for file <ipython console>, line 1, in
↪→<module> (), throwflag=<value optimized out>) at ../Python/ceval.c:2412

If you think this might be error in Yade, file a bug report as explained below. Do not forget to attach full
yade output from terminal, including startup messages and debugger output – select with right mouse
button, with middle button paste the bugreport to a file and attach it. Attach your simulation script as
well.

Reporting bugs

Bugs are general name for defects (functionality shortcomings, misdocumentation, crashes) or feature
requests. They are tracked at https://gitlab.com/yade-dev/trunk/issues.

When reporting a new bug, be as specific as possible; state version of yade you use, system version and
the output of printAllVersions(), as explained in the above section on crashes.

2.2.7 Getting in touch with Yade community

Public questions and answers for getting help

Hint: Please use the GitLab interface for asking questions about Yade.

In case you’re not familiar with computer oriented discussion lists, please read this wiki page (a Yade-
oriented and shortened version of How To Ask Questions The Smart Way) before posting, in order to
increase your chances getting help. Do not forget to state what version of Yade you use (shown when you
start Yade, or even better as printed by function libVersions.printAllVersions), whether you installed it
from source code or a package, what operating system (such as Ubuntu 18.04), and if you have done any
local modifications to source code in case of compiled version.

Mailing lists

In addition to the Q&A Launchpad interface, Yade has two mailing-lists. Both are hosted at http:
//www.launchpad.net and before posting, you must register to Launchpad and subscribe to the list by
adding yourself to “team” of the same name running the list.

yade-users@lists.launchpad.net
is a general discussion list for all Yade users. Add yourself to yade-users team so that you can post
messages. List archives:

• https://lists.launchpad.net/yade-users/

• http://www.mail-archive.com/yade-users@lists.launchpad.net/

yade-dev@lists.launchpad.net
is for discussions about Yade development; you must be member of yade-dev team to post. This
list is archived in two places:

132 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/issues
https://gitlab.com/yade-dev/answers
https://gitlab.com/yade-dev/answers#questions-and-answers
https://gitlab.com/yade-dev/answers#questions-and-answers
http://catb.org/~esr/faqs/smart-questions.html
http://www.launchpad.net
http://www.launchpad.net
mailto:yade-users@lists.launchpad.net
https://launchpad.net/~yade-users
https://lists.launchpad.net/yade-users/
http://www.mail-archive.com/yade-users@lists.launchpad.net/
mailto:yade-dev@lists.launchpad.net
https://launchpad.net/~yade-dev

Yade Documentation, Release 3rd ed.

• https://lists.launchpad.net/yade-dev/

• http://www.mail-archive.com/yade-dev@lists.launchpad.net/

Private and/or paid support

You might contact developers by their private email (rather than by the Launchpad interface or the
mailing lists) or the generic adress consult|A|yade-dem.org for a closer, private, support. This is also a
suitable method for proposing financial reward for implementation of a substantial feature that is not yet
in Yade – typically, though, we will request this feature to be part of the public codebase once completed,
so that the rest of the community can benefit from it as well.

Wiki

http://www.yade-dem.org/wiki/

Discord chat

https://discord.gg/rku35YXZJd

Twitter account

https://twitter.com/YadeDEM

2.3 Yade wrapper class reference

2.3.1 Bodies

Body

class yade.wrapper.Body(inherits Serializable)
A particle, basic element of simulation; interacts with other bodies.

property aspherical
Whether this body has different inertia along principal axes; NewtonIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

property bound
Bound, approximating volume for the purposes of collision detection.

property bounded
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body::isBounded/Body::setBounded)

property clumpId
Id of clump this body makes part of; invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.

Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 133

https://lists.launchpad.net/yade-dev/
http://www.mail-archive.com/yade-dev@lists.launchpad.net/
http://www.yade-dem.org/wiki/
https://discord.gg/rku35YXZJd
https://twitter.com/YadeDEM

Yade Documentation, Release 3rd ed.

property dynamic
Whether this body will be moved by forces. (In c++, use
Body::isDynamic/Body::setDynamic)

property flags
Bits of various body-related flags. Do not access directly. In c++, use isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

property groupMask
Bitmask for interaction detection purposes: it is required that two bodies have at least one
bit in common in their groupMask for their interaction to be possible from the Collider point
of view.

property id
Unique id of this body.

intrs((Body)arg1) → list :
Return list of all real interactions in which this body participates.

property isClump
True if this body is clump itself, false otherwise.

property isClumpMember
True if this body is clump member, false otherwise.

property isFluidDomainBox
Whether this body is a Fluid grid bounding box should have Body.bound created. Fluid-
DomainBboxes‘ do not participate to collision detection with their own bodies, they may
interact with external bodies and other subdomains through virtual interactions. (In c++,
use Body::getIsFluidDomainBbox/Body::setIsFluidDomainBbox)

property isStandalone
True if this body is neither clump, nor clump member; false otherwise.

property isSubdomain
Whether this body is a subdomain should have Body.bound created. Subdomains‘ do
not participate to collision detection with their own bodies, they may interact with
external bodies and other subdomains through virtual interactions. (In c++, use
Body::getIsSubdomain/Body::setIsSubdomain)

property iterBorn
Step number at which the body was added to simulation.

property mask
Shorthand for Body::groupMask

property mat
Shorthand for Body::material

property material
Material instance associated with this body.

property shape
Geometrical Shape.

property state
Physical state.

property subdomain
the subdomain this body belongs to.

134 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timeBorn
Time at which the body was added to simulation.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

Shape

Shape

Clump

Polyhedra
DeformableCohesiveElement

DeformableElement

PotentialBlock

Node GridConnection

Sphere

FluidDomainBbox

LevelSet

Subdomain

Wall

Lin4NodeTetra_Lin4NodeTetra_InteractionElement

Facet

Cylinder

PFacet

GridNode

ChainedCylinder

Tetra

Lin4NodeTetra

Box

PotentialParticle

Fig. 19: Inheritance graph of Shape. See also: Box, ChainedCylinder, Clump, Cylinder, Deformable-
CohesiveElement, DeformableElement, Facet, FluidDomainBbox, GridConnection, GridNode, LevelSet,
Lin4NodeTetra, Lin4NodeTetra_Lin4NodeTetra_InteractionElement, Node, PFacet, Polyhedra, Poten-
tialBlock, PotentialParticle, Sphere, Subdomain, Tetra, Wall.

class yade.wrapper.Shape(inherits Serializable)
Geometry of a body

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

2.3. Yade wrapper class reference 135

Yade Documentation, Release 3rd ed.

class yade.wrapper.Box(inherits Shape → Serializable)

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property extents
Half-size of the cuboid

property highlight
Whether this Shape will be highlighted when rendered.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.ChainedCylinder(inherits Cylinder → Sphere → Shape → Serializable)
Geometry of a deformable chained cylinder, using geometry Cylinder.

property chainedOrientation
Deviation of node1 orientation from node-to-node vector

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property initLength
tensile-free length, used as reference for tensile strain

property length
Length [m]

property radius
Radius [m]

136 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property segment
Length vector

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Clump(inherits Shape → Serializable)
Rigid aggregate of bodies whose usage is detailed here

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property ids
Ids of constituent particles (only informative; direct modifications will have no effect).

property members
Return clump members as {‘id1’:(relPos,relOri),…}

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Cylinder(inherits Sphere → Shape → Serializable)
Geometry of a cylinder, as Minkowski sum of line and sphere.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

2.3. Yade wrapper class reference 137

Yade Documentation, Release 3rd ed.

property length
Length [m]

property radius
Radius [m]

property segment
Length vector

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.DeformableCohesiveElement(inherits DeformableElement → Shape →
Serializable)

Tetrahedral Deformable Element Composed of Nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

addPair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

138 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property nodepairs
Ids and relative position+orientation difference of members of the cohesive deformable element
in the inital condition (should not be accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

removePair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.DeformableElement(inherits Shape → Serializable)
Deformable aggregate of nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

2.3. Yade wrapper class reference 139

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Facet(inherits Shape → Serializable)
Facet (triangular particle) geometry.

property area
Facet’s area

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property normal
Facet’s normal n (in local coordinate system) oriented towards e0 × e1 with e0 = V0V1,
e1 = V1V2 and Vi the vertices

setVertices((Facet)arg1, (Vector3)v0, (Vector3)v1, (Vector3)v2) → None :
Defines vertices

Parameters

• v0 (Vector3) – first vertex

• v1 (Vector3) – second vertex

• v2 (Vector3) – third vertex

Returns
nothing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertices
Vertex positions in local coordinates.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.FluidDomainBbox(inherits Shape → Serializable)
The bounding box of a fluid grid from one OpenFOAM/YALES2 proc

property bIds
ids of bodies intersecting with this subdomain,

140 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property hasIntersection
if this Yade subdomain has intersection with this OpenFOAM/YALES2 subdomain

property highlight
Whether this Shape will be highlighted when rendered.

property maxBound
max bounds of the fluid grid

property minBound
min bounds of the fluid grid

property minMaxisSet
flag to check if the min max bounds of this body are set.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridConnection(inherits Sphere → Shape → Serializable)
GridConnection shape (see [Effeindzourou2016], [Bourrier2013]). Component of a grid designed to
link two GridNodes. It is highly recommended to use gridpfacet.gridConnection to generate correct
GridConnections.

addPFacet((GridConnection)arg1, (Body)Body) → None :
Add a PFacet to the GridConnection.

property cellDist
Distance of bodies in cell size units, if using periodic boundary conditions. Note that periodic
boundary conditions for GridConnections have not yet been fully implemented.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

2.3. Yade wrapper class reference 141

Yade Documentation, Release 3rd ed.

getPFacets((GridConnection)arg1) → object :
get list of linked PFacets.

property highlight
Whether this Shape will be highlighted when rendered.

property node1
First Body the GridConnection is connected to.

property node2
Second Body the GridConnection is connected to.

property periodic
true if two nodes from different periods are connected.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridNode(inherits Sphere → Shape → Serializable)
GridNode shape, component of a grid. To create a Grid, place the nodes first, they will define the
spacial discretisation of it. It is highly recommended to use gridpfacet.gridNode to generate correct
GridNodes. Note that the GridNodes should only be in an Interaction with other GridNodes. The
Sphere-Grid contact is only handled by the GridConnections.

addConnection((GridNode)arg1, (Body)Body) → None :
Add a GridConnection to the GridNode.

addPFacet((GridNode)arg1, (Body)Body) → None :
Add a PFacet to the GridNode.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

getConnections((GridNode)arg1) → object :
get list of linked GridConnection’s.

getPFacets((GridNode)arg1) → object :
get list of linked PFacet’s.

property highlight
Whether this Shape will be highlighted when rendered.

property radius
Radius [m]

142 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.LevelSet(inherits Shape → Serializable)
A level set description of particle shape based on a discrete distance field and surface nodes
[Duriez2021a] [Duriez2021b]. See examples/levelSet for example scripts.

assignSurfNodes((LevelSet)arg1, (object)nodes) → None :
Assigns given nodes (as a list of Vector3r points conforming local frame) to surfNodes, erasing
pre-existing ones if any.

property axesAABE
The half lengths of the principal axes of the axis-aligned bounding ellipsoid (AABE) of the
level-set shape. Format (rx,ry,rz). Only works for VLS-DEM.

center((LevelSet)arg1) → Vector3 :
The center of mass of the volume (considering obviously an uniform density for this volume),
in local axes (for verification purposes, by comparison with the origin).

property color
Color for rendering (normalized RGB).

computeMarchingCubes((LevelSet)arg1) → None :
Compute or recompute the triangulation of the particle surface after using the Marching
Cubes algorithm on distField.

property corners
The 8 corners of an axis-aligned bounding box, in local axes. It is computed once for all by
Bo1_LevelSet_Aabb and used by the same Functor to get Body.bound.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property distField
The signed (< 0 when inside) distance-to-surface function as a discrete scalar field on lsGrid,
with distField[i][j][k] corresponding to lsGrid.gridPoint(i,j,k). From Python, slice this multi-
dimensional list with care: while distField[i][:][:] corresponds to values on a x-cst plane,
distField[:][:][k] is not at z-constant (use [[distField[i][j][k] for j in ..] for i in ..] instead)

distance((LevelSet)arg1, (Vector3)pt[, (bool)unbound=False]) → float :
Distance to surface at pt, with pt being expressed in the local frame. The ‘unbound’ flag (if
True) allows the computation of distance values outside of the grid extents, which otherwise
returns NaN together with an error.

getSurface((LevelSet)arg1) → float :
Returns particle surface as computed from numeric integration over the surface nodes. It is
required those have been ray traced with nodesPath = 1. The return value is just approximate
outside of spherical shapes.

2.3. Yade wrapper class reference 143

https://gitlab.com/yade-dev/trunk/blob/master/examples/levelSet

Yade Documentation, Release 3rd ed.

property hasAABE
Flag to indicate whether an axis-aligned bounding ellipsoid (AABE) has been provided by the
user. If true, you must specify axisAABE. Only works for VLS-DEM.

property highlight
Whether this Shape will be highlighted when rendered.

inertia((LevelSet)arg1) → Vector3 :
The diagonal coefficients (i.e., eigenvalues, in a consistent workflow) of the geometric inertia
matrix (the one considering the infinitesimal volume as the integrand, instead of infinitesimal
mass) of the particle volume, as a (xx,yy,zz) Vector3r.

property lsGrid
The regular grid carrying distField, in local axes.

marchingCubesNbTriangles((LevelSet)arg1) → int :
Returns the number of triangles forming the surface triangulation as per the Marching Cubes
algorithm (executed on distField).

marchingCubesNormals((LevelSet)arg1) → object :
Returns the normals for a surface triangulation obtained after executing the Marching Cubes
algorithm on distField.

marchingCubesVertices((LevelSet)arg1) → object :
Returns the vertices for a surface triangulation obtained after executing the Marching Cubes
algorithm on distField.

normal((LevelSet)arg1, (Vector3)pt[, (bool)unbound=False]) → Vector3 :
Unit normal vector to the surface, at some pt. Local frame applies to both output normal
and input pt. Has an ‘unbound’ flag signaling whether to allow (if True) the computation of
the normal outside of the grid extents.

rayTrace((LevelSet)arg1, (Vector3)ray[, (float)nodesTol=50]) → object :
Performs one ray tracing along ray (to be given in cartesian coordinates, see spher2cart() if
a conversion is useful from spherical ones; norm should not matter) and returns the obtained
surface points (without modifying surfNodes). Argument nodesTol has the same meaning as
in rayTraceSurfNodes, see therein. Provided for debugging or shape analysis purposes.

rayTraceSurfNodes((LevelSet)arg1[, (int)nSurfNodes=102[, (int)nodesPath=2[,
(float)nodesTol=50]]]) → None :

Defines all surface nodes (i.e., surfNodes) by ray tracing, erasing pre-existing ones if any,
according to given arguments

Parameters

• nSurfNodes (int) – how many rays are to be launched. Please use a perfect
square + 2 if not twoD and if nodesPath = 1. Previously coined nNodes in
[Duriez2021b]

• nodesPath (int) – defines how the space of spherical coordinates (ϑ ∈
[0;π], φ ∈ [0; 2π]) is discretized when ray tracing the boundary nodes: 1 gives
a rectangular partition of that space, plus two nodes at ϑ = 0[π]; 2 locates the
nodes along a spiral path [Duriez2021a]

• nodesTol (real) – tolerance coefficient for accepting (if |φ|/L < nodesTol × nu-
meric precision with φ the return value of distance and L a body-characteristic
length taken as 3

√
V with V the volume, or

√
V/ggrid with ggrid the grid spac-

ing if twoD) surface nodes proposed by the ray tracing algorithm

144 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property smearCoeff
Rules the smearing coefficient ε > 0 of the Heaviside step function for a smooth integration of
the particle’s volume close to its surface (the higher ε the smoother, i.e. the more diffuse the
surface in terms of volume integration). Given in reciprocal multiples of Rcell =

√
3/2ggrid

the half diagonal of the cells of the lsGrid with ggrid the cell length: ε = Rcell×1/ smearCoeff
(smearing is deactivated if negative).

property sphericity
Shape sphericity computed from boundary nodes and assuming both largest inscribed sphere
and smallest circumscribed sphere have the origin (of local axes) as center.

property starLike
Indicates whether surface nodes are ray-traced considering that a ray can intersect the surface
no more than once.

property surfNodes
Surface discretization in terms of (a list of) nodes, for the master-slave refined contact treat-
ment in Ig2_LevelSet_LevelSet_ScGeom, previously coined boundNodes in [Duriez2021b].
Expressed in local frame.

property twoD
True for z-invariant shapes. Serves to restrict the ray tracing of surfNodes in the (x,y) plane.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

volume((LevelSet)arg1) → float :
The volume defined by the negative domain of the level set function, in a voxellised fashion,
where a negative value of the level set, distField[i][j][k] ≤ 0, is considered to correspond to a
material cubic voxel of side lsGrid.spacing and centered at lsGrid.gridPoint(i,j,k). Smearing
considerations may apply as per smearCoeff .

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Lin4NodeTetra(inherits DeformableElement → Shape → Serializable)
Tetrahedral Deformable Element Composed of Nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

2.3. Yade wrapper class reference 145

Yade Documentation, Release 3rd ed.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Lin4NodeTetra_Lin4NodeTetra_InteractionElement(inherits DeformableCo-
hesiveElement →
DeformableElement →
Shape → Serializable)

Tetrahedral Deformable Element Composed of Nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

addPair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

146 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

property nodepairs
Ids and relative position+orientation difference of members of the cohesive deformable element
in the inital condition (should not be accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

removePair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Node(inherits Shape → Serializable)
Geometry of node particle.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

2.3. Yade wrapper class reference 147

Yade Documentation, Release 3rd ed.

class yade.wrapper.PFacet(inherits Shape → Serializable)
PFacet (particle facet) geometry (see [Effeindzourou2016], [Effeindzourou2015a]). It is highly rec-
ommended to use the helper functions in gridpfacet (e.g., gridpfacet.pfacetCreator1-4) to generate
correct PFacet elements.

property area
PFacet’s area

property cellDist
Distance of bodies in cell size units, if using periodic boundary conditions. Note that periodic
boundary conditions for PFacets have not yet been fully implemented.

property color
Color for rendering (normalized RGB).

property conn1
First Body the Pfacet is connected to.

property conn2
Second Body the Pfacet is connected to.

property conn3
third Body the Pfacet is connected to.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property node1
First Body the Pfacet is connected to.

property node2
Second Body the Pfacet is connected to.

property node3
third Body the Pfacet is connected to.

property normal
PFacet’s normal (in local coordinate system)

property radius
PFacet’s radius

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Polyhedra(inherits Shape → Serializable)
Polyhedral (convex) geometry.

148 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

GetCentroid((Polyhedra)arg1) → Vector3 :
return polyhedra’s centroid

GetInertia((Polyhedra)arg1) → Vector3 :
return polyhedra’s inertia tensor

GetOri((Polyhedra)arg1) → Quaternion :
return polyhedra’s orientation

GetSurfaceTriangulation((Polyhedra)arg1) → object :
triangulation of facets (for plotting)

GetSurfaces((Polyhedra)arg1) → object :
get indices of surfaces’ vertices (for postprocessing)

GetVolume((Polyhedra)arg1) → float :
return polyhedra’s volume

Initialize((Polyhedra)arg1) → None :
Initialization

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property seed
Seed for random generator.

setVertices((Polyhedra)arg1, (object)arg2) → None :
set vertices and update receiver. Takes a list/tuple of vertices as argument.

Note: Causes memory leaks, so if you want to use it maaaany times, use one of setVer-
tices mentioned lower, passing each vertex as individual argument (currently only setVer-
tices(v1,v2,v3,v4) for tetrahedron is implemented, on request it is easy to implement more
vertices).

setVertices4((Polyhedra)arg1, (Vector3)arg2, (Vector3)arg3, (Vector3)arg4, (Vector3)arg5) →
None :

set 4 vertices and update receiver. Each vertex is single argument.

property size
Size of the grain in meters - x,y,z - before random rotation

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 149

Yade Documentation, Release 3rd ed.

property v
Polyhedron vertices in local coordinate system.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.PotentialBlock(inherits Shape → Serializable)
Geometry of PotentialBlock.

property AabbMinMax
Whether the exact Aabb should be calculated. If false, an approximate cubic Aabb is defined
with edges of 2R

property R
R in Potential Particles. If left zero, a default value is calculated as half the distance of the
farthest vertices

property a
List of a coefficients of plane normals

property b
List of b coefficients of plane normals

property boundaryNormal
Normal direction of boundary if fixedNormal=True

property c
List of c coefficients of plane normals

property cohesion
Cohesion (stress) of each face (property for plane, rock joint)

property color
Color for rendering (normalized RGB).

property connectivity
Connectivity of vertices for each plane (auto-updated)

property d
List of d coefficients of plane equations

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property erase
Parameter to mark particles to be removed (for excavation)

property fixedNormal
Whether to fix the contact normal at a boundary, using boundaryNormal

property highlight
Whether this Shape will be highlighted when rendered.

150 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property id
Particle id (for graphics in vtk output)

property inertia
Principal inertia tensor (auto-updated)

property intactRock
Property for plane

property isBolt
Whether a block is part of a bolt (used in the Rockbolt.cpp script)

property isBoundary
Whether the particle is part of a boundary block

property isLining
Whether particle is part of tunnel lining (used in the RockLining.cpp script)

property jointType
jointType

property k
k in Potential Particles (not used)

property liningFriction
Lining friction

property liningLength
Lining spacing between nodes

property liningNormalPressure
Normal pressure acting on lining

property liningStiffness
Lining stiffness

property liningTensionGap
Numerical gap between lining and block to allowing tension to be calculated

property liningTotalPressure
Total pressure acting on lining

property maxAabb
Max from box centre: Used for visualisation in vtk

property minAabb
Min from box centre: Used for visualisation in vtk

property orientation
Principal orientation

property phi_b
Basic friction angle of each face (property for plane, rock joint)

property phi_r
Residual friction angle of each face (property for plane, rock joint)

property position
Initial position of the particle, if initially defined eccentrically to the centroid (auto-updated)

property r
r in Potential Particles

2.3. Yade wrapper class reference 151

Yade Documentation, Release 3rd ed.

property tension
Tension (stress) of each face (property for plane, rock joint)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertices
Vertices (auto-updated)

property volume
Volume (auto-updated)

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.PotentialParticle(inherits Shape → Serializable)
EXPERIMENTAL. Geometry of PotentialParticle.

property AabbMinMax
Whether the exact Aabb should be calculated. If false, an approximate cubic Aabb is defined
with edges of 2R

property R
R in Potential Particles

property a
List of a coefficients of plane normals

property b
List of b coefficients of plane normals

property boundaryNormal
Normal direction of boundary if fixedNormal=True

property c
List of c coefficients of plane normals

property color
Color for rendering (normalized RGB).

property d
List of d coefficients of plane normals

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fixedNormal
Whether to fix the contact normal at a boundary, using boundaryNormal

property highlight
Whether this Shape will be highlighted when rendered.

152 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property id
Particle id (for graphics in vtk output)

property isBoundary
Whether the particle is part of a boundary particle

property k
k in Potential Particles

property maxAabb
Max from box centre: Used for visualisation in vtk and qt

property maxAabbRotated
Max from box centre: Used for primary contact detection

property minAabb
Min from box centre: Used for visualisation in vtk and qt

property minAabbRotated
Min from box centre: Used for primary contact detection

property r
r in Potential Particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertices
Vertices

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Sphere(inherits Shape → Serializable)
Geometry of spherical particle.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

2.3. Yade wrapper class reference 153

Yade Documentation, Release 3rd ed.

class yade.wrapper.Subdomain(inherits Shape → Serializable)
The bounding box of a mpi subdomain. Stores internals and provides optimized functions for
communications between workers. This class may not be used directly. Instead, Subdomains are
appended automatically to the scene bodies when using mpy.mpirun

boundOnAxis((Subdomain)arg1, (Bound)bound, (Vector3)axis, (bool)min) → float :
computes projected position of a bound in a certain direction

boundOnAxis((Subdomain)arg1, (Bound)bound, (Vector3)axis, (bool)min) ->
float :

computes projected position of a bound in a certain direction

property boundsMax
max corner of all bboxes of members; differs from effective domain bounds by the extra length
(sweepLength)

property boundsMin
min corner of all bboxes of members; differs from effective domain bounds by the extra length
(sweepLength)

centerOfMass((Subdomain)arg1) → Vector3 :
returns center of mass of assigned bodies

centerOfMass((Subdomain)arg1) -> Vector3 :
returns center of mass of assigned bodies

cleanIntersections((Subdomain)arg1, (int)otherDomain) → None :
makes sure that the ids in the current subdomain belong to the current subdomain

property color
Color for rendering (normalized RGB).

property comm
Communicator to be used for MPI (converts mpi4py comm <-> c++ comm)

completeSendBodies((Subdomain)arg1) → None :
calls MPI_wait to complete the non blocking sends/recieves.

countIntsWith((Subdomain)arg1, (int)body, (int)someSubDomain[,
(Scene)someSubDomain=<Scene instance at 0x1830290>]) → int :

returns for a body the count of interactions (real or virtual) with bodies from a certain
subdomain, interactions with subdomains excluded. Third parameter (scene pointer) can be
left to default (equivalent to O._sceneObj).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property extraLength
verlet dist for the subdomain, added to bodies verletDist

filterIntersections((Subdomain)arg1) → float :
clear intersections and mirror intersections of all non-interacting bodies.

154 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

filteredInts((Subdomain)arg1, (int)someSubDomain, (bool)mirror) → object :
return a copy of intersections or mirrorIntersections from which non-interacting bodies have
been removed.

getMirrorIntrs((Subdomain)arg1) → None :
get mirrorIntersections from other subdomains

getRankSize((Subdomain)arg1) → None :
set subdomain ranks, used for communications -> merging, sending bodies etc.

getStateBoundsValuesFromIds((Subdomain)arg1, (object)b_ids) → object :
returns pos,vel,angVel,ori,bounds of listed bodies.

getStateValues((Subdomain)arg1, (int)otherDomain) → object :
returns pos,vel,angVel,ori of bodies interacting with a given otherDomain, based on Subdo-
main.intersections.

getStateValuesFromIds((Subdomain)arg1, (object)b_ids) → object :
returns pos,vel,angVel,ori of listed bodies.

property highlight
Whether this Shape will be highlighted when rendered.

property ids
Ids of owned particles.

init((Subdomain)arg1) → None :
Initialize subdomain variables as rank and buffer sizes, call this from each thread after scene
distribution by master.

property intersections
lists of bodies from this subdomain intersecting other subdomains. WARNING: only assigne-
ment and concatenation allowed

medianFilterCPP((Subdomain)arg1, (int)arg2, (Vector3)bodiesToRecv, (Vector3)otherSubdomain,
(int)oterSubdomainCenterofMass, (bool)useAABB) → object :

cpp version of median filter, used for body reallocation operations.

mergeOp((Subdomain)arg1) → None :
merge with setting interactions

migrateBodiesSend((Subdomain)arg1, (object)bodiesToSend, (int)destination) → None :
ids of body to be sent have their subdomain parameter reassigned, followed by sendBodies

property mirrorIntersections
lists of bodies from other subdomains intersecting this one. WARNING: only assignement
and concatenation allowed

mpiIrecvStates((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-Irecv states from another domain (non-blocking)

mpiRecvStates((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-recv states from another domain (blocking)

mpiSendStates((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-send states from current domain to another domain (blocking)

mpiWaitReceived((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-Wait states from another domain (upon return the buffer is set)

receiveBodies((Subdomain)arg1, (int)sender) → None :
Receive the bodies from MPI sender rank to MPI receiver rank

2.3. Yade wrapper class reference 155

Yade Documentation, Release 3rd ed.

sendBodies((Subdomain)sender, (int)receiver, (object)idsToSend) → None :
Copy the bodies from MPI sender rank to MPI receiver rank

setIDstoSubdomain((Subdomain)arg1, (list)idList) → None :
set list of ids to the subdomain.

setMinMax((Subdomain)arg1) → None :
returns bounding min-max based on members bounds. precondition: the members bounds
have been dispatched already, else we re-use old values. Carefull if subdomain is not at the
end of O.bodies.

setStateBoundsValuesFromIds((Subdomain)arg1, (object)b_ids, (object)input) → None :
set pos,vel,angVel,ori,bounds from listed body ids and data.

setStateValuesFromBuffer((Subdomain)arg1, (int)subdomain) → None :
set pos,vel,angVel,ori from state buffer.

setStateValuesFromIds((Subdomain)arg1, (object)b_ids, (object)input) → None :
set pos,vel,angVel,ori from listed body ids and data.

splitBodiesToWorkers((Subdomain)arg1, (bool)eraseWorkerBodies) → None :
of true bodies in workers are erased and reassigned.

property subdomains
subdomain ids of other bodies, WARNING: only assignement and concatenation allowed

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateLocalIds((Subdomain)arg1, (bool)eraseRemoteMastrer) → None :
updates the ids in the subdomain id vector, if not eraseRemoteMastrer, body->subdomain in
master are updated.

updateNewMirrorIntrs((Subdomain)arg1, (int)otherdomain, (object)newMirrorList) → None :
update the mirrorIntersections of a specific subdomain

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Tetra(inherits Shape → Serializable)
Tetrahedron geometry.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

156 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property v
Tetrahedron vertices (in local coordinate system).

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Wall(inherits Shape → Serializable)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).

property axis
Axis of the normal; can be 0,1,2 for +x, +y, +z respectively (Body’s orientation is disregarded
for walls)

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property sense
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

State

State

ChainedState

CpmState

ThermalState

WireState

PartialSatState

JCFpmState

Fig. 20: Inheritance graph of State. See also: ChainedState, CpmState, JCFpmState, PartialSatState,
ThermalState, WireState.

2.3. Yade wrapper class reference 157

Yade Documentation, Release 3rd ed.

class yade.wrapper.State(inherits Serializable)
State of a body (spatial configuration, internal variables).

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

158 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property vel
Current linear velocity.

class yade.wrapper.ChainedState(inherits State → Serializable)
State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
rank and chainNumber.

addToChain((ChainedState)arg1, (int)bodyId) → None :
Add body to current active chain

property angMom
Current angular momentum

property angVel
Current angular velocity

property bId
id of the body containing - for postLoad operations only.

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property chainNumber
chain id.

currentChain = 0

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property ori
Current orientation.

2.3. Yade wrapper class reference 159

Yade Documentation, Release 3rd ed.

property pos
Current position.

property rank
rank in the chain.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.wrapper.CpmState(inherits State → Serializable)
State information about body use by cpm-model.

None of that is used for computation (at least not now), only for post-processing.

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property damageTensor
Damage tensor computed with microplane theory averaging. state.damageTensor.trace() =
state.normDmg

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property epsVolumetric
Volumetric strain around this body (unused for now)

160 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property normDmg
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

property numBrokenCohesive
Number of (cohesive) contacts that damaged completely

property numContacts
Number of contacts with this body

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property stress
Stress tensor of the spherical particle (under assumption that particle volume = pi*r*r*r*4/3.)
for packing fraction 0.62

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.wrapper.JCFpmState(inherits ThermalState → State → Serializable)
JCFpm state information about each body.

property Cp
Heat capacity of the body

property Tcondition
indicates if particle is assigned dirichlet (constant temp) condition

property alpha
coefficient of thermal expansion

property angMom
Current angular momentum

2.3. Yade wrapper class reference 161

Yade Documentation, Release 3rd ed.

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property boundaryId
identifies if a particle is associated with constant temperature thrermal boundary condition

property damageIndex
Ratio of broken bonds over initial bonds. [-]

property delRadius
radius change due to thermal expansion

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isCavity
flag used for unbounding cavity bodies

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property joint
Indicates the number of joint surfaces to which the particle belongs (0-> no joint, 1->1 joint,
etc..). [-]

property jointNormal1
Specifies the normal direction to the joint plane 1. Rk: the ideal here would be to create a
vector of vector wich size is defined by the joint integer (as much joint normals as joints).
However, it needs to make the pushback function works with python since joint detection is
done through a python script. lines 272 to 312 of cpp file should therefore be adapted. [-]

property jointNormal2
Specifies the normal direction to the joint plane 2. [-]

property jointNormal3
Specifies the normal direction to the joint plane 3. [-]

162 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property k
thermal conductivity of the body

property mass
Mass of this body

property nbBrokenBonds
Number of broken bonds. [-]

property nbInitBonds
Number of initial bonds. [-]

property oldTemp
change of temp (for thermal expansion)

property onJoint
Identifies if the particle is on a joint surface.

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property stabilityCoefficient
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

property stepFlux
flux during current step

property temp
temperature of the body

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.wrapper.PartialSatState(inherits State → Serializable)
Hertz mindlin state information about each body. Only active if partially saturated clay model is
active.

property angMom
Current angular momentum

property angVel
Current angular velocity

2.3. Yade wrapper class reference 163

Yade Documentation, Release 3rd ed.

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property incidentCells
number of incident cells

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property lastIncidentCells
number of incident cells

property mass
Mass of this body

property ori
Current orientation.

property pos
Current position.

property radiiChange
total change of particle radius due to swelling

property radiiOriginal
original particle radius prior to swelling

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

164 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property suction
suction computed for particle (sum(sat of inc. cells)/num inc. cells)

property suctionSum
sum of suctions associated with incident cells

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

property volumeOriginal
original particle volume stored for strain increments

class yade.wrapper.ThermalState(inherits State → Serializable)
State containing quantities for thermal physics.

property Cp
Heat capacity of the body

property Tcondition
indicates if particle is assigned dirichlet (constant temp) condition

property alpha
coefficient of thermal expansion

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property boundaryId
identifies if a particle is associated with constant temperature thrermal boundary condition

property delRadius
radius change due to thermal expansion

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

2.3. Yade wrapper class reference 165

Yade Documentation, Release 3rd ed.

property inertia
Inertia of associated body, in local coordinate system.

property isCavity
flag used for unbounding cavity bodies

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property k
thermal conductivity of the body

property mass
Mass of this body

property oldTemp
change of temp (for thermal expansion)

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property stabilityCoefficient
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

property stepFlux
flux during current step

property temp
temperature of the body

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.wrapper.WireState(inherits State → Serializable)
Wire state information of each body.

None of that is used for computation (at least not now), only for post-processing.

property angMom
Current angular momentum

property angVel
Current angular velocity

166 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property numBrokenLinks
Number of broken links (e.g. number of wires connected to the body which are broken). [-]

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

2.3. Yade wrapper class reference 167

Yade Documentation, Release 3rd ed.

Material

Material

MortarMat

FrictMat

ElastMat

CpmMat

CohesiveDeformableElementMaterial

PolyhedraMat

JCFpmMat

CohFrictMat

LinIsoRayleighDampElastMatLinIsoElastMatDeformableElementMaterial

LudingMat

WireMat

InelastCohFrictMat

LinCohesiveElasticMaterial

BubbleMat

ViscElCapMatViscElMat

FrictViscoMat

LinCohesiveStiffPropDampElastMat

FrictMatCDM

PartialSatMat

Fig. 21: Inheritance graph of Material. See also: BubbleMat, CohFrictMat, CohesiveDeformableElement-
Material, CpmMat, DeformableElementMaterial, ElastMat, FrictMat, FrictMatCDM , FrictViscoMat,
InelastCohFrictMat, JCFpmMat, LinCohesiveElasticMaterial, LinCohesiveStiffPropDampElastMat, Lin-
IsoElastMat, LinIsoRayleighDampElastMat, LudingMat, MortarMat, PartialSatMat, PolyhedraMat, Vis-
cElCapMat, ViscElMat, WireMat.

class yade.wrapper.Material(inherits Serializable)
Material properties of a body.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

168 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.BubbleMat(inherits Material → Serializable)
material for bubble interactions, for use with other Bubble classes

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property surfaceTension
The surface tension in the fluid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CohFrictMat(inherits FrictMat → ElastMat → Material → Serializable)
Material description extending FrictMat with cohesive properties and rotational stiffnesses. For
use e.g. with Law2_ScGeom6D_CohFrictPhys_CohesionMoment.

property alphaKr
Dimensionless rolling stiffness.

property alphaKtw
Dimensionless twist stiffness.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 169

Yade Documentation, Release 3rd ed.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property etaRoll
Dimensionless rolling (aka ‘bending’) strength. If negative, rolling moment will be elastic.

property etaTwist
Dimensionless twisting strength. If negative, twist moment will be elastic.

property fragile
does cohesion disappear when contact strength is exceeded?

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property isCohesive
Whether this body can form possibly cohesive interactions (if true and depending on other
parameters such as Ip2_CohFrictMat_CohFrictMat_CohFrictPhys.setCohesionNow).

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property momentRotationLaw
Use bending/twisting moment at contact. The contact may have moments only if both bodies
have this flag true. See Law2_ScGeom6D_CohFrictPhys_CohesionMoment.always_use_-
moment_law for details.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property normalCohesion
Tensile strength, homogeneous to a pressure. If negative the normal force is purely elastic.

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property shearCohesion
Shear strength, homogeneous to a pressure. If negative the shear force is purely elastic.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

170 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.CohesiveDeformableElementMaterial(inherits Material → Serializable)
Deformable Element Material.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CpmMat(inherits FrictMat → ElastMat → Material → Serializable)
Concrete material, for use with other Cpm classes.

Note: Density is initialized to 4800 kgm�3automatically, which gives approximate 2800 kgm�3 on
0.5 density packing.

Concrete Particle Model (CPM)

CpmMat is particle material, Ip2_CpmMat_CpmMat_CpmPhys averages two particles’ materials,
creating CpmPhys, which is then used in interaction resultion by Law2_ScGeom_CpmPhys_Cpm.
CpmState is associated to CpmMat and keeps state defined on particles rather than interactions
(such as number of completely damaged interactions).

The model is contained in externally defined macro CPM_MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM_MATERIAL_MODEL is not defined. The full model will be described in de-
tail in my (Václav Šmilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).

Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.

2.3. Yade wrapper class reference 171

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

property damLaw
Law for damage evolution in uniaxial tension. 0 for linear stress-strain softening branch, 1
(default) for exponential damage evolution law

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property dmgRateExp
Exponent for normal viscosity function. [-]

property dmgTau
Characteristic time for normal viscosity. [s]

property epsCrackOnset
Limit elastic strain [-]

property equivStrainShearContrib
Coefficient of shear contribution to equivalent strain

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property isoPrestress
Isotropic prestress of the whole specimen. [Pa]

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property neverDamage
If true, no damage will occur (for testing only).

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property plRateExp
Exponent for visco-plasticity function. [-]

property plTau
Characteristic time for visco-plasticity. [s]

172 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property relDuctility
relative ductility of bonds in normal direction

property sigmaT
Initial cohesion [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.DeformableElementMaterial(inherits Material → Serializable)
Deformable Element Material.

property density
Density of the material.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ElastMat(inherits Material → Serializable)
Purely elastic material. The material parameters may have different meanings depending on the
IPhysFunctor used : true Young and Poisson in Ip2_FrictMat_FrictMat_MindlinPhys, or contact
stiffnesses in Ip2_FrictMat_FrictMat_FrictPhys.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 173

Yade Documentation, Release 3rd ed.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictMat(inherits ElastMat → Material → Serializable)
Elastic material with contact friction. See also ElastMat.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

174 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictMatCDM(inherits FrictMat → ElastMat → Material → Serializable)
Material to be used for extended Hertz-Mindlin contact law. Normal direction: parameters for
Conical Damage Model (Harkness et al. 2016, Suhr & Six 2017). Tangential direction: parameters
for stress dependent interparticle friction coefficient (Suhr & Six 2016). Both models can be
switched on/off separately.

property alpha
[rad] angle of conical asperities, alpha in (0, pi/2)

property c1
[-] parameter of pressure dependent friction model c1, choose 0 for constant interparticle
friction coefficient

property c2
[-] parameter of pressure dependent friction model c2, choose 0 for constant interparticle
friction coefficient

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

2.3. Yade wrapper class reference 175

Yade Documentation, Release 3rd ed.

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property sigmaMax
>0 [Pa] max compressive strength of material, choose 1e99 to switch off conical damage model

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictViscoMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for use with the FrictViscoPM classes

property betan
Fraction of the viscous damping coefficient in normal direction equal to cn

Cn,crit
.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

176 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.InelastCohFrictMat(inherits FrictMat → ElastMat → Material →
Serializable)

property alphaKr
Dimensionless coefficient used for the rolling stiffness.

property alphaKtw
Dimensionless coefficient used for the twist stiffness.

property compressionModulus
Compresion elasticity modulus

property creepBending
Bending creeping coefficient. Usual values between 0 and 1.

property creepTension
Tension/compression creeping coefficient. Usual values between 0 and 1.

property creepTwist
Twist creeping coefficient. Usual values between 0 and 1.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property epsilonMaxCompression
Maximal plastic strain compression

property epsilonMaxTension
Maximal plastic strain tension

property etaMaxBending
Maximal plastic bending strain

property etaMaxTwist
Maximal plastic twist strain

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

2.3. Yade wrapper class reference 177

Yade Documentation, Release 3rd ed.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property nuBending
Bending elastic stress limit

property nuTwist
Twist elastic stress limit

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property shearCohesion
Shear elastic stress limit

property shearModulus
shear elasticity modulus

property sigmaCompression
Compression elastic stress limit

property sigmaTension
Tension elastic stress limit

property tensionModulus
Tension elasticity modulus

property unloadBending
Bending plastic unload coefficient. Usual values between 0 and +infinity.

property unloadTension
Tension/compression plastic unload coefficient. Usual values between 0 and +infinity.

property unloadTwist
Twist plastic unload coefficient. Usual values between 0 and +infinity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.JCFpmMat(inherits FrictMat → ElastMat → Material → Serializable)
Possibly jointed, cohesive frictional material, for use with other JCFpm classes

property cohesion
Defines the maximum admissible tangential force in shear, for Fn=0, in the matrix (FsMax
= cohesion * crossSection). [Pa]

178 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property jointCohesion
Defines the maximum admissible tangential force in shear, for Fn=0, on the joint surface. [Pa]

property jointDilationAngle
Defines the dilatancy of the joint surface (only valid for smooth contact logic). [rad]

property jointFrictionAngle
Defines Coulomb friction on the joint surface. [rad]

property jointNormalStiffness
Defines the normal stiffness on the joint surface. [Pa/m]

property jointShearStiffness
Defines the shear stiffness on the joint surface. [Pa/m]

property jointTensileStrength
Defines the maximum admissible normal force in traction on the joint surface. [Pa]

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property residualFrictionAngle
Defines the residual friction angle (when contacts are not cohesive). residualFrictionAn-
gle=frictionAngle if not specified. [rad]

property tensileStrength
Defines the maximum admissible normal force in traction in the matrix (FnMax = ten-
sileStrength * crossSection). [Pa]

2.3. Yade wrapper class reference 179

Yade Documentation, Release 3rd ed.

property type
If particles of two different types interact, it will be with friction only (no cohesion).[-]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.LinCohesiveElasticMaterial(inherits CohesiveDeformableElementMaterial →
Material → Serializable)

Linear Isotropic Elastic material

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.wrapper.LinCohesiveStiffPropDampElastMat(inherits LinCohesiveElasticMaterial →
CohesiveDeformableElementMaterial →
Material → Serializable)

Elastic material with Rayleigh Damping.

property alpha
Mass propotional damping constant of Rayleigh Damping.

property beta
Stiffness propotional damping constant of Rayleigh Damping.

180 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.wrapper.LinIsoElastMat(inherits DeformableElementMaterial → Material →
Serializable)

Linear Isotropic Elastic material

property density
Density of the material.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

2.3. Yade wrapper class reference 181

Yade Documentation, Release 3rd ed.

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.wrapper.LinIsoRayleighDampElastMat(inherits LinIsoElastMat →
DeformableElementMaterial → Material →
Serializable)

Elastic material with Rayleigh Damping.

property alpha
Mass propotional damping constant of Rayleigh Damping.

property beta
Stiffness propotional damping constant of Rayleigh Damping.

property density
Density of the material.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

182 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.wrapper.LudingMat(inherits Material → Serializable)
Material for simple Luding‘s model of contact [Luding2008] ,[Singh2013]_ .

property G0
Viscous damping

property PhiF
Dimensionless plasticity depth

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Friction angle [rad]

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property k1
Slope of loading plastic branch

property kc
Slope of irreversible, tensile adhesive branch

property kp
Slope of unloading and reloading limit elastic branch

property ks
Shear stiffness

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

2.3. Yade wrapper class reference 183

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MortarMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for mortar interface, used in Ip2_MortarMat_MortarMat_MortarPhys and Law2_Sc-
Geom_MortarPhys_Lourenco. Default values according to

property cohesion
cohesion [Pa]

property compressiveStrength
compressiveStrength [Pa]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property ellAspect
aspect ratio of elliptical ‘cap’. Value >1 means the ellipse is longer along normal stress axis.

property frictionAngle
Friction angle

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property neverDamage
If true, interactions remain elastic regardless stresses

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Shear to normal modulus ratio

property tensileStrength
tensileStrength [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

184 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property young
Normal elastic modulus [Pa]

class yade.wrapper.PartialSatMat(inherits FrictMat → ElastMat → Material → Serializable)
Material used for PartialSatClayEngine. Necessary for the custom PartialSatState.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property num
Particle number

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.PolyhedraMat(inherits FrictMat → ElastMat → Material → Serializable)
Elastic material with Coulomb friction.

property IsSplitable
To be splitted … or not

property Wei_P
Weibull Formulation, failure probability, P, [Gladky2017].

2.3. Yade wrapper class reference 185

Yade Documentation, Release 3rd ed.

property Wei_S0
Weibull Formulation, Sigma0, Pa, (if negative - disabled), [Gladky2017]

property Wei_V0
Weibull Formulation, V0, m^3, representative volume, [Gladky2017].

property Wei_m
Weibull Formulation, Weibull modulus, m, (if negative - disabled), [Gladky2017]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property sigmaCD
Mohr-Coulomb failure criterium SigmaCD, Pa, maximal compressive strength (if negative -
disabled), [Gladky2017]

property sigmaCZ
Mohr-Coulomb failure criterium SigmaCZ, Pa, maximal tensile strength (if negative - dis-
abled), [Gladky2017]

property strength
Stress at which polyhedra of volume 4/3*pi [mm] breaks.

property strengthTau
Tangential stress at which polyhedra of volume 4/3*pi [mm] breaks.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

186 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.ViscElCapMat(inherits ViscElMat → FrictMat → ElastMat → Material →
Serializable)

Material for extended viscoelastic model of contact with capillary parameters.

property Capillar
True, if capillar forces need to be added.

property CapillarType
Different types of capillar interaction: Willett_numeric, Willett_analytic [Willett2000] ,
Weigert [Weigert1999] , Rabinovich [Rabinov2005] , Lambert (simplified, corrected Rabinovich
model) [Lambert2008]

property Vb
Liquid bridge volume [m^3]

property cn
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property cs
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property dcap
Damping coefficient for the capillary phase [-]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property en
Restitution coefficient in normal direction

property et
Restitution coefficient in tangential direction

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property gamma
Surface tension [N/m]

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property kn
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

2.3. Yade wrapper class reference 187

Yade Documentation, Release 3rd ed.

property ks
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property lubrication
option to apply lubrication forces when material is defined from young, poisson and en (resti-
tution coefficient).

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property roughnessScale
if lubrication is activated, roughness scale considered for the particles to evaluate the effective
restitution coefficient.

property tc
Contact time

property theta
Contact angle [°]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscoDyn
if lubrication is activated, surrounding fluid dynamic viscosity considered to evaluate the
effective restitution coefficient as a function of the local Stokes number of the collision.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.ViscElMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for simple viscoelastic model of contact from analytical solution of a pair spheres inter-
action problem [Pournin2001] .

property cn
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property cs
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property density
Density of the material [kg/m3]

188 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property en
Restitution coefficient in normal direction

property et
Restitution coefficient in tangential direction

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property kn
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property ks
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property lubrication
option to apply lubrication forces when material is defined from young, poisson and en (resti-
tution coefficient).

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property roughnessScale
if lubrication is activated, roughness scale considered for the particles to evaluate the effective
restitution coefficient.

2.3. Yade wrapper class reference 189

Yade Documentation, Release 3rd ed.

property tc
Contact time

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscoDyn
if lubrication is activated, surrounding fluid dynamic viscosity considered to evaluate the
effective restitution coefficient as a function of the local Stokes number of the collision.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.WireMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for use with the Wire classes. In conjunction with the corresponding functors it can be
used to model steel wire meshes [Thoeni2014], geotextiles [Cheng2016] and more.

property as
Cross-section area of a single wire used to transform stress into force. [m2]

property density
Density of the material [kg/m3]

property diameter
Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property isDoubleTwist
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property lambdaEps
Parameter between 0 and 1 to reduce strain at failure of a double-twisted wire (as used by
[Bertrand2008]). [-]

property lambdaF
Parameter between 0 and 1 introduced by [Thoeni2013] which defines where the shifted force-
displacement curve intersects with the new initial stiffness: F∗ = λFFelastic. [-]

190 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property lambdak
Parameter between 0 and 1 to compute the elastic stiffness of a double-twisted wire (as used
by [Bertrand2008]): kD = 2(λkkh + (1− λk)k

S). [-]

property lambdau
Parameter between 0 and 1 introduced by [Thoeni2013] which defines the maximum shift
of the force-displacement curve in order to take an additional initial elongation (e.g. wire
distortion/imperfections, slipping, system flexibility) into account: ∆l∗ = λul0rnd(seed). [-]

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property seed
Integer used to initialize the random number generator for the calculation of the distortion.
If the integer is equal to 0 a internal seed number based on the time is computed. [-]

property strainStressValues
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed! NOTE:
Vector needs to be initialized!

property strainStressValuesDT
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for the double twist. Tension only is considered and the point (0,0) is not needed! If this value
is given the calculation will be based on two different stress-strain curves without considering
the parameter introduced by [Bertrand2008] (see [Thoeni2013]).

property type
Three different types are considered:

0 Corresponds to Bertrand’s approach (see [Bertrand2008]): only one stress-strain curve
is used

1 New approach: two separate stress-strain curves can be used (see [Thoeni2013])
2 New approach with stochastically distorted contact model: two separate stress-strain

curves with changed initial stiffness and horizontal shift (shift is random if seed ≥ 0,
for more details see [Thoeni2013])

By default the type is 0.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

2.3. Yade wrapper class reference 191

Yade Documentation, Release 3rd ed.

Bound

Bound Aabb

Fig. 22: Inheritance graph of Bound. See also: Aabb.

class yade.wrapper.Bound(inherits Serializable)
Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection

property color
Color for rendering this object

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Bound)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property lastUpdateIter
record iteration of last reference position update (auto-updated)

property max
Upper corner of box containing this bound (and the Body as well)

property min
Lower corner of box containing this bound (and the Body as well)

property refPos
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

property sweepLength
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Aabb(inherits Bound → Serializable)
Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)

property color
Color for rendering this object

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Bound)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

192 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property lastUpdateIter
record iteration of last reference position update (auto-updated)

property max
Upper corner of box containing this bound (and the Body as well)

property min
Lower corner of box containing this bound (and the Body as well)

property refPos
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

property sweepLength
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.2 Interactions

Interaction

class yade.wrapper.Interaction(inherits Serializable)
Interaction between pair of bodies.

property cellDist
Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by
this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have the period information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property geom
Geometry part of the interaction.

property id1
Id of the first body in this interaction.

property id2
Id of the second body in this interaction.

property isActive
True if this interaction is active. Otherwise the forces from this interaction will not be taken
into account. True by default.

property isReal
True if this interaction has both geom and phys; False otherwise.

2.3. Yade wrapper class reference 193

Yade Documentation, Release 3rd ed.

property iterBorn
Step number at which the interaction was added to simulation.

property iterMadeReal
Step number at which the interaction was fully (in the sense of geom and phys) created.
(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

property phys
Physical (material) part of the interaction.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

IGeom

IGeom

GridCoGridCoGeom

ScGeom

GenericSpheresContact

L6Geom
L3Geom

CylScGeom
ScGridCoGeom

ScGeom6D
ChCylGeom6D

CylScGeom6D

TTetraGeom

MultiScGeom

TTetraSimpleGeom

PolyhedraGeom

VolumeGeom

GridNodeGeom6D

Fig. 23: Inheritance graph of IGeom. See also: ChCylGeom6D, CylScGeom, CylScGeom6D, Generic-
SpheresContact, GridCoGridCoGeom, GridNodeGeom6D, L3Geom, L6Geom, MultiScGeom, Polyhedra-
Geom, ScGeom, ScGeom6D, ScGridCoGeom, TTetraGeom, TTetraSimpleGeom, VolumeGeom.

class yade.wrapper.IGeom(inherits Serializable)
Geometrical configuration of interaction

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ChCylGeom6D(inherits ScGeom6D → ScGeom → GenericSpheresContact →
IGeom → Serializable)

Test

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

194 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CylScGeom(inherits ScGeom → GenericSpheresContact → IGeom →
Serializable)

Geometry of a cylinder-sphere contact.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 195

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property end
position of 2nd node (auto-updated)

property id3
id of next chained cylinder (auto-updated)

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property isDuplicate
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property onNode
contact on node?

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

property start
position of 1st node (auto-updated)

property trueInt
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CylScGeom6D(inherits ScGeom6D → ScGeom → GenericSpheresContact →
IGeom → Serializable)

Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

196 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property end
position of 2nd node (auto-updated)

property id3
id of next chained cylinder (auto-updated)

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property isDuplicate
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property onNode
contact on node?

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

2.3. Yade wrapper class reference 197

Yade Documentation, Release 3rd ed.

property shearInc
Shear displacement increment in the last step

property start
position of 1st node (auto-updated)

property trueInt
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GenericSpheresContact(inherits IGeom → Serializable)
Class uniting ScGeom and L3Geom, for the purposes of GlobalStiffnessTimeStepper. (It might be
removed in the future). Do not use this class directly.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GridCoGridCoGeom(inherits ScGeom → GenericSpheresContact → IGeom →
Serializable)

Geometry of a GridConnection-GridConnection contact.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

198 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos1
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

property relPos2
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GridNodeGeom6D(inherits ScGeom6D → ScGeom → GenericSpheresContact →
IGeom → Serializable)

Geometry of a GridNode-GridNode contact. Inherits almost everything from ScGeom6D.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property connectionBody
Reference to the GridNode Body who is linking the two GridNodes.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.3. Yade wrapper class reference 199

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.L3Geom(inherits GenericSpheresContact → IGeom → Serializable)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]

property F
Applied force in local coordinates [debugging only, will be removed]

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

200 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

property trsf
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

property u
Displacement components, in local coordinates. (auto-updated)

property u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1. by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2. by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3. by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.L6Geom(inherits L3Geom → GenericSpheresContact → IGeom → Serializable)
Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]

property F
Applied force in local coordinates [debugging only, will be removed]

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

2.3. Yade wrapper class reference 201

Yade Documentation, Release 3rd ed.

property phi
Rotation components, in local coordinates. (auto-updated)

property phi0
Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

property trsf
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

property u
Displacement components, in local coordinates. (auto-updated)

property u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1. by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2. by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3. by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MultiScGeom(inherits IGeom → Serializable)
A set of ScGeom for describing the kinematics of an interaction with multiple contact points between
two LevelSet bodies, as a set of ScGeom items in contacts. To combine with MultiFrictPhys and
associated classes.

property contacts
The actual list of ScGeom items corresponding to the different contact points.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

202 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property nodesIds
List of surface nodes (on id1 if that body is smaller – or equal – in volume, or id2 otherwise)
making contacts. Contact point for a node of index nodesIds[i] has kinematic properties stored
in contacts[i]. Should be equal to MultiFrictPhys.nodesIds by design

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.PolyhedraGeom(inherits IGeom → Serializable)
Geometry of interaction between 2 Polyhedra, including volumetric characteristics

property contactPoint
Contact point (global coords), centroid of the overlapping polyhedron

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property equivalentCrossSection
Cross-section area of the overlap (perpendicular to the normal) - not used

property equivalentPenetrationDepth
volume / equivalentCrossSection - not used

property normal
Normal direction of the interaction

property orthonormal_axis

property penetrationVolume
Volume of overlap [m3]

property shearInc
Shear displacement increment in the last step

property twist_axis

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ScGeom(inherits GenericSpheresContact → IGeom → Serializable)
Class representing geometry of a contact point between two bodies. It is more general than sphere-
sphere contact even though it is primarily focused on spheres contact interactions (reason for
the ‘Sc’ naming); it is also used for representing contacts of a Sphere with non-spherical bodies
(Facet, Plane, Box, ChainedCylinder), or between two non-spherical bodies (ChainedCylinder).
The contact has 3 DOFs (normal and 2×shear) and uses incremental algorithm for updating shear.

We use symbols x, v, ω respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.
Then we define branch length and unit contact normal

l = ||x2 − x1||,n =
x2 − x1

||x2 − x1||

The relative velocity of the spheres is then

v12 =
r1 + r2

l
(v2 − v1) − (r2ω2 + r1ω1)× n

2.3. Yade wrapper class reference 203

Yade Documentation, Release 3rd ed.

where the fraction multiplying translational velocities is to make the definition objective and avoid
ratcheting effects (see Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting). The shear compo-
nent is

vs12 = v12 − (n · v12)n.

Tangential displacement increment over last step then reads

∆xs12 = ∆tvs12.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ScGeom6D(inherits ScGeom → GenericSpheresContact → IGeom → Serializable)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

204 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ScGridCoGeom(inherits ScGeom6D → ScGeom → GenericSpheresContact →
IGeom → Serializable)

Geometry of a GridConnection-Sphere contact.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 205

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id3
id of the first GridNode. (auto-updated)

property id4
id of the second GridNode. (auto-updated)

property id5
id of the third GridNode. (auto-updated)

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property isDuplicate
this flag is turned true (1) automatically if the contact is shared between two Connections. A
duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos
position of the contact on the connection (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

property trueInt
Defines the body id of the GridConnection where the contact is real, when ScGridCo-
Geom::isDuplicate>0.

property twist
Elastic twist angle (around normal axis) of the contact.

206 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property weight
barycentric coordinates of the projection point (auto-updated)

class yade.wrapper.TTetraGeom(inherits IGeom → Serializable)
Geometry of interaction between 2 tetrahedra, including volumetric characteristics

property contactPoint
Contact point (global coords)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property equivalentCrossSection
Cross-section of the overlap (perpendicular to the axis of least inertia

property equivalentPenetrationDepth
??

property maxPenetrationDepthA
??

property maxPenetrationDepthB
??

property normal
Normal of the interaction, directed in the sense of least inertia of the overlap volume

property penetrationVolume
Volume of overlap [m3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.TTetraSimpleGeom(inherits IGeom → Serializable)
EXPERIMENTAL. Geometry of interaction between 2 tetrahedra

property contactPoint
Contact point (global coords)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.3. Yade wrapper class reference 207

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property flag
TODO

property normal
Normal of the interaction TODO

property penetrationVolume
Volume of overlap [m3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.VolumeGeom(inherits IGeom → Serializable)
Geometry of the interaction between two LevelSet bodies when using volume-based interactions.
Will soon become the general class for volume interaction, such that it works for polyhedra as well.

property averagePenetrationDepth
penetrationVolume / contactArea.

property contactArea
Contact area perpendicular to the normal.

property contactPoint
Contact point (global coordinates), centroid of the penetration volume.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Normal direction of the interaction.

property orthonormal_axis

property penetrationVolume
Volume of the overlap or penetrating region.

property shearInc
Shear displacement increment in the last step.

property twist_axis

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

208 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

IPhys

IPhys

NormShearPhysNormPhys

JCFpmPhys

CpmPhys

KnKsPhys

FrictPhys

PolyhedraPhys

CapillaryPhys

MindlinPhys

RotStiffFrictPhys

ViscElCapPhysViscElPhys

KnKsPBPhys
BubblePhys

LudingPhys

WirePhys

LubricationPhys

MortarPhys

MindlinCapillaryPhys

CapillaryMindlinPhysDelaunay

MultiFrictPhys

InelastCohFrictPhys

ViscoFrictPhys

CohFrictPhys

MindlinPhysCDM

FrictViscoPhys

CapillaryPhysDelaunay

Fig. 24: Inheritance graph of IPhys. See also: BubblePhys, CapillaryMindlinPhysDelaunay, Capillary-
Phys, CapillaryPhysDelaunay, CohFrictPhys, CpmPhys, FrictPhys, FrictViscoPhys, InelastCohFrict-
Phys, JCFpmPhys, KnKsPBPhys, KnKsPhys, LubricationPhys, LudingPhys, MindlinCapillaryPhys,
MindlinPhys, MindlinPhysCDM , MortarPhys, MultiFrictPhys, NormPhys, NormShearPhys, Polyhed-
raPhys, RotStiffFrictPhys, ViscElCapPhys, ViscElPhys, ViscoFrictPhys, WirePhys.

class yade.wrapper.IPhys(inherits Serializable)
Physical (material) properties of interaction.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.BubblePhys(inherits IPhys → Serializable)
Physics of bubble-bubble interactions, for use with BubbleMat

property Dmax
Maximum penetrationDepth of the bubbles before the force displacement curve changes to
an artificial exponential curve. Setting this value will have no effect. See Law2_ScGeom_-
BubblePhys_Bubble::pctMaxForce for more information

static computeForce((float)arg1, (float)arg2, (float)arg3, (int)arg4, (float)arg5, (float)arg6,
(float)arg7 , (BubblePhys)arg8) → float :

Computes the normal force acting between the two interacting bubbles using the Newton-
Rhapson method

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.3. Yade wrapper class reference 209

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property fN
Contact normal force

property newtonIter
Maximum number of force iterations allowed

property newtonTol
Convergence criteria for force iterations

property normalForce
Normal force

property rAvg
Average radius of the two interacting bubbles

property surfaceTension
Surface tension of the surrounding liquid

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CapillaryMindlinPhysDelaunay(inherits MindlinPhys → RotStiffFrictPhys →
FrictPhys → NormShearPhys → NormPhys→ IPhys → Serializable)

An extended version of ̀(iPhysType), adding capillary data for CapillarityEngine.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property Fs
Shear force in local axes (computed incrementally)

property SInterface
Fluid-Gaz Interfacial area

property adhesionForce
Force of adhesion as predicted by DMT

property arcLength
Arc Length of the Fluid-Gaz Interface

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

property capillaryPressure
Value of the capillary pressure Uc defines as Ugas-Uliquid

210 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property computeBridge
If true, capillary bridge will be computed if not it will be ignored.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fCap
Capillary Force produces by the presence of the meniscus

property fusionNumber
Indicates the number of meniscii that overlap with this one

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
If true, capillary force is zero and liquid bridge is inactive.

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property meniscus
Presence of a meniscus if true

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

2.3. Yade wrapper class reference 211

Yade Documentation, Release 3rd ed.

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

property vMeniscus
Volume of the menicus

class yade.wrapper.CapillaryPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)
Physics (of interaction) for Law2_ScGeom_CapillaryPhys_Capillarity.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property capillaryPressure
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law2 parameter

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

212 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fCap
Capillary force produced by the presence of the meniscus. This is the force acting on particle
#2

property fusionNumber
Indicates the number of meniscii that overlap with this one

property isBroken
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

property kn
Normal stiffness

property ks
Shear stiffness

property meniscus
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

property nn11∫∫
A
n1n1 dS =

∫∫
A
n2n2 dS, A being the liquid-gas surface of the meniscus, n the associated

normal, and (1, 2, 3) a local basis with 3 the meniscus orientation (ScGeom.normal). NB: A
= 2 nn11 + nn33.

property nn33∫∫
A
n3n3 dS, A being the liquid-gas surface of the meniscus, n the associated normal, and

(1, 2, 3) a local basis with 3 the meniscus orientation (ScGeom.normal). NB: A = 2 nn11 +
nn33.

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vMeniscus
Volume of the meniscus

class yade.wrapper.CapillaryPhysDelaunay(inherits FrictPhys → NormShearPhys → NormPhys→ IPhys → Serializable)
An extended version of ̀FrictPhys, adding capillary data for CapillarityEngine.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property SInterface
Fluid-Gaz Interfacial area

property arcLength
Arc Length of the Fluid-Gaz Interface

2.3. Yade wrapper class reference 213

Yade Documentation, Release 3rd ed.

property capillaryPressure
Value of the capillary pressure Uc defines as Ugas-Uliquid

property computeBridge
If true, capillary bridge will be computed if not it will be ignored.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fCap
Capillary Force produces by the presence of the meniscus

property fusionNumber
Indicates the number of meniscii that overlap with this one

property isBroken
If true, capillary force is zero and liquid bridge is inactive.

property kn
Normal stiffness

property ks
Shear stiffness

property meniscus
Presence of a meniscus if true

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vMeniscus
Volume of the menicus

class yade.wrapper.CohFrictPhys(inherits RotStiffFrictPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

An interaction physics that extends RotStiffFrictPhys adding a breakable cohesive nature. Used
e.g. by Law2_ScGeom6D_CohFrictPhys_CohesionMoment.

property cohesionBroken
is cohesion active? Set to false at the creation of a cohesive contact, and set to true when a
fragile contact is broken

214 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property cohesionDisablesFriction
is shear strength the sum of friction and adhesion or only adhesion?

property creep_viscosity
creep viscosity [Pa.s/m].

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fragile
do cohesion disappear when contact strength is exceeded?

property initCohesion
Initialize the cohesive behaviour with current state as equilibrium state (same as Ip2_Co-
hFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow but acting on only one interaction)

property kn
Normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property ktw
twist stiffness [N.m/rad]

property maxRollPl
Coefficient of rolling friction (negative means elastic).

property maxTwistPl
Coefficient of twisting friction (negative means elastic).

property momentRotationLaw
set from CohFrictMat::momentRotationLaw in order to possibly use bending/twisting moment
at contacts (if true). See Law2_ScGeom6D_CohFrictPhys_CohesionMoment::always_use_-
moment_law for details.

property moment_bending
Bending moment

property moment_twist
Twist moment

property normalAdhesion
tensile strength

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.3. Yade wrapper class reference 215

Yade Documentation, Release 3rd ed.

property rollingAdhesion
maximum bending moment when normal force is null (a frictional term might be added
depending on CohFrictPhys::cohesionDisablesFriction and CohFrictPhys::maxRollPl)

property shearAdhesion
cohesive part of the shear strength (a frictional term might be added depending on CohFrict-
Phys::cohesionDisablesFriction)

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

property twistingAdhesion
maximum twisting moment when normal force is null (a frictional term might be added
depending on CohFrictPhys::cohesionDisablesFriction and CohFrictPhys::maxTwistPl)

property unp
plastic normal displacement, only used for tensile behaviour and if CohFrictPhys::fragile
=false.

property unpMax
maximum value of plastic normal displacement (counted positively), after that the interaction
breaks even if CohFrictPhys::fragile =false. A negative value (i.e. -1) means no maximum.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the Cpm type: storage for relevant parameters.

Evolution of the contact is governed by Law2_ScGeom_CpmPhys_Cpm, that includes damage
effects and chages of parameters inside CpmPhys. See cpm-model for details.

property E
normal modulus (stiffness / crossSection) [Pa]

property Fn
Magnitude of normal force (auto-updated)

property Fs
Magnitude of shear force (auto-updated)

property G
shear modulus [Pa]

property crossSection
equivalent cross-section associated with this contact [m2]

cummBetaCount = 0

cummBetaIter = 0

property damLaw
Law for softening part of uniaxial tension. 0 for linear, 1 for exponential (default)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

216 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property dmgOverstress
damage viscous overstress (at previous step or at current step)

property dmgRateExp
exponent in the rate-dependent damage evolution

property dmgStrain
damage strain (at previous or current step)

property dmgTau
characteristic time for damage (if non-positive, the law without rate-dependence is used)

property epsCrackOnset
strain at which the material starts to behave non-linearly

property epsFracture
strain at which the bond is fully broken [-]

property epsN
Current normal strain (auto-updated)

property epsNPl
normal plastic strain (initially zero) (auto-updated)

property epsT
Current shear strain (auto-updated)

property epsTPl
shear plastic strain (initially zero) (auto-updated)

property equivStrainShearContrib
Coefficient of shear contribution to equivalent strain

static funcG((float)kappaD, (float)epsCrackOnset, (float)epsFracture[,
(bool)neverDamage=False[, (int)damLaw=1]]) → float :

Damage evolution law, evaluating the ω parameter. κD is historically maximum strain, ep-
sCrackOnset (ε0) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage). TODO

static funcGInv((float)omega, (float)epsCrackOnset, (float)epsFracture[,
(bool)neverDamage=False[, (int)damLaw=1]]) → float :

Inversion of damage evolution law, evaluating the κD parameter. ω is damage, for other
parameters see funcG function

property isCohesive
if not cohesive, interaction is deleted when distance is greater than zero.

property isoPrestress
“prestress” of this link (used to simulate isotropic stress)

property kappaD
Up to now maximum normal strain (semi-norm), non-decreasing in time (auto-updated)

2.3. Yade wrapper class reference 217

Yade Documentation, Release 3rd ed.

property kn
Normal stiffness

property ks
Shear stiffness

property neverDamage
the damage evolution function will always return virgin state

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property omega
Damage internal variable (auto-updated)

property plRateExp
exponent in the rate-dependent viscoplasticity

property plTau
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

property refLength
initial length of interaction [m]

property refPD
initial penetration depth of interaction [m] (used with ScGeom)

property relDuctility
Relative ductility of bonds in normal direction

property relResidualStrength
Relative residual strength (auto-updated)

setDamage((CpmPhys)arg1, (float)arg2) → None :
TODO

setRelResidualStrength((CpmPhys)arg1, (float)arg2) → None :
TODO

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property sigmaN
Current normal stress (auto-updated)

property sigmaT
Current shear stress (auto-updated)

property tanFrictionAngle
tangens of internal friction angle [-]

property undamagedCohesion
virgin material cohesion [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FrictPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
The simple linear elastic-plastic interaction with friction angle, like in the traditional
[CundallStrack1979]

218 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FrictViscoPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)
Representation of a single interaction of the FrictViscoPM type, storage for relevant parameters

property cn
Normal viscous constant defined as n = cn,critβn.

property cn_crit
Normal viscous constant for ctitical damping defined as n = Cn,critβn.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.3. Yade wrapper class reference 219

Yade Documentation, Release 3rd ed.

property normalViscous
Normal viscous component

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.InelastCohFrictPhys(inherits RotStiffFrictPhys → FrictPhys →
NormShearPhys → NormPhys → IPhys → Serializable)

property cohesionBroken
is cohesion active? will be set false when a fragile contact is broken

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property isBroken
true if compression plastic fracture achieved

property kDam
Damage coefficient on bending, computed from maximum bending moment reached and pure
creep behaviour. Its values will vary between InelastCohFrictPhys::kr and InelastCohFrict-
Phys::kRCrp .

property kRCrp
Bending creep stiffness

property kRUnld
Bending plastic unload stiffness

property kTCrp
Tension/compression creep stiffness

property kTUnld
Tension/compression plastic unload stiffness

property kTwCrp
Twist creep stiffness

property kTwUnld
Twist plastic unload stiffness

property kn
Normal stiffness

property knC
compression stiffness

220 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property knT
tension stiffness

property kr
rotational stiffness [N.m/rad]

property ks
shear stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendMom
Plastic failure bending moment.

property maxContract
Plastic failure contraction (shrinkage).

property maxCrpRchdB
maximal bending moment reached on plastic deformation.

property maxCrpRchdC
maximal compression reached on plastic deformation. maxCrpRchdC[0] stores un and max-
CrpRchdC[1] stores Fn.

property maxCrpRchdT
maximal extension reached on plastic deformation. maxCrpRchdT[0] stores un and maxCr-
pRchdT[1] stores Fn.

property maxCrpRchdTw
maximal twist reached on plastic deformation. maxCrpRchdTw[0] stores twist angle and
maxCrpRchdTw[1] stores twist moment.

property maxElB
Maximum bending elastic moment.

property maxElC
Maximum compression elastic force.

property maxElT
Maximum tension elastic force.

property maxElTw
Maximum twist elastic moment.

property maxExten
Plastic failure extension (stretching).

property maxTwist
Plastic failure twist angle

property moment_bending
Bending moment

property moment_twist
Twist moment

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property onPlastB
true if plasticity achieved on bending

2.3. Yade wrapper class reference 221

Yade Documentation, Release 3rd ed.

property onPlastC
true if plasticity achieved on compression

property onPlastT
true if plasticity achieved on traction

property onPlastTw
true if plasticity achieved on twisting

property pureCreep
Pure creep curve, used for comparison in calculation.

property shearAdhesion
Maximum elastic shear force (cohesion).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

property twp
plastic twist penetration depth describing the equilibrium state.

property unp
plastic normal penetration depth describing the equilibrium state.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.JCFpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the JCFpm type, storage for relevant parameters

property FnMax
positiv value computed from tensile strength (or joint variant) to define the maximum admis-
sible normal force in traction: Fn >= -FnMax. [N]

property FsMax
computed from cohesion (or jointCohesion) to define the maximum admissible tangential force
in shear, for Fn=0. [N]

property checkedForCluster
Have we checked if this int belongs in cluster?

property clusterInts
vector of pointers to the broken interactions nearby constituting a cluster

property clusteredEvent
is this interaction part of a cluster?

property computedCentroid
Flag for moment calculation

property crackJointAperture
Relative displacement between 2 spheres (in case of a crack it is equivalent of the crack
aperture)

property crossSection
crossSection=pi*Rmin^2. [m2]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

222 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dilation
defines the normal displacement in the joint after sliding treshold. [m]

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elapsedIter
number of elapsed iterations for moment calculation

property eventBeginTime
The time at which event initiated

property eventNumber
cluster event number

property firstMomentCalc
Flag for moment calculation (auto-updated)

property initD
equilibrium distance for interacting particles. Computed as the interparticular distance at
first contact detection.

property interactionsAdded
have we added the ints associated with this event?

property isBroken
flag for broken interactions

property isCohesive
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensile strength (or their jointed variants).

property isOnJoint
defined as true when both interacting particles are on joint and are in opposite sides of the
joint surface. In this case, mechanical parameters of the interaction are derived from the
‘’joint…’’ material properties of the particles. Furthermore, the normal of the interaction may
be re-oriented (see Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM.smoothJoint).

property isOnSlot
defined as true when interaction is located in the perforation slot (surface).

property jointCumulativeSliding
sliding distance for particles interacting on a joint. Used, when is true, to take into account
dilatancy due to shearing. [-]

property jointNormal
normal direction to the joint, deduced from e.g. .

property kineticEnergy
kinetic energy of the two spheres participating in the interaction (easiest to store this value
with interaction instead of spheres since we are using this information for moment magnitude
estimations and associated interaction searches)

property kn
Normal stiffness

2.3. Yade wrapper class reference 223

Yade Documentation, Release 3rd ed.

property ks
Shear stiffness

property momentBroken
Flag for moment calculation

property momentCalculated
Flag for moment calculation to avoid repeating twice the operations (auto-updated)

property momentCentroid
centroid of the AE event (avg location of clustered breaks)

property momentEnergy
reference strain (or kinetic) energy of surrounding interactions (particles)

property momentEnergyChange
storage of the maximum strain (or kinetic) energy change for surrounding interactions (par-
ticles)

property momentMagnitude
Moment magnitude of a failed interaction

property more
specifies if the interaction is crossed by more than 3 joints. If true, interaction is deleted
(temporary solution).

property nearbyFound
Count used to debug moment calc

property nearbyInts
vector of pointers to the nearby ints used for moment calc

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property originalClusterEvent
the original AE event for a cluster

property originalEvent
pointer to the original interaction of a cluster

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property strainEnergy
strain energy of interaction

property tanDilationAngle
tangent of the angle defining the dilatancy of the joint surface (auto. computed from JCFp-
mMat.jointDilationAngle). [-]

property tanFrictionAngle
tangent of Coulomb friction angle for this interaction (auto. computed). [-]

property temporalWindow
temporal window for the clustering algorithm

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

224 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.KnKsPBPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

EXPERIMENTAL. IPhys for PotentialBlock.

property cohesion
Cohesion (stress units)

property cohesionBroken
Whether cohesion is already broken. Considered true for particles with isBoundary=True

property contactArea
Contact area (auto-updated)

property cumulative_us
Cumulative translation

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property effective_phi
Friction angle in clay after displacement

property frictionAngle
Friction angle

property initialShearDir
Initial shear direction

property intactRock
Whether to consider cohesive force in the Mohr-Coulomb criterion, if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw.allowBreakage=False and cohesionBroken=False

property isSliding
Check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property jointLength
Approximated contact length

property jointType
jointType

property kn
Normal stiffness

property knVol
Volumetric normal stiffness = Knormal

property kn_i
initial normal stiffness, user must provide input during initialisation

property ks
Shear stiffness

property ksVol
Volumetric shear stiffness = Kshear

2.3. Yade wrapper class reference 225

Yade Documentation, Release 3rd ed.

property ks_i
initial shear stiffness, user must provide input during initialisation

property mobilizedShear
Percentage of mobilized shear force as the ratio of the current shear force to the current
frictional limit. Represents a quantified measure of the isSliding parameter

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Viscous normal force

property phi_b
Basic friction angle (degrees)

property phi_r
Residual friction angle (degrees)

property prevNormal
Previous contact normal

property prevSigma
Previous normal stress

property ptOnP1
Point on particle 1

property ptOnP2
Point on particle 2

property shearDir
Shear direction

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearIncrementForCD
toSeeWhether it is necessary to update contactArea

property shearViscous
Viscous shear force (assumed zero at the moment)

property smallerID
id of particle with smaller plane

property tangensOfFrictionAngle
tan of angle of friction

property tension
Tension (stress units)

property tensionBroken
Whether tension is already broken. Considered true for particles with isBoundary=True

property u_cumulative
Cumulative translation

property u_elastic
Elastic shear displacement, not fully in use

226 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping

property warmstart
Warmstart for SOCP, not fully in use

class yade.wrapper.KnKsPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

EXPERIMENTAL. IPhys for PotentialParticle.

property brittleLength
Shear length where strength degrades, not fully in use

property cohesion
Cohesion

property cohesionBroken
Whether cohesion is already broken. Considered true for particles with isBoundary=True

property contactArea
Contact area (auto-updated)

property cumulative_us
Cumulative shear translation (not fully in use)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property effective_phi
Friction angle in clay after displacement

property frictionAngle
Friction angle

property initialShearDir
Initial shear direction

property intactRock
Whether to consider cohesive force in the Mohr-Coulomb criterion, if allowBreakage=False
and cohesionBroken=False.

property isSliding
Check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property jointLength
Approximated contact length

2.3. Yade wrapper class reference 227

Yade Documentation, Release 3rd ed.

property jointType
jointType

property kn
Normal stiffness

property knVol
Volumetric normal stiffness = Knormal

property kn_i
Currently, we assume kn_i and Knormal are adopting the same value in Ip2 initialisation

property ks
Shear stiffness

property ksVol
Volumetric shear stiffness = Kshear

property ks_i
Currently, we assume ks_i and Kshear are adopting the same value in Ip2 initialisation

property maxClosure
not fully in use, vmi

property mobilizedShear
Percentage of mobilized shear force as the ratio of the current shear force to the current
frictional limit. Represents a quantified measure of the isSliding parameter

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Viscous normal force

property phi_b
Basic friction angle (degrees)

property phi_r
Residual friction angle (degrees)

property prevNormal
Previous normal

property prevSigma
Previous normal stress

property ptOnP1
Point on particle 1

property ptOnP2
Point on particle 2

property shearDir
Shear direction

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearIncrementForCD
toSeeWhether it is necessary to update contactArea

228 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property shearViscous
Viscous shear force (assumed zero at the moment)

property tangensOfFrictionAngle
tan of angle of friction

property tension
Tension

property tensionBroken
Whether tension is already broken. Considered true for particles with isBoundary=True

property u_cumulative
Cumulative translation

property u_elastic
Elastic shear displacement, not fully in use

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping ratio, taken equal to Ip2_FrictMat_FrictMat_KnKsPhys.viscousDamping

property warmstart
Warmstart for SOCP, not fully in use

class yade.wrapper.LubricationPhys(inherits ViscElPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

IPhys class for Lubrication w/o FlowEngine. Used by Law2_ScGeom_ImplicitLubricationPhys.

property Fn
Linear-elastic part of the normal force of the contact

property Fv
Viscous part of the normal force of the contact

property a
Mean radius [m]

property cn
Normal viscous constant

property contact
The spheres are in contact

property cs
Shear viscous constant

property delta
log(u) - used for scheme with δ = log(u) variable change

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.3. Yade wrapper class reference 229

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property eps
Roughness: fraction of radius used as roughness [-]

property eta
Fluid viscosity [Pa.s]

property keps
stiffness coefficient of the asperities [N/m]. Only used with resolution method=0, with reso-
lution>0 it is always equal to kn.

property kn
Normal stiffness

property kno
Coefficient for normal stiffness (Hertzian-like contact) [N/m^(3/2)]

property ks
Shear stiffness

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

property mum
Friction coefficient [-]

property normalContactForce
Normal contact force [N]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalLubricationForce
Normal lubrication force [N]

property normalPotentialForce
Normal force from potential other than contact [N]

property nun
Coefficient for normal lubrication [N.s]

property prevDotU
du/dt from previous integration - used for trapezoidal scheme (see Law2_ScGeom_Implic-
itLubricationPhys::resolution for choosing resolution scheme)

property prev_un
Nondeformed distance (un) at t-dt [m]

property shearContactForce
Frictional contact force [N]

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

230 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property shearLubricationForce
Shear lubrication force [N]

property slip
The contact is slipping

property tangensOfFrictionAngle
tan of angle of friction

property u
Interfacial distance (u) at t-dt [m]

property ue
Surface deflection (ue) at t-dt [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.LudingPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

IPhys created from LudingMat, for use with Law2_ScGeom_LudingPhys_Basic.

property DeltMax
Maximum overlap between particles for a collision

property DeltMin
MinimalDelta value of delta

property DeltNull
Force free overlap, plastic contact deformation

property DeltPMax
Maximum overlap between particles for the limit case

property DeltPNull
Max force free overlap, plastic contact deformation

property DeltPrev
Previous value of delta

property G0
Viscous damping

property PhiF
Dimensionless plasticity depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property k1
Slope of loading plastic branch

property k2
Slope of unloading and reloading elastic branch

2.3. Yade wrapper class reference 231

Yade Documentation, Release 3rd ed.

property kc
Slope of irreversible, tensile adhesive branch

property kn
Normal stiffness

property kp
Slope of unloading and reloading limit elastic branch

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MindlinCapillaryPhys(inherits MindlinPhys → RotStiffFrictPhys → FrictPhys→ NormShearPhys → NormPhys → IPhys →
Serializable)

Adds capillary physics to Mindlin’s interaction physics.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property Fs
Shear force in local axes (computed incrementally)

property adhesionForce
Force of adhesion as predicted by DMT

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

property capillaryPressure
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law2 parameter

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

232 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fCap
Capillary Force produces by the presence of the meniscus. This is the force acting on particle
#2

property fusionNumber
Indicates the number of meniscii that overlap with this one

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property meniscus
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.3. Yade wrapper class reference 233

Yade Documentation, Release 3rd ed.

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

property vMeniscus
Volume of the meniscus

class yade.wrapper.MindlinPhys(inherits RotStiffFrictPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

Representation of an interaction of the Hertz-Mindlin type.

property Fs
Shear force in local axes (computed incrementally)

property adhesionForce
Force of adhesion as predicted by DMT

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

234 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
bool to keep a bond flagged as broken (only useful when displacement criteria is used in partial
sat for cracked cell estimates)

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.3. Yade wrapper class reference 235

Yade Documentation, Release 3rd ed.

property shearViscous
Shear viscous component

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.MindlinPhysCDM(inherits MindlinPhys → RotStiffFrictPhys → FrictPhys →
NormShearPhys → NormPhys → IPhys → Serializable)

Representation of an interaction of an extended Hertz-Mindlin type. Normal direction: parame-
ters for Conical Damage Model (Harkness et al. 2016, Suhr & Six 2017). Tangential direction:
parameters for stress dependent interparticle friction coefficient (Suhr & Six 2016). Both models
can be switched on/off separately, see FrictMatCDM.

property E
[Pa] equiv. Young’s modulus

property Fs
Shear force in local axes (computed incrementally)

property G
[Pa] equiv. shear modulus

property R
[m] contact radius in conical damage model

property adhesionForce
Force of adhesion as predicted by DMT

property alphaFac
factor considering angle of conical asperities

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

property c1
[-] parameter of pressure dependent friction model c1

property c2
[-] parameter of pressure dependent friction model c2

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

236 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
bool to keep a bond flagged as broken (only useful when displacement criteria is used in partial
sat for cracked cell estimates)

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property isYielding
bool: is contact currently yielding?

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property mu0
[-] parameter of pressure dependent friction model mu0

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

2.3. Yade wrapper class reference 237

Yade Documentation, Release 3rd ed.

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property sigmaMax
[Pa] max compressive strength of material

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.MortarPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

IPhys class containing parameters of MortarMat. Used by Law2_ScGeom_MortarPhys_Lourenco.

property cohesion
cohesion [Pa]

property compressiveStrength
compressiveStrength [Pa]

property crossSection
Crosssection of interaction

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property ellAspect
aspect ratio of elliptical ‘cap’. Value >1 means the ellipse is longer along normal stress axis.

failureCondition((MortarPhys)arg1, (float)arg2, (float)arg3) → bool :
Failure condition from normal stress and norm of shear stress (false=elastic, true=damaged)

238 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property kn
Normal stiffness

property ks
Shear stiffness

property neverDamage
If true, interactions remain elastic regardless stresses

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property sigmaN
Current normal stress (auto-updated)

property sigmaT
Current shear stress (auto-updated)

property tangensOfFrictionAngle
tan of angle of friction

property tensileStrength
tensileStrength [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MultiFrictPhys(inherits IPhys → Serializable)
A set of FrictPhys for describing the physical part of an interaction with multiple frictional contact
points between two LevelSet bodies, as a set of FrictPhys items in contacts. To combine with
MultiScGeom and associated classes.

property contacts
The actual list of FrictPhys items corresponding to the different contact points.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictAngle
Mother value of atan(FrictPhys.tangensOfFrictionAngle) in radians that will apply to each
contact point.

property kn
Mother value of FrictPhys.kn that will apply to each contact point.

property ks
Mother value of FrictPhys.ks that will apply to each contact point.

2.3. Yade wrapper class reference 239

Yade Documentation, Release 3rd ed.

property nodesIds
The physics counterpart of MultiScGeom.nodesIds (both should be equal by design).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.NormPhys(inherits IPhys → Serializable)
Abstract class for interactions that have normal stiffness.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.NormShearPhys(inherits NormPhys → IPhys → Serializable)
Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

240 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.PolyhedraPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)
Simple elastic material with friction for volumetric constitutive laws

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.RotStiffFrictPhys(inherits FrictPhys → NormShearPhys → NormPhys →
IPhys → Serializable)

Version of FrictPhys with a rotational stiffness

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property ktw
twist stiffness [N.m/rad]

2.3. Yade wrapper class reference 241

Yade Documentation, Release 3rd ed.

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ViscElCapPhys(inherits ViscElPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

IPhys created from ViscElCapMat, for use with Law2_ScGeom_ViscElCapPhys_Basic.

property Capillar
True, if capillar forces need to be added.

property CapillarType
Different types of capillar interaction: Willett_numeric, Willett_analytic, Weigert, Rabi-
novich, Lambert, Soulie

property Fn
Linear-elastic part of the normal force of the contact

property Fv
Viscous part of the normal force of the contact

property Vb
Liquid bridge volume [m^3]

property cn
Normal viscous constant

property cs
Shear viscous constant

property dcap
Damping coefficient for the capillary phase [-]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property gamma
Surface tension [N/m]

property kn
Normal stiffness

property ks
Shear stiffness

242 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property liqBridgeActive
Whether liquid bridge is active at the moment

property liqBridgeCreated
Whether liquid bridge was created, only after a normal contact of spheres

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property sCrit
Critical bridge length [m]

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

property theta
Contact angle [rad]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ViscElPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

IPhys created from ViscElMat, for use with Law2_ScGeom_ViscElPhys_Basic.

property Fn
Linear-elastic part of the normal force of the contact

property Fv
Viscous part of the normal force of the contact

property cn
Normal viscous constant

property cs
Shear viscous constant

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

2.3. Yade wrapper class reference 243

Yade Documentation, Release 3rd ed.

property ks
Shear stiffness

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ViscoFrictPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)
Temporary version of FrictPhys for compatibility reasons

property creepedShear
Creeped force (parallel)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

244 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.WirePhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

Representation of a single interaction of the WirePM type, storage for relevant parameters

property dL
Additional wire length for considering the distortion for WireMat type=2 (see [Thoeni2013]).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property displForceValues
Defines the values for force-displacement curve.

property initD
Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

property isDoubleTwist
If true the properties of the interaction will be defined as a double-twisted wire.

property isLinked
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

property isShifted
If true WireMat type=2 and the force-displacement curve will be shifted.

property kn
Normal stiffness

property ks
Shear stiffness

property limitFactor
This value indicates on how far from failing the wire is, e.g. actual normal displacement
divided by admissible normal displacement.

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property plastD
Plastic part of the inter-particular distance of the previous step.

Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
zero.

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.3. Yade wrapper class reference 245

Yade Documentation, Release 3rd ed.

property stiffnessValues
Defines the values for the various stiffnesses (the elastic stiffness is stored as kn).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.3 Global engines

GlobalEngine

GlobalEngine

Law2_ScGeom_CapillaryPhys_Capillarity

Collider

CohesiveFrictionalContactLaw

FoamCoupling

HydrodynamicsLawLBM

FEInternalForceEngine

TimeStepper

TesselationWrapper

BoundaryController

PeriodicEngine

NewtonIntegrator

InteractionLoop

CapillarityEngine
BoxFactory

SpheresFactory

ElasticContactLaw

RungeKuttaCashKarp54IntegratorIntegrator

ForceResetter

CircularFactory

MicroMacroAnalyser

FieldApplier

GlobalStiffnessTimeStepper

TetraVolumetricLaw

FacetTopologyAnalyzer

Fig. 25: Inheritance graph of GlobalEngine, gray dashed classes are discussed in their own sections: Col-
lider, BoundaryController, PeriodicEngine, FieldApplier. See also: BoxFactory, CapillarityEngine, Cir-
cularFactory, CohesiveFrictionalContactLaw, ElasticContactLaw, FEInternalForceEngine, FacetTopol-
ogyAnalyzer, FoamCoupling, ForceResetter, GlobalStiffnessTimeStepper, HydrodynamicsLawLBM , In-
tegrator, InteractionLoop, Law2_ScGeom_CapillaryPhys_Capillarity, MicroMacroAnalyser, NewtonIn-
tegrator, RungeKuttaCashKarp54Integrator, SpheresFactory, TesselationWrapper, TetraVolumetricLaw,
TimeStepper.

class yade.wrapper.GlobalEngine(inherits Engine → Serializable)
Engine that will generally affect the whole simulation (contrary to PartialEngine).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

246 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.BoxFactory(inherits SpheresFactory → GlobalEngine → Engine → Serializable)
Box geometry of the SpheresFactory region, given by extents and center

property PSDcalculateMass
PSD-Input is in mass (true), otherwise the number of particles will be considered.

property PSDcum
PSD-dispersion, cumulative procent meanings [-]

property PSDsizes
PSD-dispersion, sizes of cells, Diameter [m]

property blockedDOFs
Blocked degress of freedom

property center
Center of the region

property color
Use the color for newly created particles, if specified

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactDiam
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.3. Yade wrapper class reference 247

Yade Documentation, Release 3rd ed.

property extents
Extents of the region

property goalMass
Total mass that should be attained at the end of the current step. (auto-updated)

property ids
ids of created bodies

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
groupMask to apply for newly created spheres

property massFlowRate
Mass flow rate [kg/s]

property materialId
Shared material id to use for newly created spheres (can be negative to count from the end)

property maxAttempt
Maximum number of attempts to position a new sphere randomly.

property maxMass
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

property maxParticles
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

property normal
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

property normalVel
Direction of particle’s velocites.

property numParticles
Cummulative number of particles produces so far (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rMax
Maximum radius of generated spheres (uniform distribution)

property rMin
Minimum radius of generated spheres (uniform distribution)

property silent
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

248 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property stopIfFailed
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalMass
Mass of spheres that was produced so far. (auto-updated)

property totalVolume
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vAngle
Maximum angle by which the initial sphere velocity deviates from the normal.

property vMax
Maximum velocity norm of generated spheres (uniform distribution)

property vMin
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CapillarityEngine(inherits GlobalEngine → Engine → Serializable)
This engine loops over interactions with physics CapillaryPhysDelaunay and it assign pendular
bridges to them. It is a reimplementation of [Scholtes2009b], adding the option of imposing the
bridge volume (instead of only capillary pressure) and enabling using unstructured input data by
triangulation. This reimplementation also provides more geometrical quantities in order to define
interfacial energy terms, it was used specifically in [Chalak2017].

If :yref:‘CapillarityEngine.imposePressure‘==True, a uniform capillary pressure is assigned to all
bridges, the liquid volume of each bridge is a result and it will change if the distance between
the spheres changes. If :yref:‘CapillarityEngine.imposePressure‘==False, then the volume of each
bridge remains constant during motion, and capillary pressure is updated, instead.

For references, see [Scholtes2009b] and a couple papers by the same authors; [Scholtes2009d] (in
french) is the most detailed.

The engine needs an input data file available in yade-data package.

In order to allow capillary forces between distant spheres, it is necessary to en-
large the bounding boxes using Bo1_Sphere_Aabb::aabbEnlargeFactor and make the Ig2
define define distant interactions via:yref:interactionDetectionFactor<Ig2_Sphere_Sphere_Sc-
Geom::interactionDetectionFactor>. It is also necessary to disable interactions removal by the
constitutive law (Law2). The only combinations of laws supported are currently capillary law
+ Law2_ScGeom_FrictPhys_CundallStrack and capillary law + Law2_ScGeom_MindlinPhys_-
Mindlin (and the other variants of Hertz-Mindlin).

See triaxCapillarityDelaunay.py for an example script.

property binaryFusion
If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected

property capillaryPressure
Value of the capillary pressure Uc defines as Uc=Ugas-Uliquid

property createDistantMeniscii
Generate meniscii between distant spheres? Else only maintain the existing one. For modeling
a wetting path this flag should always be false. For a drying path it should be true for one
step (initialization) then false, as in the logic of [Scholtes2009c]. The engine turns it off
automatically after one execution.

2.3. Yade wrapper class reference 249

https://gitlab.com/yade-dev/yade-data/-/raw/887bfc12b6a8ad91024662fcf83efaf1dd01d968/capillaryFiles/capillaryfile.txt?inline=false

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property disp
Dispersion from the mean Value of the roughness

property epsilonMean
Mean Value of the roughness

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fusionDetection
If true potential menisci overlaps are checked

property hertzInitialized
FIXME: replace by class index

property hertzOn
(auto-updated) true if hertz model is used

property imposePressure
If True, suction is imposed and is constant if not Volume is imposed-Undrained test

property initialized

property inputFilename
the file with meniscus solutions, used for interpolation.

intEnergy((CapillarityEngine)arg1) → float :
define the energy of interfaces in unsaturated pendular state

property interactionDetectionFactor
defines critical distance for deleting interactions. Must be consistent with the Ig2 value.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property liquidTension
Value of the superficial water tension in N/m

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

solveStandalone((CapillarityEngine)arg1, (float)R1, (float)R2, (float)pressure, (float)gap[,
(CapillaryPhysDelaunay)bridge=None]) → CapillaryPhysDelaunay :

250 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Returns a CapillaryPhysDelaunay object representing a single bridge independently of the
scene, using radii R1 and R2, capillary pressure, and gap between two spheres. The returned
value contains internals of the interpolation process, it can be passed as an optional argument
(‘bridge’). If the resolution is repeated multiple times, re-using cached data will increase
performance if the geometrical parameters are changing by small increments

swInterface((CapillarityEngine)arg1) → float :
define the amount of solid-wetting interfaces in unsaturated pendular state

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalVolumeConstant
in undrained test there are 2 options, If True, the total volume of water is imposed,if false the
volume of each meniscus is kept constant: in this case capillary pressure can be imposed for
initial distribution of meniscus or it is the total volume that can be imposed initially

property totalVolumeofWater
Value of imposed water volume

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

waterVolume((CapillarityEngine)arg1) → float :
return the total value of water in the sample

wnInterface((CapillarityEngine)arg1) → float :
define the amount of wetting-non-wetiing interfaces in unsaturated pendular state

class yade.wrapper.CircularFactory(inherits SpheresFactory → GlobalEngine → Engine →
Serializable)

Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or
cylinder (given by radius, length and center).

property PSDcalculateMass
PSD-Input is in mass (true), otherwise the number of particles will be considered.

property PSDcum
PSD-dispersion, cumulative procent meanings [-]

property PSDsizes
PSD-dispersion, sizes of cells, Diameter [m]

property blockedDOFs
Blocked degress of freedom

property center
Center of the region

property color
Use the color for newly created particles, if specified

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 251

Yade Documentation, Release 3rd ed.

property exactDiam
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property goalMass
Total mass that should be attained at the end of the current step. (auto-updated)

property ids
ids of created bodies

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property length
Length of the cylindrical region (0 by default)

property mask
groupMask to apply for newly created spheres

property massFlowRate
Mass flow rate [kg/s]

property materialId
Shared material id to use for newly created spheres (can be negative to count from the end)

property maxAttempt
Maximum number of attempts to position a new sphere randomly.

property maxMass
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

property maxParticles
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

property normal
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

property normalVel
Direction of particle’s velocites.

property numParticles
Cummulative number of particles produces so far (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

252 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property rMax
Maximum radius of generated spheres (uniform distribution)

property rMin
Minimum radius of generated spheres (uniform distribution)

property radius
Radius of the region

property silent
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

property stopIfFailed
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalMass
Mass of spheres that was produced so far. (auto-updated)

property totalVolume
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vAngle
Maximum angle by which the initial sphere velocity deviates from the normal.

property vMax
Maximum velocity norm of generated spheres (uniform distribution)

property vMin
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CohesiveFrictionalContactLaw(inherits GlobalEngine → Engine →
Serializable)

[DEPRECATED] Loop over interactions applying Law2_ScGeom6D_CohFrictPhys_CohesionMo-
ment on all interactions.

Note: Use InteractionLoop and Law2_ScGeom6D_CohFrictPhys_CohesionMoment instead of
this class for performance reasons.

property always_use_moment_law
If false, compute moments only for cohesive contacts, broken contacts will have only normal
and shear forces. If true, compute bending/twisting moments at all contacts and use the
frictional coefficients CohFrictMat::etaRoll and CohFrictMat::etaTwist to define the strength
of the broken contacts.

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys…

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

2.3. Yade wrapper class reference 253

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ElasticContactLaw(inherits GlobalEngine → Engine → Serializable)
[DEPRECATED] Loop over interactions applying Law2_ScGeom_FrictPhys_CundallStrack on all
interactions.

Note: Use InteractionLoop and Law2_ScGeom_FrictPhys_CundallStrack instead of this class
for performance reasons.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

254 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FEInternalForceEngine(inherits GlobalEngine → Engine → Serializable)
Unified dispatcher for handling Finite Element internal force loop at every step, for parallel per-
formance reasons.

Special constructor

Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property internalforcedispatcher
InternalForceDispatcher object that is used for dispatching of element types.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 255

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FacetTopologyAnalyzer(inherits GlobalEngine → Engine → Serializable)
Initializer for filling adjacency geometry data for facets.

Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.

property commonEdgesFound
how many common edges were identified during last run. (auto-updated)

property commonVerticesFound
how many common vertices were identified during last run. (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property projectionAxis
Axis along which to do the initial vertex sort

property relTolerance
maximum distance of ‘identical’ vertices, relative to minimum facet size

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FoamCoupling(inherits GlobalEngine → Engine → Serializable)

256 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

An engine for coupling Yade with the finite volume fluid solver OpenFOAM in
parallel.

Requirements : Yade compiled with MPI libs, OpenFOAM-6 (openfoam is not required for
compilation).Yade is executed under MPI environment with OpenFOAM simultaneously, and
using MPI communication routines data is exchanged between the solvers.

1. Yade broadcasts the particle data -> position, velocity, ang-velocity, radius to all the
foam processes as in castParticle

2. In each foam process, particle is searched.Yade keeps a vector(cpp) of the rank of the openfoam
process containing that particular particle (FoamCoupling::procList), using updateProcList

3. In simple lagrangian point force coupling Yade recieves the particle hydrodynamic force
and torque from the openfoam process, the sender is identified from the vector FoamCou-
pling::procList. In the case of Gaussian interpolation, contribution from every process is summed
using function sumHydroForce . 4. The interval (substepping) is set automatically (FoamCou-
pling::dataExchangeInterval) based on dtfoam/dtYade, calculated in function exchangeDeltaT

SetOpenFoamSolver((FoamCoupling)arg1, (str)OpenFOAMSolverName,
(int)numOpenFOAMProcesses) → None :

Starts the Yade coupled OpenFOAM solver with the requested number of processes

StartFoamSolver((FoamCoupling)arg1) → None :
Starts the OpenFOAM solver

property comm
Communicator to be used for MPI (converts mpi4py comm <-> c++ comm)

property dataExchangeInterval
Number of iterations/substepping : for stability and to be in sync with fluid solver calculated
in exchangeDeltaT

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

eraseId((FoamCoupling)arg1, (int)idToErase) → bool :
remove a body from hydrodynamic force coupling

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fluidDensity
fluidDensity

property fluidDomains
list of fluid domain bounding fictitious fluid bodies that has the fluid mesh bounds

property foamDeltaT
timestep in openfoam solver from exchangeDeltaT

property foamPath
path to OpenFoam

2.3. Yade wrapper class reference 257

Yade Documentation, Release 3rd ed.

property foamVersion
version of OpenFoam environment

getFluidDomainBbox((FoamCoupling)arg1) → None :
get the fluid domain bounding boxes, called once during simulation initialization.

getIdList((FoamCoupling)arg1) → object :
get the ids of bodies in coupling

getNumBodies((FoamCoupling)arg1) → int :
get the number of bodies in the coupling

insertBodyId((FoamCoupling)arg1, (int)newId) → None :
insert a new body id for hydrodynamic force coupling

property isGaussianInterp
switch for Gaussian interpolation of field varibles in openfoam. Uses sumHydroForce to obtain
hydrodynamic force

killMPI((FoamCoupling)arg1) → None :
Destroy MPI, to be called at the end of the simulation, from killMPI

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property numParticles
number of particles in coupling.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particleDensity
particle Density

setIdList((FoamCoupling)arg1, (object)bodyIdlist) → None :
list of body ids in hydroForce coupling. (links to :yref: FoamCoupling::bodyList vector, used
to build particle data FoamCoupling::particleData. FoamCoupling::particleData contains the
particle pos, vel, angvel, radius and this is sent to foam.)

setNumParticles((FoamCoupling)arg1, (int)numparticles) → None :
number of particles in coupling

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ForceResetter(inherits GlobalEngine → Engine → Serializable)
Reset all forces stored in Scene::forces (O.forces in python). Typically, this is the first engine to
be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.

258 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlobalStiffnessTimeStepper(inherits TimeStepper → GlobalEngine →
Engine → Serializable)

An engine assigning the time-step as a fraction of the minimum eigen-period in the problem. The
derivation is detailed in the chapter on DEM formulation. The viscEl option enables to evaluate
the timestep in a similar way for the visco-elastic contact law Law2_ScGeom_ViscElPhys_Basic,
more detail in GlobalStiffnessTimestepper::viscEl.

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property defaultDt
used as the initial value of the timestep (especially useful in the first steps when no contact
exist). If negative, it will be defined by utils.PWaveTimeStep * GlobalStiffnessTimeStep-
per::timestepSafetyCoefficient

property densityScaling
(auto-updated) don’t modify this value if you don’t plan to modify the scaling factor manually
for some bodies. In most cases, it is enough to set NewtonIntegrator::densityScaling and let
this one be adjusted automatically.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 259

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxDt
if positive, used as max value of the timestep whatever the computed value

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property parallelMode
if parallelMode, dt is set to min of all subdomain dt.

property previousDt
last computed dt (auto-updated)

property targetDt
if NewtonIntegrator::densityScaling is active, this value will be used as the simulation timestep
and the scaling will use this value of dt as the target value. The value of targetDt is arbitrary
and should have no effect in the result in general. However if some bodies have imposed
velocities, for instance, they will move more or less per each step depending on this value.

property timeStepUpdateInterval
dt update interval

property timestepSafetyCoefficient
safety factor between the minimum eigen-period and the final assigned dt (less than 1)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscEl
To use with ViscElPhys. if True, evaluate separetly the minimum eigen-period in the problem
considering only the elastic contribution on one hand (spring only), and only the viscous
contribution on the other hand (dashpot only). Take then the minimum of the two and
use the safety coefficient GlobalStiffnessTimestepper::timestepSafetyCoefficient to take into
account the possible coupling between the two contribution.

class yade.wrapper.HydrodynamicsLawLBM(inherits GlobalEngine → Engine → Serializable)
Engine to simulate fluid flow (with the lattice Boltzmann method) with a coupling with the discrete
element method. If you use this Engine, please cite and refer to F. Lominé et al. International
Journal For Numerical and Analytical Method in Geomechanics, 2012, doi: 10.1002/nag.1109

property ConvergenceThreshold

260 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property CstBodyForce
A constant body force (=that does not vary in time or space, otherwise the implementation
introduces errors)

property DemIterLbmIterRatio
Ratio between DEM and LBM iterations for subcycling

property EndTime
the time to stop the simulation

property EngineIsActivated
To activate (or not) the engine

property IterMax
This variable can be used to do several LBM iterations during one DEM iteration.

property IterPrint
Print info on screen every IterPrint iterations

property IterSave
Data are saved every IterSave LBM iteration (or see TimeSave)

property IterSubCyclingStart
Iteration number when the subcycling process starts

property LBMSavedData
a list of data that will be saved. Can use veloc-
ity,velXY,forces,rho,bodies,nodeBD,newNode,observedptc,observednode,contacts,spheres,bz2

property Nu
Fluid kinematic viscosity

property Nx
The number of grid division in x direction

property ObservedNode
The identifier of the node that will be observed (-1 means none)

property ObservedPtc
The identifier of the particle that will be observed (-1 means the first one)

property RadFactor
The radius of DEM particules seen by the LBM is the real radius of particules*RadFactor

property Rho
Fluid density

property SaveGridRatio
Grid data are saved every SaveGridRatio * IterSave LBM iteration (with SaveMode=1)

property SaveMode
Save Mode (1-> default, 2-> in time (not yet implemented)

property TimeSave
Data are saved at constant time interval (or see IterSave)

property VbCutOff
the minimum boundary velocity that is taken into account

property VelocityThreshold
Velocity threshold when removingCriterion=2

2.3. Yade wrapper class reference 261

Yade Documentation, Release 3rd ed.

property WallXm_id
Identifier of the X- wall

property WallXp_id
Identifier of the X+ wall

property WallYm_id
Identifier of the Y- wall

property WallYp_id
Identifier of the Y+ wall

property WallZm_id
Identifier of the Z- wall

property WallZp_id
Identifier of the Z+ wall

property XmBCType
Boundary condition for the wall in Xm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property XmBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property XmBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property XmYmZmBCType
Boundary condition for the corner node XmYmZm (not used with d2q9, -1: unused, 1: pres-
sure condition, 2: velocity condition).

property XmYmZpBCType
Boundary condition for the corner node XmYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

property XmYpZmBCType
Boundary condition for the corner node XmYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

property XmYpZpBCType
Boundary condition for the corner node XmYpZp (-1: unused, 1: pressure condition, 2:
velocity condition).

property XpBCType
Boundary condition for the wall in Xp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property XpBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property XpBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property XpYmZmBCType
Boundary condition for the corner node XpYmZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

property XpYmZpBCType
Boundary condition for the corner node XpYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

262 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property XpYpZmBCType
Boundary condition for the corner node XpYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

property XpYpZpBCType
Boundary condition for the corner node XpYpZp (-1: unused, 1: pressure condition, 2: velocity
condition).

property YmBCType
Boundary condition for the wall in Ym (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property YmBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property YmBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property YpBCType
Boundary condition for the wall in Yp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property YpBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property YpBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property ZmBCType
Boundary condition for the wall in Zm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property ZmBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property ZmBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property ZpBCType
Boundary condition for the wall in Zp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property ZpBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property applyForcesAndTorques
Switch to apply forces and torques

property bc
Boundary condition

property dP
Pressure difference between input and output

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property defaultLbmInitMode
Switch between the two initialisation methods

2.3. Yade wrapper class reference 263

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property model
The LB model. Until now only d2q9 is implemented

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property periodicity
periodicity

property removingCriterion
Criterion to remove a sphere (1->based on particle position, 2->based on particle velocity

property tau
Relaxation time

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useWallXm
Set true if you want that the LBM see the wall in Xm

property useWallXp
Set true if you want that the LBM see the wall in Xp

property useWallYm
Set true if you want that the LBM see the wall in Ym

property useWallYp
Set true if you want that the LBM see the wall in Yp

property useWallZm
Set true if you want that the LBM see the wall in Zm

property useWallZp
Set true if you want that the LBM see the wall in Zp

property zpBcRho
(!!! not fully implemented !!) The density imposed at the boundary

264 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.Integrator(inherits TimeStepper → GlobalEngine → Engine → Serializable)
Integration Engine Interface.

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property integrationsteps
all integrationsteps count as all succesfull substeps

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxVelocitySq
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

property timeStepUpdateInterval
dt update interval

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.InteractionLoop(inherits GlobalEngine → Engine → Serializable)
Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.

Special constructor

Constructs from 3 lists of Ig2, Ip2, Law2 functors respectively; they will be passed to internal dis-
patchers, which you might retrieve as geomDispatcher, physDispatcher, lawDispatcher respectively.

2.3. Yade wrapper class reference 265

Yade Documentation, Release 3rd ed.

property callbacks
Callbacks which will be called for every Interaction, if activated.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property geomDispatcher
IGeomDispatcher object that is used for dispatch.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lawDispatcher
LawDispatcher object used for dispatch.

property loopOnSortedInteractions
If true, the main interaction loop will occur on a sorted list of interactions. This is SLOW
but useful to workaround floating point force addition non reproducibility when debugging
parallel implementations of yade.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property physDispatcher
IPhysDispatcher object used for dispatch.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CapillaryPhys_Capillarity(inherits GlobalEngine → Engine→ Serializable)
This engine allows one to take into account capillary forces/effects between spheres coming from
the presence of distinct interparticular liquid bridges (menisci) at existing interactions (between
particle pairs, in the so-called pendular regime). In order to allow capillary forces between distant
spheres, it is necessary to enlarge the bounding boxes using Bo1_Sphere_Aabb::aabbEnlargeFactor
and make the Ig2 define define distant interactions via interactionDetectionFactor. See also create-
DistantMeniscii. It is also necessary to disable interactions removal by the constitutive law (Law2).
The only combinations of laws supported are currently capillary law + Law2_ScGeom_FrictPhys_-
CundallStrack and capillary law + Law2_ScGeom_MindlinPhys_Mindlin (and the other variants
of Hertz-Mindlin)

266 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

The control parameter for simulating liquid bridges is the capillary pressure (or suction) Uc =
Ugas - Uliquid. Liquid bridges properties (volume V, extent over interacting grains delta1 and
delta2) are computed as a result of the defined capillary pressure and of the interacting geometry
(spheres radii and interparticular distance). For this purpose, ascii files M(r=i) with i=R1/R2
(and a possible suffix) are required, containing a set of results from the resolution of the Laplace-
Young equation for different configurations of the interacting geometry, and can be downloaded
from yade-data/capillaryFiles (direct download here) for the case of a null wetting angle. They
could also be regenerated, possibly for other conditions, by any user as per point II. in exam-
ples/capillaryLaplaceYoung/README.md.

See examples/capillaryLaplaceYoung/ folder for example scripts.

References: in english [Scholtes2009b] [Duriez2017b]; more detailed, but in french [Scholtes2009d].

property binaryFusion
If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected.
Otherwise fCap = fCap / (fusionNumber + 1) (experimental)

property capillaryPressure
Value of the capillary pressure Uc defined as Uc=Ugas-Uliquid

property createDistantMeniscii
Generate meniscii between distant spheres ? Else only maintain the existing ones. For mod-
eling a wetting path this flag should always be false. For a drying path it should be true for
one step (initialization) then false, as in the logic of [Scholtes2009c]. The engine turns it off
automatically after one execution.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fusionDetection
If true potential menisci overlaps are checked, computing fusionNumber for each capillary
interaction, and reducing fCap according to binaryFusion

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property suffCapFiles
Capillary files suffix: M(r=X)suffCapFiles

2.3. Yade wrapper class reference 267

https://gitlab.com/yade-dev/yade-data/-/tree/main/capillaryFiles
https://gitlab.com/yade-dev/yade-data/-/archive/main/yade-data-main.zip?path=capillaryFiles
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/README.md
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/README.md
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/

Yade Documentation, Release 3rd ed.

property surfaceTension
Value of considered surface tension

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MicroMacroAnalyser(inherits GlobalEngine → Engine → Serializable)
compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.

property compDeformation
Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

property compIncrt
Should increments of force and displacements be defined on [n,n+1]? If not, states will be
saved with only positions and forces (no displacements).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property incrtNumber

property interval
Number of timesteps between analyzed states.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nonSphereAsFictious
bodies that are not spheres will be used to defines bounds (else just skipped).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property outputFile
Base name for increment analysis output file.

property stateFileName
Base name of state files.

268 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property stateNumber
A number incremented and appended at the end of output files to reflect increment number.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.NewtonIntegrator(inherits GlobalEngine → Engine → Serializable)
Engine integrating newtonian motion equations, see Motion integration for some theoretical back-
ground.

property dampGravity
By default, numerical damping applies to ALL forces, even gravity. If this option is set to
false, then the gravity forces calculated based on NewtonIntegrator.gravity are excluded from
the damping calculation. This option has no effect on gravity forces added by GravityEngine.

property damping
damping coefficient for Cundall’s non viscous damping (see Numerical damping and
[Chareyre2005])

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property densityScaling
if True, then density scaling [Pfc3dManual30] will be applied in order to have a critical timestep
equal to GlobalStiffnessTimeStepper::targetDt for all bodies. This option makes the simulation
unrealistic from a dynamic point of view, but may speedup quasistatic simulations. In rare
situations, it could be useful to not set the scalling factor automatically for each body (which
the time-stepper does). In such case revert GlobalStiffnessTimeStepper.densityScaling to False.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactAsphericalRot
Enable more exact body rotation integrator for aspherical bodies only, using formulations from
[delValle2023], [Omelyan1998], or [Fincham1992] depending on rotAlgorithm

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property gravity
Gravitational acceleration (effectively replaces GravityEngine).

property kinSplit
Whether to separately track translational and rotational kinetic energy.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined and the bitwise AND between mask and body‘s groupMask gives 0, the body
will not move/rotate. Velocities and accelerations will be calculated not paying attention to
this parameter.

2.3. Yade wrapper class reference 269

Yade Documentation, Release 3rd ed.

property maxVelocitySq
stores max. displacement, based on which we trigger collision detection. (auto-updated)

property niterOmelyan1998
The number of iterations used to solve the nonlinear system of [Omelyan1998] formulation.
Provided a small enough timestep, three iterations are enough to make the system converge.

property normalizeEvery
Normalize the quaternion every normalizeEvery step. Only used in the aspherical formulations
from [delValle2023], [Omelyan1998].

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property prevVelGrad
Store previous velocity gradient (Cell::velGrad) to track average acceleration in periodic sim-
ulations. (auto-updated)

property rotAlgorithm
Which rotation algorithm to use. Options are: delValle2023, Omelyan1998, Fincham1992.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property warnNoForceReset
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.wrapper.RungeKuttaCashKarp54Integrator(inherits Integrator → TimeStepper →
GlobalEngine → Engine → Serializable)

RungeKuttaCashKarp54Integrator engine.

__init__((object)arg1) → None
object __init__(tuple args, dict kwds)

__init__((object)arg1, (list)arg2) -> object :
Construct from (possibly nested) list of slaves.

property a_dxdt

property a_x

property abs_err
Relative integration tolerance

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

270 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property integrationsteps
all integrationsteps count as all succesfull substeps

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxVelocitySq
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rel_err
Absolute integration tolerance

property slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

property stepsize
It is not important for an adaptive integration but important for the observer for setting the
found states after integration

property timeStepUpdateInterval
dt update interval

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.SpheresFactory(inherits GlobalEngine → Engine → Serializable)
Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMax, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive maxParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overridden SpheresFactory::pickRandomPosition().

A sample script for this engine is in scripts/spheresFactory.py.

property PSDcalculateMass
PSD-Input is in mass (true), otherwise the number of particles will be considered.

2.3. Yade wrapper class reference 271

https://gitlab.com/yade-dev/trunk/blob/master/scripts/spheresFactory.py

Yade Documentation, Release 3rd ed.

property PSDcum
PSD-dispersion, cumulative procent meanings [-]

property PSDsizes
PSD-dispersion, sizes of cells, Diameter [m]

property blockedDOFs
Blocked degress of freedom

property color
Use the color for newly created particles, if specified

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactDiam
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property goalMass
Total mass that should be attained at the end of the current step. (auto-updated)

property ids
ids of created bodies

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
groupMask to apply for newly created spheres

property massFlowRate
Mass flow rate [kg/s]

property materialId
Shared material id to use for newly created spheres (can be negative to count from the end)

property maxAttempt
Maximum number of attempts to position a new sphere randomly.

property maxMass
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

property maxParticles
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

272 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property normal
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

property normalVel
Direction of particle’s velocites.

property numParticles
Cummulative number of particles produces so far (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rMax
Maximum radius of generated spheres (uniform distribution)

property rMin
Minimum radius of generated spheres (uniform distribution)

property silent
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

property stopIfFailed
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalMass
Mass of spheres that was produced so far. (auto-updated)

property totalVolume
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vAngle
Maximum angle by which the initial sphere velocity deviates from the normal.

property vMax
Maximum velocity norm of generated spheres (uniform distribution)

property vMin
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.TesselationWrapper(inherits GlobalEngine → Engine → Serializable)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities (see also the dedicated section in user manual). The calculation of microstrain
is explained in [Catalano2014a]

See example usage in script example/tesselationWrapper/tesselationWrapper.py.

Below is an output of the defToVtk function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.)

2.3. Yade wrapper class reference 273

Yade Documentation, Release 3rd ed.

The definition of outer contours of arbitrary shapes and the application of stress on them, based
on CGAL’s ‘alpha shapes’ is also possible. See scripts/examples/alphaShapes/GlDrawAlpha.py
(giving the figure below) and other examples therein. Read more in [Pekmezi2020] and further
papers by the same authors.

addBoundingPlane((TesselationWrapper)arg1, (int)axis, (bool)positive) → int :
add a bounding plane (in fact a sphere with very large radius) bounding the spheres along
the direction ‘axis’ (0,1,2), on the ‘positive’ or negative side.

property alphaCapsVol
The volume of the packing as defined by the boundary alpha cap polygons

applyAlphaForces((TesselationWrapper)arg1, (Matrix3)stress[, (float)alpha=0[,
(float)shrinkedAlpha=0[, (bool)fixedAlpha=False[, (bool)reset=True]]]]) →
None :

set permanent forces based on stress using an alpha shape

274 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/examples/alphaShapes/GlDrawAlpha.py

Yade Documentation, Release 3rd ed.

applyAlphaVel((TesselationWrapper)arg1, (Matrix3)velGrad[, (float)alpha=0[,
(float)shrinkedAlpha=0[, (bool)fixedAlpha=False]]]) → None :

set velocities based on a velocity gradient tensor using an alpha shape

calcAlphaStress((TesselationWrapper)arg1[, (float)alpha=0[, (float)shrinkedAlpha=0[,
(bool)fixedAlpha=False]]]) → Matrix3 :

get the Love-Weber average of the Cauchy stress on the polyhedral caps associated to boundary
particles

calcVolPoroDef((TesselationWrapper)arg1[, (bool)deformation=False]) → dict :
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

computeDeformations((TesselationWrapper)arg1) → None :
compute per-particle deformation. Get it with TesselationWrapper::deformation (id,i,j).

computeVolumes((TesselationWrapper)arg1) → None :
compute volumes of all Voronoi’s cells.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defToVtk((TesselationWrapper)arg1[, (str)outputFile=’def.vtk’]) → None :
Write local deformations in vtk format from states 0 and 1.

defToVtkFromPositions((TesselationWrapper)arg1[, (str)input1=’pos1’[, (str)input2=’pos2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=False]]]]) → None :

Write local deformations in vtk format from positions files (one sphere per line, with x,y,z,rad
separated by spaces).

defToVtkFromStates((TesselationWrapper)arg1[, (str)input1=’state1’[, (str)input2=’state2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=True]]]]) → None :

Write local deformations in vtk format from state files (since the file format is very special,
consider using defToVtkFromPositions if the input files were not generated by Tesselation-
Wrapper).

deformation((TesselationWrapper)arg1, (int)id, (int)i, (int)j) → float :
Get individual components of the particle deformation tensors

deformationTensor((TesselationWrapper)arg1, (int)id) → Matrix3 :
Get particle deformation (tensor)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property far
Defines the radius of the large virtual spheres used to define nearly flat boundaries around the
assembly. The radius will be the (scene’s) bounding box size multiplied by ‘far’. Higher values
will minimize the error theoretically (since the infinite sphere really defines a plane), but it
may increase numerical errors at some point. The default should give a resonable compromize.

2.3. Yade wrapper class reference 275

Yade Documentation, Release 3rd ed.

getAlphaCaps((TesselationWrapper)arg1[, (float)alpha=0[, (float)shrinkedAlpha=0[,
(bool)fixedAlpha=False]]]) → list :

Get the list of area vectors for the polyhedral caps associated to boundary particles (‘extended’
alpha-contour). If alpha is not specified or null the minimum alpha resulting in a unique
connected domain is used. Taking a smaller ‘shrinked’ alpha for placing the virtual spheres
moves the enveloppe outside the packing, It should be ~(alpha-refRad) typically.

getAlphaFaces((TesselationWrapper)arg1[, (float)alpha=0]) → list :
Get the list of alpha faces for a given alpha. If alpha is not specified or null the minimum
alpha resulting in a unique connected domain is used

getAlphaGraph((TesselationWrapper)arg1[, (float)alpha=0[, (float)shrinkedAlpha=0[,
(bool)fixedAlpha=False]]]) → list :

Get the list of area vectors for the polyhedral caps associated to boundary particles (‘extended’
alpha-contour). If alpha is not specified or null the minimum alpha resulting in a unique
connected domain is used

getAlphaVertices((TesselationWrapper)arg1[, (float)alpha=0]) → list :
Get the list of ‘alpha’ bounding spheres for a given alpha. If alpha is not specified or null the
minimum alpha resulting in a unique connected domain is used. This function is generating
a new alpha shape for each call, not to be used intensively.

property grad_u
The Displacement Gradient Tensor

property groupMask
Bitmask for filtering spheres, ignored if 0.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

loadState((TesselationWrapper)arg1[, (str)inputFile=’state’[, (bool)state=0[, (bool)bz2=True]]
]) → None :

Load a file with positions to define state 0 or 1.

property mma
underlying object processing the data - see specific settings in MicroMacroAnalyser class
documentation

property n_spheres
(auto-computed)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

saveState((TesselationWrapper)arg1[, (str)outputFile=’state’[, (bool)state=0[, (bool)bz2=True]
]]) → None :

Save a file with positions, can be later reloaded in order to define state 0 or 1.

setState((TesselationWrapper)arg1[, (bool)state=0]) → None :
Make the current state of the simulation the initial (0) or final (1) configuration for the
definition of displacement increments, use only state=0 if you just want to get volmumes and
porosity. Exclude bodies using the bitmask TesselationWrapper::groupMask.

276 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

testAlphaShape((TesselationWrapper)arg1[, (float)alpha=0]) → None :
transitory function, testing AlphaShape feature

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

triangulate((TesselationWrapper)arg1[, (bool)reset=True]) → None :
triangulate spheres of the packing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

volume((TesselationWrapper)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

class yade.wrapper.TetraVolumetricLaw(inherits GlobalEngine → Engine → Serializable)
Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.TimeStepper(inherits GlobalEngine → Engine → Serializable)
Engine defining time-step (fundamental class)

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

2.3. Yade wrapper class reference 277

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timeStepUpdateInterval
dt update interval

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

PeriodicEngine

PeriodicEngine

RockBolt

ResetRandomPosition
SplitPolyTauMax

PolyhedraSplitter
TriaxialStateRecorder

Recorder

PotentialParticleVTKRecorder

SnapshotEngine

RockLiningGlobal

SplitPolyMohrCoulomb

LubricationPDFEnginePDFEngine

PotentialBlockVTKRecorder

DomainLimiter

VTKRecorder

PyRunner

TorqueRecorder

ForceRecorder

CapillaryStressRecorder

MeasureCapStress

CpmStateUpdater

Fig. 26: Inheritance graph of PeriodicEngine. See also: CapillaryStressRecorder, CpmStateUpdater, Do-
mainLimiter, ForceRecorder, LubricationPDFEngine, MeasureCapStress, PDFEngine, PolyhedraSplit-
ter, PotentialBlockVTKRecorder, PotentialParticleVTKRecorder, PyRunner, Recorder, ResetRandom-
Position, RockBolt, RockLiningGlobal, SnapshotEngine, SplitPolyMohrCoulomb, SplitPolyTauMax, Tor-
queRecorder, TriaxialStateRecorder, VTKRecorder.

278 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.PeriodicEngine(inherits GlobalEngine → Engine → Serializable)
Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.

The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.

If initRun is set (false by default), the engine will run when called for the first time; otherwise
it will only start counting period (realLast, etc, interval variables) from that point, but without
actually running, and will run only once a period has elapsed since the initial run.

This class should not be used directly; rather, derive your own engine which you want to be run
periodically.

Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.

Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts:

PyRunner(realPeriod=5,iterPeriod=10000,command='print O.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whichever
comes first since it was last run.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

2.3. Yade wrapper class reference 279

Yade Documentation, Release 3rd ed.

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.CapillaryStressRecorder(inherits Recorder → PeriodicEngine →
GlobalEngine → Engine → Serializable)

Records information from capillary meniscii on samples submitted to triaxial compressions. Clas-
sical sign convention (tension positiv) is used for capillary stresses. -> New formalism needs to be
tested!!!

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

280 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.CpmStateUpdater(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In
particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.
This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.

property avgRelResidual
Average residual strength at last run.

2.3. Yade wrapper class reference 281

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxOmega
Globally maximum damage parameter at last run.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

282 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.DomainLimiter(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Delete particles that are out of axis-aligned box given by lo and hi.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property hi
Upper corner of the domain.

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lo
Lower corner of the domain.

property mDeleted
Mass of deleted particles.

property mask
If mask is defined, only particles with corresponding groupMask will be deleted.

property nDeleted
Cummulative number of particles deleted.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

2.3. Yade wrapper class reference 283

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vDeleted
Volume of deleted spheres (clumps not counted, in that case check mDeleted)

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ForceRecorder(inherits Recorder → PeriodicEngine → GlobalEngine → Engine→ Serializable)
Engine saves the resultant force affecting to bodies, listed in ids. For instance, can be useful for
defining the forces, which affects to _buldozer_ during its work.

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

284 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ids
List of bodies whose state will be measured

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalForce
Resultant force, returning by the function.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.LubricationPDFEngine(inherits PDFEngine → PeriodicEngine →
GlobalEngine → Engine → Serializable)

Implementation of PDFEngine for Lubrication law

2.3. Yade wrapper class reference 285

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property filename
Filename

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property numDiscretizeAnglePhi
Number of sector for phi-angle

property numDiscretizeAngleTheta
Number of sector for theta-angle

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

286 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property warnedOnce
For one-time warning. May trigger usefull warnings

class yade.wrapper.MeasureCapStress(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Post-processing engine giving the capillary stress tensor (the fluids mixture contribution to the to-
tal stress in unsaturated, i.e. triphasic, conditions) according to the µUNSAT expression detailled
in [Duriez2017c]. Although this expression differs in nature from the one of utils.getCapillaryStress
(consideration of distributed integrals herein, vs resultant capillary force therein), both are equiv-
alent [Duriez2016b], [Duriez2017], [Duriez2017c]. The REV volume V entering the expression is
automatically measured, from the Cell for periodic conditions, or from utils.aabbExtrema function
otherwise.

property capillaryPressure
Capillary pressure uc, to be defined equal to Law2_ScGeom_CapillaryPhys_Capillar-
ity.capillaryPressure.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
To output some debugging messages.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

2.3. Yade wrapper class reference 287

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property muGamma
Tensorial contribution to sigmaCap from the contact lines Γ : µΓ =

∫
Γ
νnw ⊗ xdl with νnw

the fluid-fluid interface conormal [Duriez2017c], and x the position. (auto-updated)

property muSnw
Tensorial contribution to sigmaCap from the wetting/non-wetting (e.g. liquid/gas) interface
Snw: µSnw =

∫
Snw

(δ − n ⊗ n)dS with n the outward normal and δ the identity tensor.
(auto-updated)

property muSsw
Tensorial contribution to sigmaCap from the wetted solid surfaces Ssw: µSsw =

∫
Ssw

n⊗xdS

with n the outward normal and x the position. (auto-updated)

property muVw
Tensorial contribution (spherical i.e. isotropic) to sigmaCap from the wetting fluid volume:
µVw = Vw δ with Vw = vW and δ the identity tensor. (auto-updated)

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property sigmaCap
The capillary stress tensor σcap itself, expressed as σcap = 1/V [uc(µVw + µSsw) +
γnw(µSnw + µΓ)] where the four microstructure tensors µVw,µSsw,µSnw,µΓ correspond
to muVw, muSsw, muSnw and muGamma attributes. (auto-updated)

property surfaceTension
Fluid-fluid surface tension γnw, to be defined equal to Law2_ScGeom_CapillaryPhys_Cap-
illarity.surfaceTension.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vW
Wetting fluid volume, summing menisci volumes (faster here than through python loops).
(auto-updated)

288 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property wettAngle
Wetting, i.e. contact, angle value (radians). To be defined consistently with the value upon
which the capillary files (used by Law2_ScGeom_CapillaryPhys_Capillarity) rely.

class yade.wrapper.PDFEngine(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Base class for spectrums calculations. Compute Probability Density Functions of normalStress,
shearStress, distance, velocity and interactions in spherical coordinates and write result to a file.
Column name format is: Data(theta, phi). Convention used: x: phi = 0, y: theta = 0, z: phi =
pi/2

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property filename
Filename

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property numDiscretizeAnglePhi
Number of sector for phi-angle

property numDiscretizeAngleTheta
Number of sector for theta-angle

2.3. Yade wrapper class reference 289

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property warnedOnce
For one-time warning. May trigger usefull warnings

class yade.wrapper.PolyhedraSplitter(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Engine that splits polyhedras.

Warning: PolyhedraSplitter returns different results depending on CGAL version! For details
see https://gitlab.com/yade-dev/trunk/issues/45

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

290 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/issues/45

Yade Documentation, Release 3rd ed.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PotentialBlockVTKRecorder(inherits PeriodicEngine → GlobalEngine →
Engine → Serializable)

Engine recording potential blocks as surfaces into files with given periodicity.

property REC_COLORS
Whether to record colors

property REC_ID
Whether to record id

property REC_INTERACTION
Whether to record contact point and forces

property REC_VELOCITY
Whether to record velocity

2.3. Yade wrapper class reference 291

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
File prefix to save to

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxDimension
Maximum allowed distance between consecutive grid lines

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property sampleX
Number of divisions in the X direction for triangulation

292 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property sampleY
Number of divisions in the Y direction for triangulation

property sampleZ
Number of divisions in the Z direction for triangulation

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property twoDimension
Whether to render the particles as 2-D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PotentialParticleVTKRecorder(inherits PeriodicEngine → GlobalEngine →
Engine → Serializable)

Engine recording potential blocks as surfaces into files with given periodicity.

property REC_COLORS
Whether to record colors

property REC_ID
Whether to record id

property REC_INTERACTION
Whether to record contact point and forces

property REC_VELOCITY
Whether to record velocity

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
File prefix to save to

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

2.3. Yade wrapper class reference 293

Yade Documentation, Release 3rd ed.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxDimension
Maximum allowed distance between consecutive grid lines

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property sampleX
Number of divisions in the X direction for triangulation

property sampleY
Number of divisions in the Y direction for triangulation

property sampleZ
Number of divisions in the Z direction for triangulation

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property twoDimension
Whether to render the particles as 2-D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PyRunner(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-
cEngine documentation for details.

294 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property command
Command to be run by python interpreter. Not run if empty.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property ignoreErrors
Debug only: set this value to true to tell PyRunner to ignore any errors encountered during
command execution.

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3. Yade wrapper class reference 295

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateGlobals
Whether to workaround ipython not recognizing local variables by calling globals().
update(locals()). If true then PyRunner is able to call functions declared later locally in
a running live yade session. The PyRunner call is a bit slower because it updates globals()
with recently declared python functions.

Warning:

When updateGlobals==False and a function was declared inside a live
yade session (ipython) then an error NameError: name 'command' is not
defined will occur unless python globals() are updated with command

globals().update(locals())

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.Recorder(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles
opening the file as needed. See PeriodicEngine for controlling periodicity.

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

296 Chapter 2. Yade for users

https://github.com/ipython/ipython/issues/62
http://ipython.org

Yade Documentation, Release 3rd ed.

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ResetRandomPosition(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.

property angularVelocity
Mean angularVelocity of spheres.

property angularVelocityRange
Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity±angularVelocityRange.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 297

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property factoryFacets
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxAttempts
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another
position.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property normal
??

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property point
??

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property subscribedBodies
Affected bodies.

298 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velocity
Mean velocity of spheres.

property velocityRange
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocity±velocityRange.

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property volumeSection
Create new spheres inside factory volume rather than on its surface.

class yade.wrapper.RockBolt(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Engine recording potential blocks as surfaces into files with given periodicity.

property averageForce
averageForce

property axialForces
force

property axialMax
maximum axial force

property axialStiffness
EA

property blockIDs
ids

property boltDirection
direction

property boltLength
startingPt

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property displacements
ids

property distanceFrCentre
nodePosition

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.3. Yade wrapper class reference 299

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
File prefix to save to

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property forces
force

property halfActiveLength
stiffness

property initRun
Run the first time we are called as well.

property initialDirection
initial length

property initialLength
initial length

property installed
installed?

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property localCoordinates
local coordinates of intersection

property maxForce
maxForce

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property name
File prefix to save to

property nodeDistanceVec
nodeDistance

property nodePosition
nodePosition

property normalStiffness
EA/L

300 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property openingCreated
opening created?

property openingRad
estimated opening radius

property preTension
prestressed tension

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property resetLengthInit
reset length for pretension

property ruptured
ruptured

property shearForces
force

property shearMax
maximum shear force

property shearStiffness
stiffness

property startingPoint
startingPt

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useMidPoint
large length

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property vtkIteratorInterval
how often to print vtk

2.3. Yade wrapper class reference 301

Yade Documentation, Release 3rd ed.

property vtkRefTimeStep
first timestep to print vtk

class yade.wrapper.RockLiningGlobal(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Engine recording potential blocks as surfaces into files with given periodicity.

property Area
A

property EA
EA

property EI
EI

property ElasticModulus
E

property Inertia
I

property assembledKglobal
global stiffness matrix

property axialForces
force

property axialMax
maximum axial force

property blockIDs
ids

property contactLength
contactLength

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property density
density

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property displacement
force

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property expansionFactor
alpha deltaT

property fileName
File prefix to save to

302 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initOverlap
initialOverlap

property initRun
Run the first time we are called as well.

property installed
installed?

property interfaceCohesion
L

property interfaceFriction
L

property interfaceStiffness
L

property interfaceTension
L

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lengthNode
L

property liningThickness
liningThickness

property localCoordinates
local coordinates of intersection

property lumpedMass
lumpedMass

property moment
moment

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property name
File prefix to save to

2.3. Yade wrapper class reference 303

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property openingCreated
opening created?

property openingRad
estimated opening radius

property radialDisplacement
force

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property refAngle
initial theta

property refDir
initial v

property refOri
initial theta

property refPos
initial u

property ruptured
ruptured

property shearForces
force

property shearMax
maximum shear force

property sigmaMax
sigma max

property sigmaMin
sigma min

property startingPoint
startingPt

property stickIDs
L

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

304 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property totalNodes
L

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property vtkIteratorInterval
how often to print vtk

property vtkRefTimeStep
first timestep to print vtk

class yade.wrapper.SnapshotEngine(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Periodically save snapshots of GLView(s) as .png files. Files are named fileBase + counter + ‘.png’
(counter is left-padded by 0s, i.e. snap00004.png).

property counter
Number that will be appended to fileBase when the next snapshot is saved (incremented at
every save). (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property deadTimeout
Timeout for 3d operations (opening new view, saving snapshot); after timing out, throw
exception (or only report error if ignoreErrors) and make myself dead. [s]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileBase
Basename for snapshots

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property format
Format of snapshots (one of JPEG, PNG, EPS, PS, PPM, BMP) QGLViewer documentation.
File extension will be lowercased format. Validity of format is not checked.

property ignoreErrors
Only report errors instead of throwing exceptions, in case of timeouts.

property initRun
Run the first time we are called as well.

2.3. Yade wrapper class reference 305

http://www.libqglviewer.com/refManual/classQGLViewer.html#abbb1add55632dced395e2f1b78ef491c

Yade Documentation, Release 3rd ed.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property msecSleep
number of msec to sleep after snapshot (to prevent 3d hw problems) [ms]

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property plot
Name of field in plot.imgData to which taken snapshots will be appended automatically.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property snapshots
Files that have been created so far

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.SplitPolyMohrCoulomb(inherits PolyhedraSplitter → PeriodicEngine →
GlobalEngine → Engine → Serializable)

Split polyhedra according to Mohr-Coulomb criterion.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

306 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
Base.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

2.3. Yade wrapper class reference 307

Yade Documentation, Release 3rd ed.

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.SplitPolyTauMax(inherits PolyhedraSplitter → PeriodicEngine → GlobalEngine→ Engine → Serializable)
Split polyhedra along TauMax.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

308 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.TorqueRecorder(inherits Recorder → PeriodicEngine → GlobalEngine →
Engine → Serializable)

Engine saves the total torque according to the given axis and ZeroPoint, the force is taken from
bodies, listed in ids For instance, can be useful for defining the torque, which affects on ball mill
during its work.

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property ids
List of bodies whose state will be measured

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

2.3. Yade wrapper class reference 309

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property rotationAxis
Rotation axis

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalTorque
Resultant torque, returning by the function.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property zeroPoint
Point of rotation center

class yade.wrapper.TriaxialStateRecorder(inherits Recorder → PeriodicEngine → GlobalEngine→ Engine → Serializable)
Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriaxialCompressionEngine or ThreeDTriaxialEngine present in the simulation).

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

310 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property porosity
porosity of the packing [-]

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

2.3. Yade wrapper class reference 311

Yade Documentation, Release 3rd ed.

class yade.wrapper.VTKRecorder(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-
processing programs such as Paraview. Both bodies (depending on their shapes) and interactions
can be recorded, with various vector/scalar quantities that are defined on them.

PeriodicEngine.initRun is initialized to True automatically.

property Key
Necessary if recorders contains ‘cracks’ or ‘moments’. A string specifying the name of file
‘cracks___.txt’ that is considered in this case (see corresponding attribute).

property ascii
Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter::Ascii, while the default is Appended)

property compress
Compress output XML files [experimental].

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
Base file name; it will be appended with {lsBody*,spheres,intrs,facets}.243100.vtu (unless
multiblock or multiblockLS is True) depending on active recorders and step number (243100
in this case). It can contain slashes, but the directory must exist already.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

property multiblock
Use multi-block (.vtm) files to store data, rather than separate .vtu files.

312 Chapter 2. Yade for users

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html

Yade Documentation, Release 3rd ed.

property multiblockLS
For executing, when True and with lsBodies in recorders, a serial export of the LevelSet bodies
into one unique multi-block (.vtm) file, rather than a OpenMP export of separate .vtu files,
when False. Compatibility with multiblock has not been implemented yet

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property parallelMode
For MPI parallel runs, each proc writes their own vtu/vtp files. Master proc writes a
pvtu/pvtp file containing metadata about worker vtu files. load the pvtu/pvtp in paraview
for visualization.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property recorders
List of active recorders (as strings). all (the default value) enables all base (‘‘lsBodies’’
excepted) and generic recorders.

Base recorders

Base recorders save the geometry (unstructured or structured grids) on which other
data is defined. They are implicitly activated by many of the other recorders. Each
of them creates a new file (or a block, if multiblock is set).

spheres
Saves positions and radii (radii) of spherical particles.

facets
Save facets positions (vertices).

boxes
Save boxes positions (edges).

lsBodies
Exports LevelSet shaped bodies in global frame, after mapping to current posi-
tions and orientations their grid with distance fields. A Python function (to use
within Paraview) is provided at examples/levelSet/pvVisu.py for helping bodies’
surfaces rendering in Paraview.

intr
Store interactions as lines between nodes at respective particles positions. Addi-
tionally stores on interactions (the geom) the signed magnitude of normal force
(forceN) and the component-wise absolute value of shear force (absForceT).

Generic recorders

2.3. Yade wrapper class reference 313

https://gitlab.com/yade-dev/trunk/blob/master/examples/levelSet/pvVisu.py

Yade Documentation, Release 3rd ed.

Generic recorders do not depend on specific model being used and save commonly
useful data.

id
Saves id’s (field id) of spheres; active only if spheres is active.

mass
Saves masses (field mass) of spheres; active only if spheres is active.

clumpId
Saves id’s of clumps to which each sphere belongs (field clumpId); active only if
spheres is active.

colors
Saves colors of spheres and of facets (field color); only active if spheres or
facets are activated.

mask
Saves groupMasks of spheres and of facets (field mask); only active if spheres or
facets are activated.

materialId
Saves materialID of spheres and of facets; only active if spheres or facets are
activated.

coordNumber
Saves coordination number (number of neighbours) of spheres and of facets; only
active if spheres or facets are activated.

velocity
Saves linear and angular velocities of spherical particles as Vector3 and
length(fields linVelVec, linVelLen and angVelVec, angVelLen respectively‘‘);
only effective with spheres.

force
Saves force and torque of spheres, facets and boxes as Vector3 and length (norm);
only active if spheres, facets or boxes are activated.

pericell
Saves the shape of the cell (simulation has to be periodic).

bstresses
For spheres (if activated) and while considering the per-particle stress tensors as
given by bodyStressTensors, saves the per-particle principal stresses, sigI (most
tensile) ≥ sigII ≥ sigIII (most compressive), and the associated principal direc-
tions dirI, dirII, dirIII.

Specific recorders

The following should only be activated in when appropriate engines/contact
laws are in use, otherwise crashes can occur due to violation of type presup-
positions.

cpm
Saves data pertaining to the concrete model: cpmDamage (normalized resid-
ual strength averaged on particle), cpmStress (stress on particle); intr is
activated automatically by cpm

wpm
Saves data pertaining to the wire particle model: wpmForceNFactor shows
the loading factor for the wire, e.g. normal force divided by threshold
normal force.

jcfpm
Saves data pertaining to the rock (smooth)-jointed model: damage is de-
fined by JCFpmState.tensBreak + JCFpmState.shearBreak; intr is acti-

314 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

vated automatically by jcfpm, and on joint or cohesive interactions can be
vizualized.

cracks
Saves other data pertaining to the rock model: cracks shows locations
where cohesive bonds failed during the simulation, with their types (0/1
for tensile/shear breakages), their sizes (0.5*(R1+R2)), and their normal
directions. The corresponding attribute has to be activated, and Key at-
tributes have to be consistent.

moments
Saves data pertaining to the required corresponding attribute:yref:acoustic
emissions model<Law2_ScGeom_JCFpmPhys_JointedCohesiveFriction-
alPM.recordMoments>: moments shows locations of acoustic emissions, the
number of broken bonds comprising the acoustic emission, the magnitude.

thermal
Saves temperature of bodies computed using Yade’s ThermalEngine.

liquid
Saves the liquid volume associated with capillary models.

cohfrict
Saves interaction information associated with the cohesive frictional model,
including isBroken, unp, and breakType.

SPH
Saves sphere information associated with Yade’s SPH module.

deform
Saves interaction information associated with Yade’s deformation module.

lubrication
Saves lubrications stress from LubricationPhys. spheres must be active.

partialsat
Saves suction and radii changes of spheres associated with PartialSat-
ClayEngine. spheres must be active.

hertz
Saves bond data from hertzmindlin such as displacement or ‘broken’ where
broken follows a displacement criteria set by user in Law2_ScGeom_-
MindlinPhys_Mindlin.

property skipFacetIntr
Skip interactions that are not of sphere-sphere type (e.g. sphere-facet, sphere-box…), when
saving interactions

property skipNondynamic
Skip non-dynamic spheres (but not facets).

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

2.3. Yade wrapper class reference 315

Yade Documentation, Release 3rd ed.

BoundaryController

BoundaryController

Peri3dController

VESupportEngine

KinemCNDEngine

KinemSimpleShearBox

PeriIsoCompressor

TriaxialCompressionEngineTriaxialStressController

PeriTriaxController

UniaxialStrainer

KinemCTDEngine

KinemCNSEngine

Disp2DPropLoadEngine

ThreeDTriaxialEngine

KinemCNLEngine

Fig. 27: Inheritance graph of BoundaryController. See also: Disp2DPropLoadEngine, KinemCNDEngine,
KinemCNLEngine, KinemCNSEngine, KinemCTDEngine, KinemSimpleShearBox, Peri3dController,
PeriIsoCompressor, PeriTriaxController, ThreeDTriaxialEngine, TriaxialCompressionEngine, Triaxial-
StressController, UniaxialStrainer, VESupportEngine.

class yade.wrapper.BoundaryController(inherits GlobalEngine → Engine → Serializable)
Base for engines controlling boundary conditions of simulations. Not to be used directly.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Disp2DPropLoadEngine(inherits BoundaryController → GlobalEngine →
Engine → Serializable)

Disturbs a simple shear sample in a given displacement direction

This engine allows one to apply, on a simple shear sample, a loading controlled by du/dgamma =
cste, which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so,

316 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

the upper plate of the simple shear box is moved in a given direction (corresponding to a given
du/dgamma), whereas lateral plates are moved so that the box remains closed. This engine can
easily be used to perform directionnal probes, with a python script launching successivly the same
.xml which contains this engine, after having modified the direction of loading (see theta attribute).
That’s why this Engine contains a saveData procedure which can save data on the state of the
sample at the end of the loading (in case of successive loadings - for successive directions - through
a python script, each line would correspond to one direction of loading).

property Key
string to add at the names of the saved files, and of the output file filled by saveData

property LOG
boolean controling the output of messages on the screen

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nbre_iter
the number of iterations of loading to perform

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 317

Yade Documentation, Release 3rd ed.

property theta
the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property v
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v = V_shear - | (V_shear-
V_comp)*sin(theta) | => v=V_shear in shear; V_comp in compression [m/s]

class yade.wrapper.KinemCNDEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a Constant Normal Displacement (CND) shear for a parallelogram box

This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows one to perform a constant normal displacement shear, by translat-
ing horizontally the upper plate, while the lateral ones rotate so that they always keep contact
with the lower and upper walls.

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property gamma
the current value of the tangential displacement

318 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property gamma_save
vector with the values of gamma at which a save of the simulation is performed [m]

property gammalim
the value of the tangential displacement at wich the displacement is stopped [m]

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shearSpeed
the speed at which the shear is performed : speed of the upper plate [m/s]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

2.3. Yade wrapper class reference 319

Yade Documentation, Release 3rd ed.

class yade.wrapper.KinemCNLEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram
box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)

This engine allows one to translate horizontally the upper plate while the lateral ones rotate so
that they always keep contact with the lower and upper walls.

In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)

The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)

The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.

Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

320 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property gamma
current value of tangential displacement [m]

property gamma_save
vector with the values of gamma at which a save of the simulation is performed [m]

property gammalim
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shearSpeed
the speed at wich the shearing is performed : speed of the upper plate [m/s]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 321

Yade Documentation, Release 3rd ed.

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNSEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)

This engine, useable in simulations implying one deformable parallelepipedic box, allows one to
translate horizontally the upper plate while the lateral ones rotate so that they always keep contact
with the lower and upper walls. The upper plate can move not only horizontally but also vertically,
so that the normal rigidity defined by DeltaF(upper plate)/DeltaU(upper plate) = constant (= KnC
defined by the user).

The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.

Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

property Key
string to add at the names of the saved files

property KnC
the normal rigidity chosen by the user [MPa/mm] - the conversion in Pa/m will be made

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

322 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property gamma
current value of tangential displacement [m]

property gammalim
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shearSpeed
the speed at wich the shearing is performed : speed of the upper plate [m/s]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3. Yade wrapper class reference 323

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCTDEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To compress a simple shear sample by moving the upper box in a vertical way only, so that the
tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (targetSigma). Moreover
saves are executed at each value of stresses stored in the vector sigma_save, and at targetSigma

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property compSpeed
(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

324 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sigma_save
vector with the values of sigma at which a save of the simulation should be performed [kPa]

property targetSigma
the value of sigma at which the compression should stop [kPa]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemSimpleShearBox(inherits BoundaryController → GlobalEngine → Engine→ Serializable)
This class is supposed to be a mother class for all Engines performing loadings on the simple shear
box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.

property Key
string to add at the names of the saved files

2.3. Yade wrapper class reference 325

Yade Documentation, Release 3rd ed.

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

326 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.Peri3dController(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Class for controlling independently all 6 components of “engineering” stress and strain of periodic
Cell. goal are the goal values, while stressMask determines which components prescribe stress and
which prescribe strain.

If the strain is prescribed, appropriate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.

Stress error (difference between actual and ideal stress) is evaluated in current and previous steps
(dσi,dσi−1). Linear extrapolation is used to estimate error in the next step

dσi+1 = 2dσi − dσi−1

According to this error, the strain rate is modified by mod parameter

dσi+1

{
> 0 → ε̇i+1 = ε̇i −max(abs(ε̇i)) ·mod
< 0 → ε̇i+1 = ε̇i +max(abs(ε̇i)) ·mod

According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and
compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).

The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix trsf T = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented
yet). A prescribed strain increment in global coordinates dt · ε̇ is properly rotated to cell’s local
coordinates and added to P

Pi+1 = P+UTdt · ε̇U

The new value of trsf is computed at T i+1 = UPi+1. From current and next trsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V = (T i+1T
−1 − I)/dt

2.3. Yade wrapper class reference 327

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition

Yade Documentation, Release 3rd ed.

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.

Examples examples/test/peri3dController_example1.py and examples/test/peri3dController_-
triaxialCompression.py explain usage and inputs of Peri3dController, exam-
ples/test/peri3dController_shear.py is an example of using shear components and also simulation
on rotated cell.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doneHook
Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property goal
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lenPe
Peri3dController internal variable

property lenPs
Peri3dController internal variable

property maxStrain
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

property maxStrainRate
Maximal absolute value of strain rate (both normal and shear components of strain)

property mod
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

property nSteps
Number of steps of the simulation.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

328 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_example1.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_shear.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_shear.py

Yade Documentation, Release 3rd ed.

property pathSizes
Peri3dController internal variable

property pathsCounter
Peri3dController internal variable

property pe
Peri3dController internal variable

property poissonEstimation
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

property progress
Actual progress of the simulation with Controller.

property ps
Peri3dController internal variable

property strain
Current strain (deformation) vector (εx,εy,εz,γyz,γzx,γxy) (auto-updated).

property strainGoal
Peri3dController internal variable

property strainRate
Current strain rate vector.

property stress
Current stress vector (σx,σy,σz,τyz,τzx,τxy)|yupdate|.

property stressGoal
Peri3dController internal variable

property stressIdeal
Ideal stress vector at current time step.

property stressMask
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

property stressRate
Current stress rate vector (that is prescribed, the actual one slightly differ).

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.

Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))

at step 400 (=5*1000/2) the value is 450 (=3*300/2),

at step 800 (=4*1000/5) the value is 150 (=1*300/2),

at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).

See example scripts/test/peri3dController_example1 for illusration.

2.3. Yade wrapper class reference 329

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/peri3dController_example1

Yade Documentation, Release 3rd ed.

property xyPath
Time function for xy direction, see xxPath

property youngEstimation
Estimation of macroscopic Young’s modulus, used for the first simulation step

property yyPath
Time function for yy direction, see xxPath

property yzPath
Time function for yz direction, see xxPath

property zxPath
Time function for zx direction, see xxPath

property zzPath
Time function for zz direction, see xxPath

class yade.wrapper.PeriIsoCompressor(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.

property charLen
Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

property currUnbalanced
Current value of unbalanced force

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doneHook
Python command to be run when reaching the last specified stress

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property globalUpdateInt
how often to recompute average stress, stiffness and unbalanced force

property keepProportions
Exactly keep proportions of the cell (stress is controlled based on average, not its components

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxSpan
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

330 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxUnbalanced
if actual unbalanced force is smaller than this number, the packing is considered stable,

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sigma
Current stress value

property state
Where are we at in the stress series

property stresses
Stresses that should be reached, one after another

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.PeriTriaxController(inherits BoundaryController → GlobalEngine → Engine→ Serializable)
Engine for independently controlling stress or strain in periodic simulations.

PeriTriaxController.goal contains absolute values for the controlled quantity, and Peri-
TriaxController.stressMask determines meaning of those values (0 for strain, 1 for stress):
e.g. (1<<0 | 1<<2) = 1 | 4 = 5 means that goal[0] and goal[2] are stress values,
and goal[1] is strain.

See scripts/test/periodic-triax.py for a simple example.

property absStressTol
Absolute stress tolerance with respect to goal.

property currUnbalanced
current unbalanced force (updated every globUpdate) (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doneHook
python command to be run when the desired state is reached

property dynCell
Imposed stress can be controlled using the packing stiffness (dynCell = False) or by applying
the laws of dynamic (dynCell=true). Don’t forget to assign a mass to the cell.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.3. Yade wrapper class reference 331

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Work input from boundary controller.

property globUpdate
How often to recompute average stress, stiffness and unbalaced force.

property goal
Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii) with Fii the cell transformation matrix.

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

property growDamping
Damping of cell resizing (0=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mass
Mass of the cell (user set); if not set and dynCell is used, it will be computed as the sum of
all particle masses.

property maxBodySpan
maximum body dimension (auto-computed)

property maxStrainRate
Maximum strain rate of the periodic cell.

property maxUnbalanced
maximum unbalanced force.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property prevGrow
previous cell grow

property relStressTol
Relative stress tolerance with respect to goal.

property stiff
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

property strain
Cell true strain (auto-updated)

property strainRate
cell strain rate (auto-updated)

332 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property stress
diagonal terms of the stress tensor

property stressMask
mask determining strain/stress (0/1) meaning for goal components

property stressTensor
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ThreeDTriaxialEngine(inherits TriaxialStressController →
BoundaryController → GlobalEngine → Engine →
Serializable)

The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl_i)
else in strain.

For a stress control the imposed stress is specified by ‘sigma_i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using
TriaxialStressController::controlInternalStress. For that, just switch on ‘internalCom-
paction=1’ and fix sigma_iso=value of mean pressure that you want at the end of the internal
compaction.

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

property Key
A string appended at the end of all files, use it to name simulations.

property UnbalancedForce
mean resultant forces divided by mean contact force

property boxVolume
Total packing volume.

property computeStressStrainInterval

property currentStrainRate1
current strain rate in direction 1 - converging to ThreeDTriaxialEngine::strainRate1 (./s)

property currentStrainRate2
current strain rate in direction 2 - converging to ThreeDTriaxialEngine::strainRate2 (./s)

property currentStrainRate3
current strain rate in direction 3 - converging to ThreeDTriaxialEngine::strainRate3 (./s)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property depth
size of the box (2-axis) (auto-updated)

2.3. Yade wrapper class reference 333

Yade Documentation, Release 3rd ed.

property depth0
Reference size for strain definition. See TriaxialStressController::depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Mechanical work associated to the boundary conditions, i.e.

∫
∂Ω

T · uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

property frictionAngleDegree
Value of friction used in the simulation if (updateFrictionAngle)

property goal1
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

property goal2
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

property goal3
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

property height
size of the box (1-axis) (auto-updated)

property height0
Reference size for strain definition. See TriaxialStressController::height

property internalCompaction
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

property max_vel
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

property max_vel1
see TriaxialStressController::max_vel (auto-computed)

property max_vel2
see TriaxialStressController::max_vel (auto-computed)

334 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property max_vel3
see TriaxialStressController::max_vel (auto-computed)

property meanStress
Mean stress in the packing. (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

property porosity
Porosity of the packing, computed from particlesVolume and boxVolume. (auto-updated)

property previousMultiplier
(auto-updated)

property previousStress
(auto-updated)

property radiusControlInterval

setContactProperties((ThreeDTriaxialEngine)arg1, (float)arg2) → None :
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

property spheresVolume
Shorthand for TriaxialStressController::particlesVolume

property stiffnessUpdateInterval
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

property strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

property strainDamping
factor used for smoothing changes in effective strain rate. If target rate is TR, then (1-
damping)*(TR-currentRate) will be added at each iteration. With damping=0, rate=target
all the time. With damping=1, it doesn’t change.

strainRate((TriaxialStressController)arg1) → Vector3 :
Current strain rate in a vector d/dt(exx,eyy,ezz).

property strainRate1
target strain rate in direction 1 (./s, >0 for compression)

property strainRate2
target strain rate in direction 2 (./s, >0 for compression)

property strainRate3
target strain rate in direction 3 (./s, >0 for compression)

stress((TriaxialStressController)arg1, (int)id) → Vector3 :
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

2.3. Yade wrapper class reference 335

Yade Documentation, Release 3rd ed.

property stressControl_1
Switch to choose a stress or a strain control in directions 1

property stressControl_2
Switch to choose a stress or a strain control in directions 2

property stressControl_3
Switch to choose a stress or a strain control in directions 3

property stressDamping
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

property stressMask
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

property thickness
thickness of boxes (needed by some functions)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateFrictionAngle
Switch to activate the update of the intergranular frictionto the value ThreeDTriaxi-
alEngine::frictionAngleDegree.

property updatePorosity
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

property volumetricStrain
Volumetric strain (see TriaxialStressController::strain). (auto-updated)

property wall_back_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_back_id
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_bottom_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_bottom_id
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_front_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_front_id
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_left_activated
if true, this wall moves according to the target value (stress or strain rate).

336 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wall_left_id
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_right_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_right_id
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_top_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_top_id
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property width
size of the box (0-axis) (auto-updated)

property width0
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialCompressionEngine(inherits TriaxialStressController →
BoundaryController → GlobalEngine → Engine→ Serializable)

The engine is a state machine with the following states; transitions my be automatic, see below.

1. STATE_ISO_COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmaIsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (!internalCompaction) or by growing size of grains (internalCom-
paction).

2. STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmaLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmaLateralConfinement == sigmaIsoCom-
paction.

3. STATE_TRIAX_LOADING: confined uniaxial compression: constant sigmaLateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

4. STATE_FIXED_POROSITY_COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5. STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;

Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

Note: Most of the algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

2.3. Yade wrapper class reference 337

Yade Documentation, Release 3rd ed.

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

property Key
A string appended at the end of all files, use it to name simulations.

property StabilityCriterion
tolerance in terms of TriaxialCompressionEngine::UnbalancedForce to consider the packing is
stable

property UnbalancedForce
mean resultant forces divided by mean contact force

property autoCompressionActivation
Auto-switch from isotropic compaction (or unloading state if sigmaLateralConfine-
ment<sigmaIsoCompaction) to deviatoric loading

property autoStopSimulation
Stop the simulation when the sample reach STATE_LIMBO, or keep running

property autoUnload
Auto-switch from isotropic compaction to unloading

property boxVolume
Total packing volume.

property computeStressStrainInterval

property currentState
There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per.TriaxialCompressionEngine

property currentStrainRate
current strain rate - converging to TriaxialCompressionEngine::strainRate (./s)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property depth
size of the box (2-axis) (auto-updated)

property depth0
Reference size for strain definition. See TriaxialStressController::depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property epsilonMax
Value of axial deformation for which the loading must stop

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Mechanical work associated to the boundary conditions, i.e.

∫
∂Ω

T · uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

338 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

property fixedPoroCompaction
A special type of compaction with imposed final porosity TriaxialCompressio-
nEngine::fixedPorosity (WARNING : can give unrealistic results!)

property fixedPorosity
Value of porosity chosen by the user

property frictionAngleDegree
Value of friction assigned just before the deviatoric loading

property goal1
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

property goal2
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

property goal3
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

property height
size of the box (1-axis) (auto-updated)

property height0
Reference size for strain definition. See TriaxialStressController::height

property internalCompaction
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

property isAxisymetric
if true, sigma_iso is assigned to sigma1, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

property maxStress
Max absolute value of axial stress during the simulation (for post-processing)

property max_vel
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

property max_vel1
see TriaxialStressController::max_vel (auto-computed)

property max_vel2
see TriaxialStressController::max_vel (auto-computed)

property max_vel3
see TriaxialStressController::max_vel (auto-computed)

2.3. Yade wrapper class reference 339

Yade Documentation, Release 3rd ed.

property meanStress
Mean stress in the packing. (auto-updated)

property noFiles
If true, no files will be generated (*.xml, *.spheres,…)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

property porosity
Porosity of the packing, computed from particlesVolume and boxVolume. (auto-updated)

property previousMultiplier
(auto-updated)

property previousSigmaIso
Previous value of inherited sigma_iso (used to detect manual changes of the confining pressure)

property previousState
Previous state (used to detect manual changes of the state in .xml)

property previousStress
(auto-updated)

property radiusControlInterval

setContactProperties((TriaxialCompressionEngine)arg1, (float)arg2) → None :
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

property sigmaIsoCompaction
Prescribed isotropic pressure during the compaction phase (< 0 for real - compressive - com-
paction)

property sigmaLateralConfinement
Prescribed confining pressure in the deviatoric loading (< 0 for classical compressive cases);
might be different from TriaxialCompressionEngine::sigmaIsoCompaction

property sigma_iso
prescribed confining stress (see :yref:TriaxialCompressionEngine::isAxisymetric‘)

property spheresVolume
Shorthand for TriaxialStressController::particlesVolume

property stiffnessUpdateInterval
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

property strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

property strainDamping
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

340 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property strainRate
target strain rate (./s, >0 for compression)

stress((TriaxialStressController)arg1, (int)id) → Vector3 :
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

property stressDamping
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

property stressMask
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

property testEquilibriumInterval
interval of checks for transition between phases, higher than 1 saves computation time.

property thickness
thickness of boxes (needed by some functions)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property translationAxis
compression axis

property uniaxialEpsilonCurr
Current value of axial deformation during confined loading (is reference to strain[1])

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatePorosity
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

property volumetricStrain
Volumetric strain (see TriaxialStressController::strain). (auto-updated)

property wall_back_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_back_id
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_bottom_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_bottom_id
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_front_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_front_id
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

2.3. Yade wrapper class reference 341

Yade Documentation, Release 3rd ed.

property wall_left_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_left_id
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_right_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_right_id
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_top_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_top_id
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property warn
counter used for sending a deprecation warning once

property width
size of the box (0-axis) (auto-updated)

property width0
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialStressController(inherits BoundaryController → GlobalEngine →
Engine → Serializable)

An engine maintaining constant stresses or constant strain rates on some boundaries of a par-
allepipedic packing. The stress/strain control is defined for each axis using TriaxialStressCon-
troller::stressMask (a bitMask) and target values are defined by goal1,goal2, and goal3. The sign
conventions of continuum mechanics are used for strains and stresses (positive traction).

Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

property boxVolume
Total packing volume.

property computeStressStrainInterval

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property depth
size of the box (2-axis) (auto-updated)

property depth0
Reference size for strain definition. See TriaxialStressController::depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

342 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Mechanical work associated to the boundary conditions, i.e.

∫
∂Ω

T · uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

property goal1
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

property goal2
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

property goal3
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

property height
size of the box (1-axis) (auto-updated)

property height0
Reference size for strain definition. See TriaxialStressController::height

property internalCompaction
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

property max_vel
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

property max_vel1
see TriaxialStressController::max_vel (auto-computed)

property max_vel2
see TriaxialStressController::max_vel (auto-computed)

property max_vel3
see TriaxialStressController::max_vel (auto-computed)

property meanStress
Mean stress in the packing. (auto-updated)

2.3. Yade wrapper class reference 343

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

property porosity
Porosity of the packing, computed from particlesVolume and boxVolume. (auto-updated)

property previousMultiplier
(auto-updated)

property previousStress
(auto-updated)

property radiusControlInterval

property spheresVolume
Shorthand for TriaxialStressController::particlesVolume

property stiffnessUpdateInterval
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

property strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

property strainDamping
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

strainRate((TriaxialStressController)arg1) → Vector3 :
Current strain rate in a vector d/dt(exx,eyy,ezz).

stress((TriaxialStressController)arg1, (int)id) → Vector3 :
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

property stressDamping
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

property stressMask
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

property thickness
thickness of boxes (needed by some functions)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

344 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property updatePorosity
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

property volumetricStrain
Volumetric strain (see TriaxialStressController::strain). (auto-updated)

property wall_back_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_back_id
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_bottom_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_bottom_id
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_front_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_front_id
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_left_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_left_id
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_right_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_right_id
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_top_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_top_id
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property width
size of the box (0-axis) (auto-updated)

property width0
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.UniaxialStrainer(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Axial displacing two groups of bodies in the opposite direction with given strain rate.

2.3. Yade wrapper class reference 345

Yade Documentation, Release 3rd ed.

property absSpeed
alternatively, absolute speed of boundary motion can be specified; this is effective only at the
beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms�1]

property active
Whether this engine is activated

property asymmetry
If 0, straining is symmetric for negIds and posIds; for 1 (or -1), only posIds are strained and
negIds don’t move (or vice versa)

property avgStress
Current average stress (auto-updated) [Pa]

property axis
The axis which is strained (0,1,2 for x,y,z)

property blockDisplacements
Whether displacement of boundary bodies perpendicular to the strained axis are blocked or
are free

property blockRotations
Whether rotations of boundary bodies are blocked.

property crossSectionArea
crossSection perpendicular to he strained axis; must be given explicitly [m2]

property currentStrainRate
Current strain rate (update automatically). (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property idleIterations
Number of iterations that will pass without straining activity after stopStrain has been reached

property initAccelTime
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property limitStrain
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

property negIds
Bodies on which strain will be applied (on the negative end along the axis)

346 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property notYetReversed
Flag whether the sense of straining has already been reversed (only used internally).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property originalLength
Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

property posIds
Bodies on which strain will be applied (on the positive end along the axis)

property setSpeeds
should we set speeds at the beginning directly, instead of increasing strain rate progressively?

property stopStrain
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

property strain
Current strain value, elongation/originalLength (auto-updated) [-]

property strainRate
Rate of strain, starting at 0, linearly raising to strainRate. [-]

property stressUpdateInterval
How often to recompute stress on supports.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.VESupportEngine(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Engine that constraints given bodies in place (refPos) with a visco-elastic constrain according to
the Burgers model.

2.3. Yade wrapper class reference 347

Yade Documentation, Release 3rd ed.

Burger’s rheological scheme with adopted designations.

The model of applied constraint can be degenerated to simpler models. Passing negative value of
the damping coefficient turns off the corresponding dashpot. A negative value of c2, turns off the
whole Kelvin-Voigt branch. By default c1=c2=-1, and model is simplified to an elastic boundary
condition. Hence, it can be used as Winkler foundation.

Potential applicatons are presented in [Brzezinski2022], and examples section (see
examples/viscoelastic-supports/single-element.py, and examples/viscoelastic-supports/discrete-
foundation.py

property bIds
IDs of bodies that should be attached to supports.

property c1
Damping coeff. of dashpot #1 (the one in Maxwell branch). Negative value turns off the
dashpot. [N*s/m]

property c2
Damping coeff. of dashpot #2 (the one in Kelvin-Voigt branch). Negative value turns off
whole Kelvin-Voigt branch. [N*s/m]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property k1
Stiffness of spring #1 (the one in Maxwell branch) [N/m]

property k2
Stiffness of spring #2 (the one in Kelvin-Voigt branch) [N/m]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

348 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/single-element.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/discrete-foundation.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/discrete-foundation.py

Yade Documentation, Release 3rd ed.

Collider

Collider

FlatGridCollider

SpatialQuickSortCollider

InsertionSortCollider GeneralIntegratorInsertionSortCollider

Fig. 28: Inheritance graph of Collider. See also: FlatGridCollider, GeneralIntegratorInsertionSortCol-
lider, InsertionSortCollider, SpatialQuickSortCollider.

class yade.wrapper.Collider(inherits GlobalEngine → Engine → Serializable)
Abstract class for finding spatial collisions between bodies.

Special constructor

Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 349

Yade Documentation, Release 3rd ed.

class yade.wrapper.FlatGridCollider(inherits Collider → GlobalEngine → Engine → Serializable)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly
multiple) cells, which are arranged in regular grid between aabbMin and aabbMax, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMax) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.

Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: objects Body::bound are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).

property aabbMax
Upper corner of grid (approximate, might be rouded up to minStep.

property aabbMin
Lower corner of grid.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

350 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property step
Step in the grid (cell size)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property verletDist
Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.wrapper.GeneralIntegratorInsertionSortCollider(inherits InsertionSortCollider →
Collider → GlobalEngine →
Engine → Serializable)

This class is the adaptive version of the InsertionSortCollider and changes the NewtonIntegrator
dependency of the collider algorithms to the Integrator interface which is more general.

property allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doSort
Do forced resorting of interactions.

dumpBounds((InsertionSortCollider)arg1) → tuple :
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

• coordinate (float)

• body id (int), but negated for negative bounds

• period numer (int), if the collider is in the periodic regime.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.3. Yade wrapper class reference 351

Yade Documentation, Release 3rd ed.

property fastestBodyMaxDist
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

isActivated((InsertionSortCollider)arg1) → bool :
Return true if collider needs execution at next iteration.

property keepListsShort
if true remove bounds of non-existent or unbounded bodies from the lists (auto-updated);
turned true automatically in MPI mode and if bodies are erased with BodyCon-
tainer.enableRedirection‘=True. :ydefault:‘false

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property minSweepDistFactor
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

property newton
reference to active Newton integrator. (auto-updated)

property numAction
Cummulative number of collision detection.

property numReinit
Cummulative number of bound array re-initialization.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property overlapTolerance
Tolerance on determining overlap. In rare cases different parts of the code can inconsistently
lead to different results in terms of overlap, with false negative by spatialOverlapPeri possibly
leading to nasty bugs in contact detection (false positive are harmless). This tolerance is to
avoid false negative, the value can be understood as relative to 1 (i.e. independent of particle
size or any other reference length). The default should be ok.

property periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

property smartInsertErase
Use an algorithm optimized for heavy insert/delete (avoid initSort) - experimental.

property sortAxis
Axis for the initial contact detection.

property sortThenCollide
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

352 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

property targetInterv
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatingDispFactor
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

property verletDist
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.wrapper.InsertionSortCollider(inherits Collider → GlobalEngine → Engine →
Serializable)

Collider with O(n log(n)) complexity, using Aabb for bounds.

At the initial step, Bodies’ bounds (along sortAxis) are first std::sort’ed along this (sortAxis)
axis, then collided. The initial sort has O(n2) complexity, see Colliders’ performance for some
information (There are scripts in examples/collider-perf for measurements).

Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).

Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.

This collider handles periodic boundary conditions. There are some limitations, notably:

1. No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception if it does and gets in interaction. One way to explicitly by-pass this restriction is
offered by allowBiggerThanPeriod, which can be turned on to insert a floor in the form of a
very large box for instance (see examples/periodicSandPile.py).

2. No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their displacements and only re-run if they might have gone out of that bounds (see Verlet
list for brief description and background) . This requires cooperation from NewtonIntegrator as
well as BoundDispatcher, which will be found among engines automatically (exception is thrown if
they are not found).

If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 × typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.

2.3. Yade wrapper class reference 353

https://yade-dem.org/wiki/Colliders_performace
http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Verlet_list

Yade Documentation, Release 3rd ed.

If targetInterv is >1, not all particles will have their bound enlarged by verletDist; instead,
they will have bounds increased by a length in order to trigger a new colliding after targetInterv
iteration, assuming they move at almost constant velocity. Ideally in this method, all particles
would reach their bounds at the sime iteration. This is of course not the case as soon as velocities
fluctuate in time. Bound::sweepLength is tuned on the basis of the displacement recorded between
the last two runs of the collider. In this situation, verletDist defines the maximum sweep length.

property allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doSort
Do forced resorting of interactions.

dumpBounds((InsertionSortCollider)arg1) → tuple :
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

• coordinate (float)

• body id (int), but negated for negative bounds

• period numer (int), if the collider is in the periodic regime.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fastestBodyMaxDist
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

isActivated((InsertionSortCollider)arg1) → bool :
Return true if collider needs execution at next iteration.

property keepListsShort
if true remove bounds of non-existent or unbounded bodies from the lists (auto-updated);
turned true automatically in MPI mode and if bodies are erased with BodyCon-
tainer.enableRedirection‘=True. :ydefault:‘false

354 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property minSweepDistFactor
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

property newton
reference to active Newton integrator. (auto-updated)

property numAction
Cummulative number of collision detection.

property numReinit
Cummulative number of bound array re-initialization.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property overlapTolerance
Tolerance on determining overlap. In rare cases different parts of the code can inconsistently
lead to different results in terms of overlap, with false negative by spatialOverlapPeri possibly
leading to nasty bugs in contact detection (false positive are harmless). This tolerance is to
avoid false negative, the value can be understood as relative to 1 (i.e. independent of particle
size or any other reference length). The default should be ok.

property periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

property smartInsertErase
Use an algorithm optimized for heavy insert/delete (avoid initSort) - experimental.

property sortAxis
Axis for the initial contact detection.

property sortThenCollide
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

property strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

property targetInterv
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3. Yade wrapper class reference 355

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatingDispFactor
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

property verletDist
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.wrapper.SpatialQuickSortCollider(inherits Collider → GlobalEngine → Engine →
Serializable)

Collider using quicksort along axes at each step, using Aabb bounds.

Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the
algorithm is simple enought to make it good for checking other collider’s correctness.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

356 Chapter 2. Yade for users

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 3rd ed.

FieldApplier

FieldApplier

HdapsGravityEngineGravityEngine

CentralConstantAccelerationEngine

AxialGravityEngine

Fig. 29: Inheritance graph of FieldApplier. See also: AxialGravityEngine, CentralConstantAcceleratio-
nEngine, GravityEngine, HdapsGravityEngine.

class yade.wrapper.FieldApplier(inherits GlobalEngine → Engine → Serializable)
Base for engines applying force files on particles. Not to be used directly.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.AxialGravityEngine(inherits FieldApplier → GlobalEngine → Engine →
Serializable)

Apply acceleration (independent of distance) directed towards an axis.

property acceleration
Acceleration magnitude [kgms�2]

property axisDirection
direction of the gravity axis (will be normalized automatically)

property axisPoint
Point through which the axis is passing.

2.3. Yade wrapper class reference 357

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CentralConstantAccelerationEngine(inherits FieldApplier → GlobalEngine→ Engine → Serializable)
Engine applying constant acceleration to all bodies, towards a central body. Ignoring the distance
between them.

property accel
Acceleration magnitude [kgms�2]

property centralBody
The body towards which all other bodies are attracted.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

358 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property reciprocal
If true, acceleration will be applied on the central body as well.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GravityEngine(inherits FieldApplier → GlobalEngine → Engine →
Serializable)

Engine applying constant acceleration to all bodies. DEPRECATED, use Newton::gravity unless
you need energy tracking or selective gravity application using groupMask).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property gravity
Acceleration [kgms�2]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

2.3. Yade wrapper class reference 359

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property warnOnce
For deprecation warning once.

class yade.wrapper.HdapsGravityEngine(inherits GravityEngine → FieldApplier → GlobalEngine→ Engine → Serializable)
Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-
tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.

property accel
reading from the sysfs file

property calibrate
Zero position; if NaN, will be read from the hdapsDir / calibrate.

property calibrated
Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property gravity
Acceleration [kgms�2]

property hdapsDir
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property msecUpdate
How often to update the reading.

360 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/hdaps.py

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateThreshold
Minimum difference of reading from the file before updating gravity, to avoid jitter.

property warnOnce
For deprecation warning once.

property zeroGravity
Gravity if the accelerometer is in flat (zero) position.

2.3.4 Partial engines

PartialEngine

KinematicEngine

HarmonicMotionEngine

PartialSatClayEngineT

ServoPIDControllerTranslationEngine

RadialForceEngine

ForceEngine

InterpolatingHelixEngineHelixEngine
RotationEngine

BicyclePedalEngine

DragEngine

FlowEngine_PeriodicInfo

TwoPhaseFlowEngineTwoPhaseFlowEngineT

LawTester

FlowEngineT

PartialSatClayEngine

FlowEngine

TorqueEngine

HarmonicRotationEngine

StepDisplacer

TimeAverager

HarmonicForceEngine

InterpolatingDirectedForceEngine

CombinedKinematicEngine

ThermalEngine

UnsaturatedEngine

LinearDragEngine

HydroForceEngine

PeriodicFlowEngine

Fig. 30: Inheritance graph of PartialEngine. See also: BicyclePedalEngine, CombinedKinemati-
cEngine, DragEngine, FlowEngine, FlowEngineT , FlowEngine_PeriodicInfo, ForceEngine, Harmon-
icForceEngine, HarmonicMotionEngine, HarmonicRotationEngine, HelixEngine, HydroForceEngine,
InterpolatingDirectedForceEngine, InterpolatingHelixEngine, KinematicEngine, LawTester, LinearDra-
gEngine, PartialSatClayEngine, PartialSatClayEngineT , PeriodicFlowEngine, RadialForceEngine, Rota-
tionEngine, ServoPIDController, StepDisplacer, ThermalEngine, TimeAverager, TorqueEngine, Trans-
lationEngine, TwoPhaseFlowEngine, TwoPhaseFlowEngineT , UnsaturatedEngine.

2.3. Yade wrapper class reference 361

Yade Documentation, Release 3rd ed.

class yade.wrapper.PartialEngine(inherits Engine → Serializable)
Engine affecting only particular bodies in the simulation, namely those defined in ids attribute. See
also GlobalEngine.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.BicyclePedalEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying the linear motion of bicycle pedal e.g. moving points around the axis without
rotation

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

362 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fi
Initial phase [radians]

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property radius
Rotation radius. [m]

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CombinedKinematicEngine(inherits PartialEngine → Engine → Serializable)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator
on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).

property comb
Kinematic engines that will be combined by this one, run in the order given.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.3. Yade wrapper class reference 363

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.DragEngine(inherits PartialEngine → Engine → Serializable)
Apply drag force on some particles at each step, decelerating them proportionally to their linear
velocities. The applied force reads

Fd = −
v

|v|

1

2
ρ|v|2CdA

where ρ is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cd is the drag coefficient (0.47 for Sphere),

Note: Drag force is only applied to spherical particles, listed in ids.

property Cd
Drag coefficient <http://en.wikipedia.org/wiki/Drag_coefficient>‘_.

property Rho
Density of the medium (fluid or air), by default - the density of the air.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

364 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Drag_equation
http://en.wikipedia.org/wiki/Drag_coefficient

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FlowEngine(inherits FlowEngineT → PartialEngine → Engine → Serializable)
An engine to solve flow problem in saturated granular media. Model description can be found in
[Chareyre2012a] and [Catalano2014a]. See the example script FluidCouplingPFV/oedometer.py.
More documentation to come.

OSI((FlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

2.3. Yade wrapper class reference 365

Yade Documentation, Release 3rd ed.

bodyNormalLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

366 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((FlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

2.3. Yade wrapper class reference 367

Yade Documentation, Release 3rd ed.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

368 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getCavityDensity((FlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

2.3. Yade wrapper class reference 369

Yade Documentation, Release 3rd ed.

getEquivalentCompressibility((FlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((FlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

370 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

2.3. Yade wrapper class reference 371

Yade Documentation, Release 3rd ed.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]]) → None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

372 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

shearLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngineT)arg1, (int)cellId, (int)throatIndex) → float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 373

Yade Documentation, Release 3rd ed.

updateBCs((FlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

374 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.FlowEngineT(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((FlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

2.3. Yade wrapper class reference 375

Yade Documentation, Release 3rd ed.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

376 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((FlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.3. Yade wrapper class reference 377

Yade Documentation, Release 3rd ed.

exportMatrix((FlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).

378 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

2.3. Yade wrapper class reference 379

Yade Documentation, Release 3rd ed.

getConstrictionsFull((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((FlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

380 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

initializeVolumes((FlowEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

2.3. Yade wrapper class reference 381

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]]) → None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

382 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

setCellTImposed((FlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngineT)arg1, (int)cellId, (int)throatIndex) → float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3. Yade wrapper class reference 383

Yade Documentation, Release 3rd ed.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((FlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

384 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.FlowEngine_PeriodicInfo(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngine_PeriodicInfo)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngine_PeriodicInfo)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngine_PeriodicInfo)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngine_PeriodicInfo)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

2.3. Yade wrapper class reference 385

Yade Documentation, Release 3rd ed.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngine_PeriodicInfo)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

386 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

clearImposedFlux((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngine_PeriodicInfo)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngine_PeriodicInfo)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

2.3. Yade wrapper class reference 387

Yade Documentation, Release 3rd ed.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngine_PeriodicInfo)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngine_PeriodicInfo)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

388 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryVel((FlowEngine_PeriodicInfo)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngine_PeriodicInfo)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngine_PeriodicInfo)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngine_PeriodicInfo)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngine_PeriodicInfo)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngine_PeriodicInfo)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

2.3. Yade wrapper class reference 389

Yade Documentation, Release 3rd ed.

getConductivity((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngine_PeriodicInfo)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((FlowEngine_PeriodicInfo)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngine_PeriodicInfo)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngine_PeriodicInfo)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

390 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

imposePressureFromId((FlowEngine_PeriodicInfo)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngine_PeriodicInfo)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngine_PeriodicInfo)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngine_PeriodicInfo)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngine_PeriodicInfo)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

2.3. Yade wrapper class reference 391

Yade Documentation, Release 3rd ed.

normalVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngine_PeriodicInfo)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngine_PeriodicInfo)arg1, (float)wallUpY , (float)wallDownY) → None
:

Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngine_PeriodicInfo)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngine_PeriodicInfo)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

392 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

saveVtk((FlowEngine_PeriodicInfo)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngine_PeriodicInfo)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngine_PeriodicInfo)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngine_PeriodicInfo)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throatIndex) →
float :

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

2.3. Yade wrapper class reference 393

Yade Documentation, Release 3rd ed.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((FlowEngine_PeriodicInfo)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngine_PeriodicInfo)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngine_PeriodicInfo)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

394 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.ForceEngine(inherits PartialEngine → Engine → Serializable)
Apply contact force on some particles at each step.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property force
Force to apply.

property ids
Ids list of bodies affected by this PartialEngine.

2.3. Yade wrapper class reference 395

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.HarmonicForceEngine(inherits PartialEngine → Engine → Serializable)
This engine adds a harmonic (sinusoidal) force to a set of bodies. It is identical to Harmonic-
MotionEngine except a force amplitude is prescribed instead of motion, see also the dynamics of
harmonic motion

property A
Amplitude [N]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f
Frequency [hertz]

property fi
Initial phase [radians]. By default, the phase is zero such that the force starts at zero.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

396 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.HarmonicMotionEngine(inherits KinematicEngine → PartialEngine → Engine→ Serializable)
This engine implements the harmonic oscillation of bodies. See also HarmonicForceEngine that
applies a harmonic force, see also the dynamics of harmonic motion

property A
Amplitude [m]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f
Frequency [hertz]

property fi
Initial phase [radians]. By default, the body oscillates around initial position.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.HarmonicRotationEngine(inherits RotationEngine → KinematicEngine →
PartialEngine → Engine → Serializable)

This engine implements the harmonic-rotation oscillation of bodies, see also the dynamics of har-
monic motion ; please, set dynamic=False for bodies, droven by this engine, otherwise amplitude
will be 2x more, than awaited.

2.3. Yade wrapper class reference 397

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 3rd ed.

property A
Amplitude [rad]

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f
Frequency [hertz]

property fi
Initial phase [radians]. By default, the body oscillates around initial position.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.HelixEngine(inherits RotationEngine → KinematicEngine → PartialEngine →
Engine → Serializable)

Engine applying both rotation and translation, along the same axis, whence the name HelixEngine

398 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property angleTurned
How much have we turned so far. (auto-updated) [rad]

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property linearVelocity
Linear velocity [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.HydroForceEngine(inherits PartialEngine → Engine → Serializable)

Engine performing a coupling of the DEM with a volume-averaged 1D fluid
resolution to simulate steady uniform unidirectional fluid flow. It has been
developed and used to model steady uniform gravity-driven turbulent bedload
transport [Maurin2015b] [Maurin2016] [Maurin2018], but can be also used in its
current state for laminar or pressure-driven configurations. The fundamentals of the
model can be found in [Maurin2015b] and [Maurin2015PhD], and in more details in
[Maurin2018_VANSbasis], [Maurin2018_VANSfluidResol] and
[Maurin2018_VANSvalidations].

2.3. Yade wrapper class reference 399

Yade Documentation, Release 3rd ed.

The engine can be decomposed in three different parts: (i) It applies the fluid force on the
particles imposed by the fluid velocity profiles and fluid properties, (ii) It evaluates averaged
solid depth profiles necessary for the fluid force application and for the fluid resolution, (iii)
It solve the volume-averaged 1D fluid momentum balance.

The three different functions are detailed below:

(i) Fluid force on particles Apply to each particles, buoyancy, drag and lift force due to
a 1D fluid flow and can apply lubrication force between two particles. The applied drag
force reads

Fd = 1
2
CdAρf|vf − v|vf − v

where ρ is the fluid density (densFluid), v is particle’s velocity, vf is the velocity of the
fluid at the particle center (taken from the fluid velocity profile vxFluid), A = πd2/4

is particle projected area (disc), Cd is the drag coefficient. The formulation of the
drag coefficient depends on the local particle reynolds number and the solid volume
fraction. The formulation of the drag is [Dallavalle1948] [RevilBaudard2013] with a
correction of Richardson-Zaki [Richardson1954] to take into account the hindrance ef-
fect. This law is classical in sediment transport. The possibly activated lubrica-
tion force (with parameter:yref:lubrication<HydroForceEngine.lubrication> put to True)
reads: Flubrication = 6πηfvrel

n

δn+εr
, with ηf the fluid dynamic viscosity viscoDyn, vreln the

normal relative velocity of the two particles, δn the distance between the two particles
surface, and εr the roughness scale of the particle (roughnessPartScale).

It is possible to activate a fluctuation of the drag force for each particle which
account for the turbulent fluctuation of the fluid velocity (velFluct). Three simple
discrete random walk model have been implemented for the turbulent velocity
fluctuation. The main one (turbulentFluctuations) takes as input the Reynolds
stress tensor Rf

xz as a function of the depth, and allows to recover the main property
of the fluctuations by imposing < u ′

xu
′
z > (z) =< Rf

xz > (z)/ρf. It requires as input
< Rf

xz > (z) called ReynoldStresses in the code.
The formulation of the lift is taken from [Wiberg1985] and is such that :

FL = 1
2
CLAρf((vf − v)2top − (vf − v)2bottom)

Where the subscript top and bottom means evaluated at the top (respectively the bottom)
of the sphere considered. This formulation of the lift account for the difference of pressure
at the top and the bottom of the particle inside a turbulent shear flow. As this formulation
is controversial when approaching the threshold of motion [Schmeeckle2007] it is possible to
desactivate it with the variable lift. The buoyancy is taken into account through the buoyant
weight :

Fbuoyancy = −ρfVpg

, where g is the gravity vector along the vertical, and Vp is the volume of the particle. In the case
where the fluid flow is steady and uniform, the buoyancy reduces to its wall-normal component
(see [Maurin2018] for a full explanation), and one should put steadyFlow to true in order to kill
the streamwise component.

(ii) Averaged solid depth profiles The function averageProfile evaluates the volume av-
eraged depth profiles (1D) of particle velocity, particle solid volume fraction and par-
ticle drag force. It uses a volume-weighting average following [Maurin2015PhD]_[Mau-
rin2015b]_, i.e. the average of a variable Ap associated to particles at a given discretized
wall-normal position z is given by:

⟨A⟩s (z) =

∑
p|zp∈[z−dz/2,z+dz/2]

Ap(t)Vp
z∑

p|zp∈[z−dz/2,z+dz/2]

Vp
z

Where the sums are over the particles contained inside the slice between the wall-normal

400 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

position z − dz/2 and z + dz/2, and Vp represents the part of the volume of the given
particle effectively contained inside the slice. For more details, see [Maurin2015PhD].

(iii) 1D volume-average fluid resolution The fluid resolution is based on the resolution
of the 1D volume-averaged fluid momentum balance. It assumes by definition (uni-
directional) that the fluid flow is steady and uniform. It is the same fluid resolution
as [RevilBaudard2013]. Details can be found in this paper and in [Maurin2015PhD]
[Maurin2015b].

The three different component can be used independently, e.g. applying a fluid force due
to an imposed fluid profile or solving the fluid momentum balance for a given concentra-
tion of particles.

property Cl
Value of the lift coefficient taken from [Wiberg1985]

property ReynoldStresses
Vector of size equal to nCell containing the Reynolds stresses as a function of the depth.
ReynoldStresses(z) = ρf < u ′

xu
′
z > (z)2

property averageDrag
Discretized average drag depth profile. No role in the engine, output parameter. For practical
reason, it can be evaluated directly inside the engine, calling from python the averageProfile()
method of the engine

property averageDrag1
Discretized average drag depth profile of particles of type 1. Evaluated when twoSize is set to
True.

property averageDrag2
Discretized average drag depth profile of particles of type 2. Evaluated when twoSize is set to
True.

averageProfile((HydroForceEngine)arg1) → None :
Compute and store the particle velocity (vxPart, vyPart, vzPart) and solid volume fraction
(phiPart) depth profile. For each defined cell z, the k component of the average particle
velocity reads:

< vk >z=
∑

p Vpv
p
k/

∑
p Vp,

where the sum is made over the particles contained in the cell, vpk is the k component of the
velocity associated to particle p, and Vp is the part of the volume of the particle p contained
inside the cell. This definition allows to smooth the averaging, and is equivalent to taking
into account the center of the particles only when there is a lot of particles in each cell. As
for the solid volume fraction, it is evaluated in the same way: for each defined cell z, it reads:

< φ >z= 1
Vcell

∑
p Vp, where Vcell is the volume of the cell considered, and Vp is the volume

of particle p contained in cell z. This function gives depth profiles of average velocity and solid
volume fraction, returning the average quantities in each cell of height dz, from the reference
horizontal plane at elevation zRef (input parameter) until the plane of elevation zRef plus
nCell times deltaZ (input parameters). When the option twoSize is set to True, evaluate
in addition the average drag (averageDrag1 and averageDrag2) and solid volume fraction
(phiPart1 and phiPart2) depth profiles considering only the particles of radius respectively
radiusPart1 and radiusPart2 in the averaging.

property bedElevation
Elevation of the bed above which the fluid flow is turbulent and the particles undergo turbulent
velocity fluctuation.

property channelWidth
Fluid resolution: Channel width for the evaluation of the fluid wall friction inside the fluid
resolution.

2.3. Yade wrapper class reference 401

Yade Documentation, Release 3rd ed.

property compatibilityOldVersion
Option to make HydroForceEngine compatible with former scripts. Slow down slightly the
calculation and will eventually be removed.

computeRadiusParts((HydroForceEngine)arg1) → None :
compute the different class of radius present in the simulation.

property convAcc
Convective acceleration, depth dependent

property convAccOption
To activate the convective acceleration option in order to account for a convective acceleration
term inside the momentum balance.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property deltaZ
Height of the discretization cell.

property densFluid
Density of the fluid, by default - density of water

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property dpdx
pressure gradient along streamwise direction

property dtFluct
Execution time step of the turbulent fluctuation model.

property enableMultiClassAverage
Enables specific averaging for all the different particle size. Uses a lot of memory if using a
lots of different particle size

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property expoRZ
Value of the Richardson-Zaki exponent, for the drag correction due to hindrance

property fluctTime
Vector containing the time of life of the fluctuations associated to each particles.

property fluidFrictionCoef
Fluid resolution: fitting coefficient for the fluid wall friction

fluidResolution((HydroForceEngine)arg1, (float)arg2, (float)arg3) → None :
Solve the 1D volume-averaged fluid momentum balance on the de-
fined mesh (nCell, deltaZ) from the volume-averaged solid profiles
(phiPart,:yref:vxPart<HydroForceEngine.vxPart>,:yref:averageDrag<HydroForceEngine.averageDrag>),
which can be evaluated with the averageProfile function.

property fluidWallFriction
Fluid resolution: if set to true, introduce a sink term to account for the fluid friction at the
wall, see [Maurin2015] for details. Requires to set the width of the channel. It might slow
down significantly the calculation.

402 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property gravity
Gravity vector

property ids
Ids list of bodies affected by this PartialEngine.

property ilm
Fluid resolution: type of mixing length resolution applied: 0: classical Prandtl mixing length,
1: Prandtl mixing length with free-surface effects, 2: Damp turbulence accounting for the
presence of particles [Li1995], see [RevilBaudard2013] for more details.

initialization((HydroForceEngine)arg1) → None :
Initialize the necessary parameters to make HydroForceEngine run. Necessary to execute
before any simulation run, otherwise it crashes

property irheolf
Fluid resolution: effective fluid viscosity option: 0: pure fluid viscosity, 1: Einstein viscosity.

property iturbu
Fluid resolution: activate the turbulence resolution, 1, or not, 0

property iusl
Fluid resolution: option to set the boundary condition at the top of the fluid, 0: Dirichlet,
fixed (u = uTop en z = h), 1:Neumann, free-surface (du/dz = 0 en z = h).

property kappa
Fluid resolution: Von Karman constant. Can be tuned to account for the effect of particles
on the fluid turbulence, see e.g. [RevilBaudard2015]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lift
Option to activate or not the evaluation of the lift

property lubrication
Condition to activate the calculation of the lubrication force.

property multiDragPart
Spatial-averaged mean drag force for each class of particle. Un-used ? Or just for debug.

property multiPhiPart
Spatial-averaged solid volume fraction for each class of particle.

property multiVxPart
Spatial-averaged velocity in x direction for each class of particle.

property multiVyPart
Spatial-averaged velocity in y direction for each class of particle.

property multiVzPart
Spatial-averaged velocity in z direction for each class of particle.

property nCell
Number of cell in the depth

property nbAverageT
If >0, perform a time-averaging (in addition to the spatial averaging) over nbAverage steps.

2.3. Yade wrapper class reference 403

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property phiBed
Turbulence modelling parameter. Associated with mixing length modelling ilm = 5.

property phiMax
Fluid resolution: maximum solid volume fraction.

property phiPart
Discretized solid volume fraction depth profile. Can be taken as input parameter or evaluated
directly inside the engine, calling from python the averageProfile() function

property phiPart1
Discretized solid volume fraction depth profile of particles of type 1. Evaluated when twoSize
is set to True.

property phiPart2
Discretized solid volume fraction depth profile of particles of type 2. Evaluated when twoSize
is set to True.

property pointParticleAverage
Evaluate the averaged with a point particle method. If False, consider the particle extent and
weigth the averaged by the volume contained in each averaging cell.

property radiusPart
Reference particle radius

property radiusPart1
Radius of the particles of type 1. Useful only when twoSize is set to True.

property radiusPart2
Radius of the particles of type 2. Useful only when twoSize is set to True.

property radiusParts
Variables containing the number of different radius of particles in the simulation. Allow to
perform class averaging by particle size.

property roughnessPartScale
Roughness length scale of the particle. In practice, the lubrication force is cut off when the
two particles are at a distance roughnessPartScale.

property steadyFlow
Condition to modify the buoyancy force according to the physical difference between a fluid
at rest and a steady fluid flow. For more details see [Maurin2018]

property taufsi
Fluid Resolution: Create Taufsi/rhof = dragTerm/(rhof(vf-vxp)) to transmit to the fluid code

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

turbulentFluctuation((HydroForceEngine)arg1) → None :
Apply a discrete random walk model to the evaluation of the drag force to account for the
fluid velocity turbulent fluctuations. Very simple model applying fluctuations from the values
of the Reynolds stresses in order to recover the property < u ′

xu
′
z > (z) =< Rf

xz > (z)/ρf. The
random fluctuations are modified over a time scale given by the eddy turn over time.

404 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

turbulentFluctuationZDep((HydroForceEngine)arg1) → None :
Apply turbulent fluctuation to the problem similarly to turbulentFluctuation but with an
update of the fluctuation depending on the particle position.

property turbulentViscosity
Fluid Resolution: turbulent viscocity as a function of the depth

property twoSize
Not maintained anymore. Option to activate when considering two particle size in the simu-
lation. When activated evaluate the average solid volume fraction and drag force for the two
type of particles of diameter diameterPart1 and diameterPart2 independently.

property uTop
Fluid resolution: fluid velocity at the top boundary when iusl = 0

property unCorrelatedFluctuations
Condition to generate uncorrelated fluid fluctuations. Default case represent in free-surface
flows, for which the vertical and streamwise fluid velocity fluctuations are correlated (see e.g.
reference book of Nezu & Nagakawa 1992, turbulence in open channel flows).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vCell
Volume of averaging cell

property vFluctX
Vector associating a streamwise fluid velocity fluctuation to each particle. Fluctuation calcu-
lated in the C++ code from the discrete random walk model

property vFluctY
Vector associating a spanwise fluid velocity fluctuation to each particle. Fluctuation calculated
in the C++ code from the discrete random walk model

property vFluctZ
Vector associating a normal fluid velocity fluctuation to each particle. Fluctuation calculated
in the C++ code from the discrete random walk model

property vPart
Discretized streamwise solid velocity depth profile, in x, y and z direction. Only the x direction
measurement is taken into account in the 1D fluid coupling resolution. The two other can be
used as output parameters. The x component can be taken as input parameter, or evaluated
directly inside the engine, calling from python the averageProfile() function

property velFluct
If true, activate the determination of turbulent fluid velocity fluctuation for the next time
step only at the position of each particle, using a simple discrete random walk (DRW) model
based on the Reynolds stresses profile (ReynoldStresses)

property viscoDyn
Dynamic viscosity of the fluid, by default - viscosity of water

property viscousSubLayer
Fluid resolution: solve the viscous sublayer close to the bottom boundary if set to 1

property vxFluid
Discretized streamwise fluid velocity depth profile at t

property vxPart
Discretized streamwise solid velocity depth profile. Can be taken as input parameter, or
evaluated directly inside the engine, calling from python the averageProfile() function

2.3. Yade wrapper class reference 405

Yade Documentation, Release 3rd ed.

property vxPart1
Discretized solid streamwise velocity depth profile of particles of type 1. Evaluated when
twoSize is set to True.

property vxPart2
Discretized solid streamwise velocity depth profile of particles of type 2. Evaluated when
twoSize is set to True.

property vyPart
Discretized spanwise solid velocity depth profile. Can be taken as input parameter, or evalu-
ated directly inside the engine, calling from python the averageProfile() function

property vyPart1
Discretized solid spanwise velocity depth profile of particles of type 1. Evaluated when twoSize
is set to True.

property vyPart2
Discretized solid spanwise velocity depth profile of particles of type 2. Evaluated when twoSize
is set to True.

property vzPart
Discretized wall-normal solid velocity depth profile. Can be taken as input parameter, or
evaluated directly inside the engine, calling from python the averageProfile() function

property vzPart1
Discretized solid wall-normal velocity depth profile of particles of type 1. Evaluated when
twoSize is set to True.

property vzPart2
Discretized solid wall-normal velocity depth profile of particles of type 2. Evaluated when
twoSize is set to True.

property wallFrictionModel
Model used to compute the wall friction factor f. 0: Blasius (1913) explicit for-
mula f = 0.3164/Re1/4 (faster), 1: Graf and Altinakar (1998) implicit formula f =
(2 log10(Re

√
fold/4) + 0.32)−2.

property zRef
Position of the reference point which correspond to the first value of the fluid velocity, i.e. to
the ground.

class yade.wrapper.InterpolatingDirectedForceEngine(inherits ForceEngine → PartialEngine→ Engine → Serializable)
Engine for applying force of varying magnitude but constant direction on subscribed bodies. times
and magnitudes must have the same length, direction (normalized automatically) gives the orien-
tation.

As usual with interpolating engines: the first magnitude is used before the first time point, last
magnitude is used after the last time point. Wrap specifies whether time wraps around the last
time point to the first time point.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property direction
Contact force direction (normalized automatically)

406 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property force
Force to apply.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property magnitudes
Force magnitudes readings [N]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property times
Time readings [s]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wrap
wrap to the beginning of the sequence if beyond the last time point

class yade.wrapper.InterpolatingHelixEngine(inherits HelixEngine → RotationEngine →
KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying spiral motion, finding current angular velocity by linearly interpolating in times
and velocities and translation by using slope parameter.

The interpolation assumes the margin value before the first time point and last value after the last
time point. If wrap is specified, time will wrap around the last times value to the first one (note
that no interpolation between last and first values is done).

property angleTurned
How much have we turned so far. (auto-updated) [rad]

property angularVelocities
List of angular velocities; manadatorily of same length as times. [rad/s]

property angularVelocity
Angular velocity. [rad/s]

2.3. Yade wrapper class reference 407

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property linearVelocity
Linear velocity [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property slope
Axial translation per radian turn (can be negative) [m/rad]

property times
List of time points at which velocities are given; must be increasing [s]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wrap
Wrap t if t>times_n, i.e. t_wrapped=t-N*(times_n-times_0)

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.KinematicEngine(inherits PartialEngine → Engine → Serializable)
Abstract engine for applying prescribed displacement.

Note: Derived classes should override the apply with given list of ids (not action with Par-
tialEngine.ids), so that they work when combined together; velocity and angular velocity of all

408 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

subscribed bodies is reset before the apply method is called, it should therefore only increment
those quantities.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.LawTester(inherits PartialEngine → Engine → Serializable)
Prescribe and apply deformations of an interaction in terms of local mutual displacements and
rotations. The loading path is specified either using path (as sequence of 6-vectors containing
generalized displacements ux, uy, uz, φx, φy, φz) or disPath (ux, uy, uz) and rotPath (φx, φy,
φz). Time function with time values (step numbers) corresponding to points on loading path is
given by pathSteps. Loading values are linearly interpolated between given loading path points,
and starting zero-value (the initial configuration) is assumed for both path and pathSteps. hooks
can specify python code to run when respective point on the path is reached; when the path is
finished, doneHook will be run.

LawTester should be placed between InteractionLoop and NewtonIntegrator in the simulation loop,
since it controls motion via setting linear/angular velocities on particles; those velocities are inte-
grated by NewtonIntegrator to yield an actual position change, which in turn causes IGeom to be
updated (and contact law applied) when InteractionLoop is executed. Constitutive law generating
forces on particles will not affect prescribed particle motion, since both particles have all DoFs
blocked when first used with LawTester.

LawTester uses, as much as possible, IGeom to provide useful data (such as local coordinate system),
but is able to compute those independently if absent in the respective IGeom:

2.3. Yade wrapper class reference 409

Yade Documentation, Release 3rd ed.

IGeom #DoFs LawTester support level
L3Geom 3 full
L6Geom 6 full
ScGeom 3 emulate local coordinate system
ScGeom6D 6 emulate local coordinate system

Depending on IGeom, 3 (ux, uy, uz) or 6 (ux, uy, uz, φx, φy, φz) degrees of freedom (DoFs)
are controlled with LawTester, by prescribing linear and angular velocities of both particles in
contact. All DoFs controlled with LawTester are orthogonal (fully decoupled) and are controlled
independently.

When 3 DoFs are controlled, rotWeight controls whether local shear is applied by moving particle
on arc around the other one, or by rotating without changing position; although such rotation
induces mutual rotation on the interaction, it is ignored with IGeom with only 3 DoFs. When 6
DoFs are controlled, only arc-displacement is applied for shear, since otherwise mutual rotation
would occur.

idWeight distributes prescribed motion between both particles (resulting local deformation is the
same if id1 is moved towards id2 or id2 towards id1). This is true only for ux, uy, uz, φx

however ; bending rotations φy, φz are nevertheless always distributed regardless of idWeight to
both spheres in inverse proportion to their radii, so that there is no shear induced.

LawTester knows current contact deformation from 2 sources: from its own internal data (which
are used for prescribing the displacement at every step), which can be accessed in uTest, and from
IGeom itself (depending on which data it provides), which is stored in uGeom. These two values
should be identical (disregarding numerical percision), and it is a way to test whether IGeom and
related functors compute what they are supposed to compute.

LawTester-operated interactions can be rendered with GlExtra_LawTester renderer.

See scripts/test/law-test.py for an example.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property disPath
Loading path, where each Vector3 contains desired normal displacement and two components
of the shear displacement (in local coordinate system, which is being tracked automatically.
If shorter than rotPath, the last value is repeated.

property displIsRel
Whether displacement values in disPath are normalized by reference contact length (r1+r2
for 2 spheres).

property doneHook
Python command (as string) to run when end of the path is achieved. If empty, the engine
will be set dead.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

410 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/law-test.py

Yade Documentation, Release 3rd ed.

property hooks
Python commands to be run when the corresponding point in path is reached, before doing
other things in that particular step. See also doneHook.

property idWeight
Float, usually �〈0,1〉, determining on how are displacements distributed between particles
(0 for id1, 1 for id2); intermediate values will apply respective part to each of them. This
parameter is ignored with 6-DoFs IGeom.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property pathSteps
Step number for corresponding values in path; if shorter than path, distance between last 2
values is used for the rest.

property refLength
Reference contact length, for rendering only.

property renderLength
Characteristic length for the purposes of rendering, set equal to the smaller radius.

property rotPath
Rotational components of the loading path, where each item contains torsion and two bending
rotations in local coordinates. If shorter than path, the last value is repeated.

property rotWeight
Float �〈0,1〉 determining whether shear displacement is applied as rotation or displacement on
arc (0 is displacement-only, 1 is rotation-only). Not effective when mutual rotation is specified.

property step
Step number in which this engine is active; determines position in path, using pathSteps.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property trsf
Transformation matrix for the local coordinate system. (auto-updated)

property uGeom
Current generalized displacements (3 displacements, 3 rotations), as stored in the interation
itself. They should corredpond to uTest, otherwise a bug is indicated.

property uTest
Current generalized displacements (3 displacements, 3 rotations), as they should be according
to this LawTester. Should correspond to uGeom.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 411

Yade Documentation, Release 3rd ed.

property uuPrev
Generalized displacement values reached in the previous step, for knowing which increment
to apply in the current step.

class yade.wrapper.LinearDragEngine(inherits PartialEngine → Engine → Serializable)
Apply viscous resistance or linear drag on some particles at each step, decelerating them propor-
tionally to their linear velocities. The applied force reads

Fd = −bv

where b is the linear drag, v is particle’s velocity.

b = 6πνr

where ν is the medium viscosity, r is the Stokes radius of the particle (but in this case we accept
it equal to sphere radius for simplification),

Note: linear drag is only applied to spherical particles, listed in ids.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nu
Viscosity of the medium.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

412 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Drag_%28physics%29#Very_low_Reynolds_numbers_.E2.80.94_Stokes.27_drag
http://en.wikipedia.org/wiki/Stokes_radius

Yade Documentation, Release 3rd ed.

class yade.wrapper.PartialSatClayEngine(inherits PartialSatClayEngineT → PartialEngine →
Engine → Serializable)

Engine designed to simulate the partial saturation of clay and associated swelling.

property Ka
bulk modulus of air used for equivalent compressibility model

property Ks
bulkmodulus of solid used for equivalent compressibility model

property Kw
bulkmodulus of water used for equivalent compressibility model

OSI((PartialSatClayEngineT)arg1) → float :
Return the number of interactions only between spheres.

property Po
Po parameter for Van Genuchten model, Free swelling 0.04e6. If porosity is distributed, this
value becomes cell based.

property SrM
residual saturation for empirical relative saturation based permeability relationship

property SsM
saturated saturation for empirical relative saturation based permeability relationship

property a
parameter a for evolution of Po as a function of porosity

property airViscosity
Used with PartialSatClayEngine::getGasPerm for crack permeability estimates.

property allCellsFractured
use to simulate all pores fractured for debugging purposes only

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

property alphaExpRate
rate of exponential distribution for porosity distribution

property alpham
alpha parameter for particle volumetric strain model MPa^-1

property apertureFactor
factor to consider tortuosity

artificialParticleSwell((PartialSatClayEngine)arg1, (float)volStrain) → None :
Artificially swell all particles by the strain provided during next time step. Does not reactivate
itself for next time step, user must call for each timestep they want to use it.

avFlVelOnSph((PartialSatClayEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

2.3. Yade wrapper class reference 413

Yade Documentation, Release 3rd ed.

averagePressure((PartialSatClayEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((PartialSatClayEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((PartialSatClayEngineT)arg1) → Vector3 :
measure the mean velocity in the period

property b
parameter b for evolution of lambda as a function of porosity

property bIntrinsicPerm
b parameter for dependency of intrinsic permeability on macroporosity Gens 2011. Not active
if 0 (default). Mokni2016 uses 8

property betaExpRate
rate of exponential distribution for porosity distribution

property betaLaplaceShape
shape of laplace distribution used for porosity distribution

property betam
beta parameter for particle volumetric strain model MPa^-1

blockCell((PartialSatClayEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockCellPoroThreshold
If >0, any cell above this porosity will be blocked from the beginning (partially sat crack
should not participate).

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property blockIsoCells
search for cells that might be surrounded by blocked (minerals or cracks) and block them to
avoid numerical instabilities.

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

414 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

bodyShearLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property brokenBondsRemoveCapillaryforces
if true, broken bonds will also remove any capillary forces associated with the area of the
crack

property calcCrackArea
The amount of crack per pore is updated if calcCrackArea=True

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

property changeCrackSaturation
if cell becomes cracked, its saturation is reduced to residual saturation (warning this is not
conservative). Useful for reducing partial sat permeability in these cells.

cholmodStats((PartialSatClayEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((PartialSatClayEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((PartialSatClayEngineT)arg1) → None :
Clear the list of points with pressure imposed.

property collectedDT
this is the exact time step that is computed, it enables the stiffness timestep estimate to
change dynamically while maintaining an exact match for the flow timestep

2.3. Yade wrapper class reference 415

Yade Documentation, Release 3rd ed.

compTessVolumes((PartialSatClayEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property computeFracturePaths
if true, fracture paths connecting to boundary conditions will become pcondition cells and
forces will be computed using atmospheric pressure.

property constantPorosity
use the meanInitialPorosity everywhere instead of random distribution

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property crackAreaFactor
Factors the area used for crack geometry computations and capillary force removal inside
cracks

property crackCellPoroThreshold
If >0, any cell above this porosity will follow crack logic from the beginning. (~0.35 for pellet
imagery)

property crackModelActive
Activates the parallel plate approximation model for facets connected to cohesionBroken edges

property crackedCellTotal
total number of cracked cells

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property directlyModifySatFromPoro
if true, changes in porosity are used to directly change porosity. Normally, the water retention
curve is taking care of this on its own.

416 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property displacementBasedCracks
fracture criteria will be based on displacement instead of broken bond status

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((PartialSatClayEngineT)arg1) → float :
Return the number of interactions.

property elapsedIters
number of mechanical iters since last flow iter.

emulateAction((PartialSatClayEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((PartialSatClayEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((PartialSatClayEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

2.3. Yade wrapper class reference 417

Yade Documentation, Release 3rd ed.

fluidForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceConfinement
If true, all the boundary particles are locked in place to simulate perfect constant volume.

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

property fracBasedPointSuctionCalc
if true, the suction per material point is computed based on fraction shared by incident cell.

property fracPorosity
porosity value used for cracked cells

property freeSwelling
if true, boundary forces are computed with pAir pressure only

property freezePorosity
useful for freezing porosity values during stage for reaching initial conditions where volume
changes should not impact porosity

property freezeSaturation
if true, saturation will not change in specimen.

property gasPermFirst
Set true each time you want a new gas perm estimate.

getAverageAperture((PartialSatClayEngine)arg1) → float :
get the averageaperture.

getAverageSaturation((PartialSatClayEngine)arg1) → float :
Get average saturation of entire specimen.

getAverageSuction((PartialSatClayEngine)arg1) → float :
Get average suction of entire specimen.

getBoundaryFluidArea((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryGasFlux((PartialSatClayEngine)arg1, (int)boundary) → float :
Get total Gas flux through boundary defined by its body id.

getBoundaryVel((PartialSatClayEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

418 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryVolume((PartialSatClayEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((PartialSatClayEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((PartialSatClayEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((PartialSatClayEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellCracked((PartialSatClayEngine)arg1, (Vector3)pos) → bool :
Get cell cracked in position pos[0],pos[1],pos[2].

getCellFlux((PartialSatClayEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((PartialSatClayEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellGasCenter((PartialSatClayEngine)arg1, (int)id) → Vector3 :
Get cell center of gas mesh with id. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellGasPImposed((PartialSatClayEngine)arg1, (int)id) → bool :
Get pressure condition of gas cell with id. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellGasVelocity((PartialSatClayEngine)arg1, (Vector3)pos) → object :
Get relative cell gas velocity at position pos[0] pos [1] pos[2]. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellGasVolume((PartialSatClayEngine)arg1, (Vector3)id) → float :
Get volume of gas cell with id. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellInvVoidVolume((PartialSatClayEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

2.3. Yade wrapper class reference 419

Yade Documentation, Release 3rd ed.

getCellPorosity((PartialSatClayEngine)arg1, (Vector3)pos) → float :
Measure cell porosity in position pos[0],pos[1],pos[2].

getCellPressure((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellSaturation((PartialSatClayEngine)arg1, (Vector3)pos) → float :
Measure cell saturation in position pos[0],pos[1],pos[2]

getCellTImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((PartialSatClayEngine)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((PartialSatClayEngine)arg1, (Vector3)pos) → float :
Get cell volume in position pos[0],pos[1],pos[2].

getConductivity((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getCrackArea((PartialSatClayEngine)arg1) → float :
get the total cracked area.

getCrackFabricVector((PartialSatClayEngine)arg1) → Vector3 :
get the crack fabric vector.

getCrackVolume((PartialSatClayEngine)arg1) → float :
get the total cracked volume.

getDiffusionCoeff((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEnteredThroatRatio((PartialSatClayEngine)arg1) → float :
Get ratio of entered to total cracked cells.

getEquivalentCompressibility((PartialSatClayEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

property getGasPerm
If true, a gas permeability will be extracted during next timestep. This involves building
another triangulation with a new conductivity matrix, factorizing the matrix, and solving i.e.
this will double computational effort if performed every step.

420 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getIncidentCells((PartialSatClayEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((PartialSatClayEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getNumCracks((PartialSatClayEngine)arg1) → float :
get the number of cracks.

getPorePressure((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getTotalSpecimenVolume((PartialSatClayEngine)arg1) → float :
get the total specimen volume

getVertices((PartialSatClayEngineT)arg1, (int)id) → list :
get the vertices of a cell

getWaterVolume((PartialSatClayEngine)arg1) → float :
get the total water volume (entered cracks only).

property homogeneousSuctionValue
Will override the pressure solver and set all cells to the user provided value. Meant for testing
non transient swelling conditions.

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

property imageryFilePath
path to the porosity grid extracted from imagery

imposeCavity((PartialSatClayEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((PartialSatClayEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

2.3. Yade wrapper class reference 421

Yade Documentation, Release 3rd ed.

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((PartialSatClayEngineT)arg1) → None :
initialize pore volumes.

insertMicroPores((PartialSatClayEngine)arg1, (float)fracMicroPores) → None :
run to inscribe spheres in a desired fraction of existing pores.

property isActivated
Activates Flow Engine

isCellNeighbor((PartialSatClayEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property kappaWeibullScale
scale of weibull dist, this is the mean correction factor multiplied by meanInitialPorosity

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lambdaWeibullShape
shape of weibull distribution of the correction factor used for porosity distribution.

property lmbda
Lambda parameter for Van Genuchten model. Free swelling 0.4. If porosity is distributed,
this value becomes cell based.

property manualCrackPerm
If >0, it overrides the crack perm calculations (useful for setting cracked cells to extremely
low perms to avoid fluid movement)

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property matricSuctionRatio
The ratio of matric:osmotic suction. Facet forces computed for matricSuction fraction only.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property maxPo
Certain boundary situations where a low volume will develop and interpolate from a cell with
high initial porosity leading to Po exponential estimate blowing up.

property maxPoroClamp
max clamp for distribution of porosity. Value over 0.8 messes with water retention curve

property maxPorosity
max porosity found during stochastic poro distribution. used for evolution of porosity

property meanInitialPorosity
if not negative, activates stochastic distribution for porosity. mean value of porosity for
specimen

property meanKStat
report the local permeabilities’ correction

422 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property meanPoreSizeDiameter
mean pore size diameter, used for stochastic generation of porosity field

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((PartialSatClayEngineT)arg1) → bool :
check wether metis lib is effectively used

property microStructureAdh
Adhesion between microstructure particles

property microStructureE
The amount of crack per pore is updated if calcCrackArea=True

property microStructureNu
The amount of crack per pore is updated if calcCrackArea=True

property microStructurePhi
The amount of crack per pore is updated if calcCrackArea=True

property microStructureRho
The amount of crack per pore is updated if calcCrackArea=True

property minCellVol
Use for avoiding 0 volume cells that will interupt solution of linear system.

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minLambdao
Maybe unnecessary since the lambdao function is a decay exponential for same situation
described in maxPo above

property minMicroRadFrac
Used during sphere insertion checks, if inscribed sphere contacts facet it cannot be reduced
further than minMicroRadFrac*originalInscribedRadius

property minParticleSwellFactor
If prevents particles from decreasing too far as their saturation decreases.

property minPoroClamp
min clamp for distribution of porosity

property mineralPoro
If >0, all cell with porosity below this threshold will be blocked from flow and any associated
particles will be clumped together

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((PartialSatClayEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

nGasCells((PartialSatClayEngine)arg1) → int :
Get number of cells in gas mesh. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

2.3. Yade wrapper class reference 423

Yade Documentation, Release 3rd ed.

property nUnsatPerm
n parameter for empirical relative saturation based permeability relationship. Off by default.
n=5 in Mokni2016b

normalLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property onlyFractureExposedCracks
if true, only the exposed cracks have tricked permeability.

onlySpheresInteractions((PartialSatClayEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pAir
Air pressure for calculation of capillary pressure (Pair - Pwater)

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property partialSatDT
time step used for partial sat engine. If >0, the engine will only activate once every
partialSatDT/scene->dt steps. Hydromechanical forces estimated and added as persistant
forces to particles during non partial sat time steps. This value is not exact, see PartialSat-
ClayEngine.collectedDT

property partialSatEngine
Activates the partial sat clay engine

property particleSwelling
set false to neglect particle swelling

property permAreaFactor
Factors the area used for representing roughness in cracks that still conduct flux.

property permClamp
If >0, it prevents any permeabilities from increasing beyond this value (useful in case of very
close cells

424 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
initial porosity of the specimen

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((PartialSatClayEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printPorosity((PartialSatClayEngine)arg1[, (str)file=’./porosity’]) → None :
save the porosity of the cell network.

printVertices((PartialSatClayEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

reloadSolver((PartialSatClayEngine)arg1, (object)arg2) → None :
use after reloading a partialSat simulation and before running next step

resetLinearSystem((PartialSatClayEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

property resetOriginalParticleValues
use to reset initial volume and radii values for particles.

property resetVolumeSolids
useful if genesis process was used to reach an initial condition. We don’t want the volume
changes that occured during geneis to affect porosity evolution.

property residualAperture
residual aperture of induced cracks

savePermeabilityNetworkVTK((PartialSatClayEngine)arg1[, (str)fileName=’./VTK’]) → None
:

Save permeability network as connections between cell centers

saveUnsatVtk((PartialSatClayEngine)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]
]) → None :

Save pressure and saturation field in vtk format. Specify a folder name for output. The cells
adjacent to the bounding spheres are generated conditionally based on withBoundaries (not
compatible with periodic boundaries)

2.3. Yade wrapper class reference 425

Yade Documentation, Release 3rd ed.

saveVtk((PartialSatClayEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((PartialSatClayEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((PartialSatClayEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((PartialSatClayEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellSaturation((PartialSatClayEngine)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setCellTImposed((PartialSatClayEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((PartialSatClayEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((PartialSatClayEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

property suction
turn just particle suction off (for debug)

surfaceDistanceParticle((PartialSatClayEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((PartialSatClayEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

426 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property swelling
turn just particle swelling off (for debug)

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timeDimension
Used to determine stability of system, partialSatEngine computes this value automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property totalCracks
total discretely connected cracks.

property totalSpecimenVolume
report the total specimen volume

property totalVolChange
tracks the total volumetric strain that occured in each step

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((PartialSatClayEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

2.3. Yade wrapper class reference 427

Yade Documentation, Release 3rd ed.

updateVolumes((PartialSatClayEngineT)arg1) → None :
update rates of volume change

property useForceForCracks
Cracks are only considered if a normal force of 0 is encountered between two particles.

property useKeq
use the equivalent bulkmodulus for pressure field

property useKozeny
use Kozeny for determining the permeability based on porosity (off by default)

property useOpeningPressure
if true, cracks will be created based on local opening pressure criteria computed by waterSur-
faceTension/aperture

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((PartialSatClayEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property volumes
turn just particle volumes off (for debug)

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waterSurfaceTension
Water surface tension at 20 degC used to determine entry pressure to cracks

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

428 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.PartialSatClayEngineT(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((PartialSatClayEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((PartialSatClayEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((PartialSatClayEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((PartialSatClayEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((PartialSatClayEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((PartialSatClayEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

2.3. Yade wrapper class reference 429

Yade Documentation, Release 3rd ed.

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((PartialSatClayEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((PartialSatClayEngineT)arg1) → None :
Clear the list of points with flux imposed.

430 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

clearImposedPressure((PartialSatClayEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((PartialSatClayEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((PartialSatClayEngineT)arg1) → float :
Return the number of interactions.

emulateAction((PartialSatClayEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

2.3. Yade wrapper class reference 431

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((PartialSatClayEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((PartialSatClayEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((PartialSatClayEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

432 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryVolume((PartialSatClayEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((PartialSatClayEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((PartialSatClayEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((PartialSatClayEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((PartialSatClayEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((PartialSatClayEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((PartialSatClayEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((PartialSatClayEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

2.3. Yade wrapper class reference 433

Yade Documentation, Release 3rd ed.

getConstrictions((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((PartialSatClayEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((PartialSatClayEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((PartialSatClayEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((PartialSatClayEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((PartialSatClayEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((PartialSatClayEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

434 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((PartialSatClayEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((PartialSatClayEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((PartialSatClayEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((PartialSatClayEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

2.3. Yade wrapper class reference 435

Yade Documentation, Release 3rd ed.

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((PartialSatClayEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((PartialSatClayEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((PartialSatClayEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((PartialSatClayEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((PartialSatClayEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((PartialSatClayEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

436 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

setCellPImposed((PartialSatClayEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((PartialSatClayEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((PartialSatClayEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((PartialSatClayEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((PartialSatClayEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((PartialSatClayEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((PartialSatClayEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

2.3. Yade wrapper class reference 437

Yade Documentation, Release 3rd ed.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((PartialSatClayEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((PartialSatClayEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((PartialSatClayEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

438 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.PeriodicFlowEngine(inherits FlowEngine_PeriodicInfo → PartialEngine →
Engine → Serializable)

A variant of FlowEngine implementing periodic boundary conditions. The API is very similar.

OSI((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngine_PeriodicInfo)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngine_PeriodicInfo)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngine_PeriodicInfo)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngine_PeriodicInfo)arg1) → Vector3 :
measure the mean velocity in the period

2.3. Yade wrapper class reference 439

Yade Documentation, Release 3rd ed.

blockCell((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngine_PeriodicInfo)arg1) → None :
get statistics of cholmod solver activity

440 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngine_PeriodicInfo)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

property duplicateThreshold
distance from cell borders that will triger periodic duplication in the triangulation (auto-
updated)

2.3. Yade wrapper class reference 441

Yade Documentation, Release 3rd ed.

edgeSize((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngine_PeriodicInfo)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngine_PeriodicInfo)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngine_PeriodicInfo)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

442 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryFluidArea((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngine_PeriodicInfo)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngine_PeriodicInfo)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngine_PeriodicInfo)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngine_PeriodicInfo)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngine_PeriodicInfo)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngine_PeriodicInfo)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

2.3. Yade wrapper class reference 443

Yade Documentation, Release 3rd ed.

getCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngine_PeriodicInfo)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((FlowEngine_PeriodicInfo)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngine_PeriodicInfo)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngine_PeriodicInfo)arg1, (int)id) → list :
get the vertices of a cell

property gradP
Macroscopic pressure gradient

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

444 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngine_PeriodicInfo)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngine_PeriodicInfo)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngine_PeriodicInfo)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngine_PeriodicInfo)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

2.3. Yade wrapper class reference 445

Yade Documentation, Release 3rd ed.

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngine_PeriodicInfo)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngine_PeriodicInfo)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngine_PeriodicInfo)arg1, (float)wallUpY , (float)wallDownY) → None
:

Measure pore pressure in 6 equally-spaced points along the height of the sample

446 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

printVertices((FlowEngine_PeriodicInfo)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngine_PeriodicInfo)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngine_PeriodicInfo)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngine_PeriodicInfo)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngine_PeriodicInfo)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngine_PeriodicInfo)arg1, (int)interaction) → float :
Return the distance between particles.

2.3. Yade wrapper class reference 447

Yade Documentation, Release 3rd ed.

surfaceSolidThroatInPore((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throatIndex) →
float :

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((FlowEngine_PeriodicInfo)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngine_PeriodicInfo)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

448 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngine_PeriodicInfo)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.RadialForceEngine(inherits PartialEngine → Engine → Serializable)
Apply force of given magnitude directed away from spatial axis.

property axisDir
Axis direction (normalized automatically)

property axisPt
Point on axis

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

2.3. Yade wrapper class reference 449

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fNorm
Applied force magnitude

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.RotationEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying rotation (by setting angular velocity) to subscribed bodies. If rotateAroundZero
is set, then each body is also displaced around zeroPoint.

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

450 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.ServoPIDController(inherits TranslationEngine → KinematicEngine →
PartialEngine → Engine → Serializable)

PIDController servo-engine for applying prescribed force on bodies. http://en.wikipedia.org/wiki/
PID_controller

property axis
Unit vector along which apply the velocity [-]

property curVel
Current applied velocity [m/s]

property current
Current value for the controller [N]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property errorCur
Current error [N]

property errorPrev
Previous error [N]

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.3. Yade wrapper class reference 451

http://en.wikipedia.org/wiki/PID_controller
http://en.wikipedia.org/wiki/PID_controller

Yade Documentation, Release 3rd ed.

property iTerm
Integral term [N]

property ids
Ids list of bodies affected by this PartialEngine.

property iterPeriod
Periodicity criterion of velocity correlation [-]

property iterPrevStart
Previous iteration of velocity correlation [-]

property kD
Derivative gain/coefficient for the PID-controller [-]

property kI
Integral gain/coefficient for the PID-controller [-]

property kP
Proportional gain/coefficient for the PID-controller [-]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxVelocity
Velocity [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property target
Target value for the controller [N]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property translationAxis
Direction of imposed translation [Vector3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velocity
Scalar value of the imposed velocity [m/s]. Imposed vector velocity is velocity * axis

class yade.wrapper.StepDisplacer(inherits PartialEngine → Engine → Serializable)
Apply generalized displacement (displacement or rotation) stepwise on subscribed bodies. Could
be used for purposes of contact law tests (by moving one sphere compared to another), but in this
case, see rather LawTester

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

452 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mov
Linear displacement step to be applied per iteration, by addition to State.pos.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rot
Rotation step to be applied per iteration (via rotation composition with State.ori).

property setVelocities
If false, positions and orientations are directly updated, without changing the speeds of con-
cerned bodies. If true, only velocity and angularVelocity are modified. In this second case
integrator is supposed to be used, so that, thanks to this Engine, the bodies will have the
prescribed jump over one iteration (dt).

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.ThermalEngine(inherits PartialEngine → Engine → Serializable)
An engine typically used in combination with FlowEngine to simulate thermal-hydraulic-
mechanical processes. Framework description and demonstration presented within the following
paper [Caulk2019a] :Caulk, R.A. and Chareyre, B. (2019) An open framework for the simulation
of thermal-hydraulic-mechanical processes in discrete element systems. Thermal Process Engi-
neering: Proceedings of DEM8 International Conference for Discrete Element Methods, Enschede
Netherlands, July 2019.

property advection
Activates advection

property bndCondIsTemperature
defines the type of boundary condition for each side of particle packing. True if temperature is
imposed, False for no heat-flux. Indices can be retrieved with FlowEngine::xmin and friends.

property boundarySet
set false to change boundary conditions

2.3. Yade wrapper class reference 453

Yade Documentation, Release 3rd ed.

checkThermal((ThermalEngine)arg1) → bool :
Check if all bodies have thermal states.

property conduction
Activates conduction

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
debugging flags

property delT
Allows user to apply a delT to solids and observe macro thermal expansion. Resets to 0 after
one conduction step.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property flowTempBoundarySet
set false to change boundary conditions

property fluidBeta
volumetric temperature coefficient m^3/m^3C, default water, <= 0 deactivates

property fluidBulkModulus
If > 0, thermalEngine uses this value instead of flow.fluidBulkModulus.

property fluidConduction
Activates conduction within fluid

property fluidConductionAreaFactor
Factor for the porethroat area (used for fluid-fluid conduction model)

property fluidK
Thermal conductivity of the fluid.

property fluidThermoMech
Activates thermoMech

getConductionIterPeriod((ThermalEngine)arg1) → int :
let user check estimated conductionIterPeriod .

getMaxTimeStep((ThermalEngine)arg1) → float :
let user check estimated maxTimeStep.

getThermalDT((ThermalEngine)arg1) → float :
let user check estimated thermalDT .

property ids
Ids list of bodies affected by this PartialEngine.

property ignoreFictiousConduction
Allows user to ignore conduction between fictious cells and particles. Mainly for debugging
purposes.

454 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lenBodies
cache the number of thermal bodies to perform checks and raise warnings if newly inserted
bodies are not thermal

property letThermalRunFlowForceUpdates
If true, Thermal will run force updates according to new pressures instead of FlowEngine.
only useful if useVolumeChange=false.

makeThermal((ThermalEngine)arg1) → None :
Assign thermal states to all bodies.

property minimumFluidCondDist
Useful for maintaining stability despite poor external triangulations involving flat tetrahedrals.
Consider setting to minimum particle diameter to keep scale.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particleAlpha
Particle volumetric thermal expansion coeffcient

property particleCp
Particle thermal heat capacity (J/(kgK)

property particleDensity
If > 0, this value will override material density for thermodynamic calculations (useful for
quasi-static simulations involving unphysical particle densities)

property particleK
Particle thermal conductivity (W/(mK)

property particleT0
Initial temperature of particles

property porosityFactor
If >0, factors the fluid thermal expansion. Useful for simulating low porosity matrices.

setReynoldsNumbers((ThermalEngine)arg1) → None :
update the cell reynolds numbers manually (computationally expensive)

property solidThermoMech
Activates thermoMech

property tempDependentFluidBeta
If true, fluid volumetric thermal expansion coefficient, ThermalEngine::fluidBeta, is tempera-
ture dependent (linear model between 20-70 degC)

property thermalBndCondValue
Imposed temperature boundary condition for the particles.

property thermalBndFlux
Flux through thermal boundary.

2.3. Yade wrapper class reference 455

Yade Documentation, Release 3rd ed.

property thermoMech
Activates thermoMech

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tsSafetyFactor
Allow user to control the timstep estimate with a safety factor. Default 0.8. If <= 0, thermal
timestep is equal to DEM

property unboundCavityBodies
automatically unbound bodies touching only cavity cells.

property uniformReynolds
Control reynolds number in all cells (mostly debugging purposes).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useHertzMethod
flag to use hertzmethod for thermal conductivity area calc

property useKernMethod
flag to use Kern method for thermal conductivity area calc

class yade.wrapper.TimeAverager(inherits PartialEngine → Engine → Serializable)
Average data over time for specific sphere identified by ids. Data are position, velocity, angular
velocity, global resultant force and torque, resultant force and torque computed from contacts
only and contact force field (see description below). The data must be first initialized with its
instantaneous value by running the initialization method. Then averaged values are updated at
every time steps with a moving average algorythm, until the initialization method is run again.

property computeContactForceField
Wether to compute and average contact force field at the surface of the particles (experimental
feature). The contact force field is obtained by ditributing the contact forces on a grid at the
surface of the sphere. The contact forces are spread on each point of the grid, according to
the distance between the contact point and the grid point. The algorythm uses a gaussian
kernel to smooth the field. If computeContactForceField is true, grid and sigma parameters
must be filled in. This can significantly increase the computation time for dense grid or high
number of particles.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

getAngVel((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged angular velocity of particle since last initialization

getContactForce((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant force computed from contact forces on particle since last initialization

456 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getContactForceField((TimeAverager)arg1, (int)arg2) → object :
Get averaged contact force field at the surface of the particle since last initialization

getContactTorque((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant torque computed from contact forces on particle since last initialization

getForce((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant force of particle since last initialization

getNbContact((TimeAverager)arg1, (int)arg2) → float :
Get averaged number of contact points on particle since last initialization

getPos((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged position of particle since last initialization

getTorque((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant torque of particle since last initialization

getVel((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged velocity of particle since last initialization

property grid
Grid on which to compute the contact force field. Should be a list of 3D coordinates at the
surface of the particle (a simple way to generate a well distributed grid at the surface of a
sphere is with the Fibonacci lattice method).

property ids
Ids list of bodies affected by this PartialEngine.

initialization((TimeAverager)arg1) → None :
Initialize tAccu to zero and the averaged variables to there instantaneous values. Necessary
to execute before any simulation run, otherwise it crashes.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sigma
Standard deviation of the Gaussian function, which determines how the contact forces are
weighted based on their distance from a contact point. It is usually set at the order of the
distance between two points in the grid.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.TorqueEngine(inherits PartialEngine → Engine → Serializable)
Apply given torque (momentum) value at every subscribed particle, at every step.

2.3. Yade wrapper class reference 457

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property moment
Torque value to be applied.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.TranslationEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying translation motion (by setting linear velocity) to subscribed bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

458 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property translationAxis
Direction of imposed translation [Vector3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velocity
Scalar value of the imposed velocity [m/s]. Imposed vector velocity is velocity * axis

class yade.wrapper.TwoPhaseFlowEngine(inherits TwoPhaseFlowEngineT → PartialEngine →
Engine → Serializable)

documentation here

OSI((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property accumulativeDeformationFlux
accumulative internal flux caused by deformation

property accumulativeFlux
accumulative influx of water

actionMergingAlgorithm((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

actionTPF((TwoPhaseFlowEngine)arg1) → None :
run 1 time step flow Engine

property airWaterInterfacialArea
Air-water interfacial area, based on the pore-unit assembly and regular-shaped pore units

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

property areaAveragedPressure
Air-water interfacial area averaged water pressure

avFlVelOnSph((TwoPhaseFlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

2.3. Yade wrapper class reference 459

Yade Documentation, Release 3rd ed.

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((TwoPhaseFlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((TwoPhaseFlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((TwoPhaseFlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((TwoPhaseFlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondIsWaterReservoir
Boundary conditions, if bndCondIsPressure[] = True, is it air or water boundary condition?
True is water reservoir

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

460 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

calculateResidualSaturation((TwoPhaseFlowEngine)arg1) → None :
Calculate the residual saturation for each pore body

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

property centroidAverageWaterPressure
Water pressure based on centroid-corrected averaging, see Korteland et al. (2010) - what is
the correct definition of average pressure?

cholmodStats((TwoPhaseFlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

clusterInvadePore((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly.

clusterInvadePoreFast((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly. This ‘fast’ version is
faster and it also preserves interfaces through cluster splitting. OTOH it does not update
entry Pc nor culsters volume (it could if needed)

clusterOutvadePore((TwoPhaseFlowEngine)arg1, (int)startingId, (int)imbibedId[,
(int)index=-1]) → object :

imbibe the pore identified by imbibedId and merge the newly connected clusters if it happens.
startingId->imbibedId defines the throat through which imbibition occurs. Giving index of
the facet in cluster::interfaces should speedup its removal

compTessVolumes((TwoPhaseFlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

computeCapillaryForce((TwoPhaseFlowEngine)arg1[, (bool)addForces=False[,
(bool)permanently=False]]) → None :

Compute capillary force. Optionaly add them to body forces, for current iteration or perma-
nently.

2.3. Yade wrapper class reference 461

Yade Documentation, Release 3rd ed.

property computeForceActivated
Activate capillary force computation. WARNING: turning off means capillary force is not
computed at all, but the drainage can still work.

computeOnePhaseFlow((TwoPhaseFlowEngine)arg1) → None :
compute pressure and fluxes in the W-phase

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

copyPoreDataToCells((TwoPhaseFlowEngine)arg1) → None :
copy data from merged pore units back to grain-based tetrahedra, this should be done before
exporting VTK files

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property debugTPF
Print debuging messages two phase flow engine

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property deformation
Boolean to indicate whether simulations of dynamic flow are withing a deformating packing
or not. If true, change of void volume due to deformation is considered in flow computations.

property deltaTimeTruncation
truncation of time step, to avoid very small time steps during local imbibition, NOTE it does
affect the mass conservation not set to 0

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

462 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property drainageFirst
If true, activate drainage first (initial saturated), then imbibition; if false, activate imbibition
first (initial unsaturated), then drainage.

property dt
timestep [s]

property dtDynTPF
Parameter which stores the smallest time step, based on the residence time

edgeSize((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((TwoPhaseFlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property entryMethodCorrection
Parameter that is used in computing entry pressure of a pore throat: P_ij = entryMethod-
Correction * surfaceTension / radius_porethroat

property entryPressureMethod
integer to define the method used to determine the pore throat radii and the according entry
pressures. 1)radius of entry pore throat based on MS-P method; 2) radius of the inscribed
circle; 3) radius of the circle with equivalent surface area of the pore throat.

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((TwoPhaseFlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((TwoPhaseFlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property firstDynTPF
this bool activated the initialization of the dynamic flow engine, such as merging and defining
initial values

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

2.3. Yade wrapper class reference 463

Yade Documentation, Release 3rd ed.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property fluxInViaWBC
Total water flux over water boundary conditions

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

property fractionMinSaturationInvasion
Set the threshold saturation at which drainage can occur (Sthr = fractionMinSaturationInva-
sion), note that -1 implied the conventional definition of Sthr

getBoundaryFluidArea((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((TwoPhaseFlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((TwoPhaseFlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((TwoPhaseFlowEngineT)arg1) → float :
Return the density of cavity fluid.

464 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getCavityFlux((TwoPhaseFlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((TwoPhaseFlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCell2((TwoPhaseFlowEngine)arg1, (float)arg2, (float)arg3, (float)pos) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellEntrySaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → list :
get the entry saturation of each pore throat

getCellFlux((TwoPhaseFlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((TwoPhaseFlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
indicates whether a NW-W interface is present within the cell

getCellInSphereRadius((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the radius of the inscribed sphere in a pore unit

getCellInvVoidVolume((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellIsFictious((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
Check the connection between pore and boundary. If true, pore throat connects the boundary.

getCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘non-wetting reservoir’ state

getCellIsTrapNW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped non-wetting phase’ state

getCellIsTrapW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped wetting phase’ state

getCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘wetting reservoir’ state

getCellLabel((TwoPhaseFlowEngine)arg1, (int)arg2) → int :
get cell label. 0 for NW-reservoir; 1 for W-reservoir; others for disconnected W-clusters.

getCellMergedID((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellMergedVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the merged volume of pore space in each pore unit

getCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

2.3. Yade wrapper class reference 465

Yade Documentation, Release 3rd ed.

getCellPorosity((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the porosity of individual cells.

getCellPressure((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get saturation of one pore

getCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellThresholdSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellVelocity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVoidVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of pore space in each pore unit

getCellVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of each cell

getClusters((TwoPhaseFlowEngine)arg1) → list :
Get the list of clusters.

getConductivity((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEffRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get effective radius by three spheres position and radius.(inscribed sphere)

getEquivalentCompressibility((TwoPhaseFlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((TwoPhaseFlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

466 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getMSPRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get entry radius wrt MSP method by three spheres position and radius.

getMaxImbibitionPc((TwoPhaseFlowEngine)arg1) → float :
Get the maximum entry capillary pressure for the next imbibition step.

getMinDrainagePc((TwoPhaseFlowEngine)arg1) → float :
Get the minimum entry capillary pressure for the next drainage step.

getNeighbors((TwoPhaseFlowEngine)arg1, (int)id[, (bool)withInfCell=True]) → list :
get 4 neigboring cells, optionally exclude the infinite cells if withInfCell is False

getPorePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → float :
get the pore throat radius between cell1 and cell2.

getPoreThroatRadiusList((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get 4 pore throat radii of a cell.

getPotentialPendularSpheresPair((TwoPhaseFlowEngine)arg1) → list :
Get the list of sphere ID pairs of potential pendular liquid bridge.

property getQuantitiesUpdateCont
Continuous update of various macro-scale quantities or not. Note that the updating quantities
is computationally expensive

getSaturation((TwoPhaseFlowEngine)arg1, (bool)isSideBoundaryIncluded) → float :
Get saturation of entire packing. If isSideBoundaryIncluded=false (default), the pores of side
boundary are excluded in saturation calculating; if isSideBoundaryIncluded=true (only in
isInvadeBoundary=true drainage mode), the pores of side boundary are included in saturation
calculating.

getSolidSurfaceAreaPerParticle((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get solid area inside a packing of particles

getVertices((TwoPhaseFlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

2.3. Yade wrapper class reference 467

Yade Documentation, Release 3rd ed.

imposeDeformationFluxTPF((TwoPhaseFlowEngine)arg1) → None :
Impose fluxes defined in dvTPF

imposeFlux((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((TwoPhaseFlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

property initialPC
Initial capillary pressure of the water-air inside the packing

property initialWetting
Initial wetting saturated (=true) or non-wetting saturated (=false)

initialization((TwoPhaseFlowEngine)arg1) → None :
Initialize invasion setup. Build network, compute pore geometry info and initialize reservoir
boundary conditions.

initializeVolumes((TwoPhaseFlowEngineT)arg1) → None :
initialize pore volumes.

invasion((TwoPhaseFlowEngine)arg1) → None :
Run the drainage invasion.

property isActivated
Activates Flow Engine

property isCellLabelActivated
Activate cell labels for marking disconnected wetting clusters. NW-reservoir label 0; W-
reservoir label 1; disconnected W-clusters label from 2.

isCellNeighbor((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property isDrainageActivated
Activates drainage.

property isImbibitionActivated
Activates imbibition.

property isInvadeBoundary
Invasion side boundary condition. If True, pores of side boundary can be invaded; if False,
the pore throats connecting side boundary are closed, those pores are excluded in saturation
calculation.

property isPhaseTrapped
If True, both phases can be entrapped by the other, which would correspond to snap-off. If
false, both phases are always connected to their reservoirs, thus no snap-off.

468 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property iterationTPF
Iteration number

property keepTriangulation
this bool activated triangulation or not during initialization

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxIDMergedCells
maximum number of merged ID, this is computed in mergeCells()

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property maximumRatioPoreThroatoverPoreBody
maximum ratio of pore throat radius over pore body radius, this is used during merging of
tetrahedra.

property meanKStat
report the local permeabilities’ correction

mergeCells((TwoPhaseFlowEngine)arg1) → None :
Extract the pore network of the granular material

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((TwoPhaseFlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property modelRunName
Name of simulation, to be implemented into output files

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((TwoPhaseFlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

2.3. Yade wrapper class reference 469

Yade Documentation, Release 3rd ed.

normalVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property numberOfPores
Number of pores (i.e. number of tetrahedra, but compensated for merged tetrahedra

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((TwoPhaseFlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((TwoPhaseFlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

property primaryTPF
Boolean to indicate whether the initial conditions are for primary drainage of imbibition (dic-
tated by drainageFirst) or secondary drainage or imbibition. Note that during simulations, a
switch from drainage to imbibition or vise versa can easily be made by changing waterBound-
aryPressure

printVertices((TwoPhaseFlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

470 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

reTriangulateSpheres((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

property recursiveInvasion
If true the invasion stops only when no entry pc is less than current capillary pressure, implying
simultaneous invasion of many pores. Else only one pore invasion per invasion step.

property relax
Gauss-Seidel relaxation

property remesh
update triangulation? – YET TO BE IMPLEMENTED

resetLinearSystem((TwoPhaseFlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

property safetyFactorTimeStep
Safey coefficient for time step

savePhaseVtk((TwoPhaseFlowEngine)arg1[, (str)folder=’./phaseVtk’[,
(bool)withBoundaries=True]]) → None :

Save the saturation of local pores in vtk format. Sw(NW-pore)=0, Sw(W-pore)=1. Specify a
folder name for output.

savePoreNetwork((TwoPhaseFlowEngine)arg1[, (str)folder=’./poreNetwork’]) → None :
Extract the pore network of the granular material (i.e. based on triangulation of the pore
space

saveVtk((TwoPhaseFlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((TwoPhaseFlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellDeltaVolume((TwoPhaseFlowEngine)arg1, (int)id, (float)value) → None :
get id of the cell containing (X,Y,Z).

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
change wheter a cell has a NW-W interface

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) ->
None :

change wheter a cell has a NW-W interface

setCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((TwoPhaseFlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
change saturation of one pore

2.3. Yade wrapper class reference 471

Yade Documentation, Release 3rd ed.

setCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

property setFractionParticles
Correction fraction for swelling of particles by mismatch of surface area of particles with those
from actual surface area in pore units

setImposedPressure((TwoPhaseFlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

setPoreBodyRadius((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
set the entry pore body radius.

setPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID, (float)radius)→ None :
set the pore throat radius between cell1 and cell2.

shearLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property simpleWaterPressure
Water pressure based on averaging over pore volume

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property solvePressureSwitch
solve for pressure during actionTPF()

property stiffness
equivalent contact stiffness used in the lubrication model

property stopSimulation
Boolean to indicate that dynamic flow simulations cannot find a solution (or next time step).
If True, stop simulations

surfaceDistanceParticle((TwoPhaseFlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

472 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property surfaceTension
Water Surface Tension in contact with air at 20 Degrees Celsius is: 0.0728(N/m)

property swelling
If true, include swelling of particles during TPF computations

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property totalWaterVolume
total watervolume

property truncationPrecision
threshold at which a saturation is truncated

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((TwoPhaseFlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

updatePressure((TwoPhaseFlowEngine)arg1) → None :
Apply the values of FlowEngine::bndCondValue to the boundary cells. Note: boundary pres-
sure will be updated automatically in many cases, this function is for some low-level manipu-
lations.

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

2.3. Yade wrapper class reference 473

Yade Documentation, Release 3rd ed.

updateVolumes((TwoPhaseFlowEngineT)arg1) → None :
update rates of volume change

property useFastInvasion
use fast version of invasion

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

property voidVolume
total void volume, excluding boundary cells

volume((TwoPhaseFlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waterBoundaryPressure
Water pressure at boundary used in computations, is set automaticaly, but this value can be
used to change water pressure during simulations

property waterPressure
Volume-averaged water pressure

property waterPressurePartiallySatPores
water pressure based on the volume-averaged water pressure in partially-saturated pore units
(i.e. pore units having an interface)

property waterSaturation
Water saturation, excluding the boundary cells

property waterVolumeTruncatedLost
Water volume that has been truncated.

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

474 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.TwoPhaseFlowEngineT(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((TwoPhaseFlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((TwoPhaseFlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((TwoPhaseFlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((TwoPhaseFlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((TwoPhaseFlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

2.3. Yade wrapper class reference 475

Yade Documentation, Release 3rd ed.

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((TwoPhaseFlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

476 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

clearImposedPressure((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((TwoPhaseFlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((TwoPhaseFlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

2.3. Yade wrapper class reference 477

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((TwoPhaseFlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((TwoPhaseFlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((TwoPhaseFlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

478 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryVolume((TwoPhaseFlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((TwoPhaseFlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((TwoPhaseFlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((TwoPhaseFlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((TwoPhaseFlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((TwoPhaseFlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

2.3. Yade wrapper class reference 479

Yade Documentation, Release 3rd ed.

getConstrictions((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((TwoPhaseFlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((TwoPhaseFlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((TwoPhaseFlowEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((TwoPhaseFlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((TwoPhaseFlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

480 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((TwoPhaseFlowEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((TwoPhaseFlowEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((TwoPhaseFlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((TwoPhaseFlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

2.3. Yade wrapper class reference 481

Yade Documentation, Release 3rd ed.

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((TwoPhaseFlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((TwoPhaseFlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((TwoPhaseFlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((TwoPhaseFlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((TwoPhaseFlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((TwoPhaseFlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

482 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

setCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((TwoPhaseFlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((TwoPhaseFlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((TwoPhaseFlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

2.3. Yade wrapper class reference 483

Yade Documentation, Release 3rd ed.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((TwoPhaseFlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((TwoPhaseFlowEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((TwoPhaseFlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

484 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.wrapper.UnsaturatedEngine(inherits TwoPhaseFlowEngine → TwoPhaseFlowEngineT→ PartialEngine → Engine → Serializable)
Preliminary version engine of a drainage model for unsaturated soils. Note:Air reservoir is on the
top; water reservoir is on the bottom.(deprecated engine, use TwoPhaseFlowEngine instead)

OSI((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property accumulativeDeformationFlux
accumulative internal flux caused by deformation

property accumulativeFlux
accumulative influx of water

actionMergingAlgorithm((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

actionTPF((TwoPhaseFlowEngine)arg1) → None :
run 1 time step flow Engine

property airWaterInterfacialArea
Air-water interfacial area, based on the pore-unit assembly and regular-shaped pore units

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

2.3. Yade wrapper class reference 485

Yade Documentation, Release 3rd ed.

property areaAveragedPressure
Air-water interfacial area averaged water pressure

avFlVelOnSph((TwoPhaseFlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((TwoPhaseFlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((TwoPhaseFlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((TwoPhaseFlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((TwoPhaseFlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondIsWaterReservoir
Boundary conditions, if bndCondIsPressure[] = True, is it air or water boundary condition?
True is water reservoir

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

486 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

calculateResidualSaturation((TwoPhaseFlowEngine)arg1) → None :
Calculate the residual saturation for each pore body

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

property centroidAverageWaterPressure
Water pressure based on centroid-corrected averaging, see Korteland et al. (2010) - what is
the correct definition of average pressure?

checkLatticeNodeY((UnsaturatedEngine)arg1, (float)y) → None :
Check the slice of lattice nodes for yNormal(y). 0: out of sphere; 1: inside of sphere.

checknoCache((UnsaturatedEngine)arg1) → bool :
check noCache. (temporary function.)

cholmodStats((TwoPhaseFlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

clusterInvadePore((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly.

clusterInvadePoreFast((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly. This ‘fast’ version is
faster and it also preserves interfaces through cluster splitting. OTOH it does not update
entry Pc nor culsters volume (it could if needed)

clusterOutvadePore((TwoPhaseFlowEngine)arg1, (int)startingId, (int)imbibedId[,
(int)index=-1]) → object :

imbibe the pore identified by imbibedId and merge the newly connected clusters if it happens.
startingId->imbibedId defines the throat through which imbibition occurs. Giving index of
the facet in cluster::interfaces should speedup its removal

2.3. Yade wrapper class reference 487

Yade Documentation, Release 3rd ed.

compTessVolumes((TwoPhaseFlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

computeCapillaryForce((TwoPhaseFlowEngine)arg1[, (bool)addForces=False[,
(bool)permanently=False]]) → None :

Compute capillary force. Optionaly add them to body forces, for current iteration or perma-
nently.

property computeForceActivated
Activate capillary force computation. WARNING: turning off means capillary force is not
computed at all, but the drainage can still work.

computeOnePhaseFlow((TwoPhaseFlowEngine)arg1) → None :
compute pressure and fluxes in the W-phase

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

copyPoreDataToCells((TwoPhaseFlowEngine)arg1) → None :
copy data from merged pore units back to grain-based tetrahedra, this should be done before
exporting VTK files

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property debugTPF
Print debuging messages two phase flow engine

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property deformation
Boolean to indicate whether simulations of dynamic flow are withing a deformating packing
or not. If true, change of void volume due to deformation is considered in flow computations.

property deltaTimeTruncation
truncation of time step, to avoid very small time steps during local imbibition, NOTE it does
affect the mass conservation not set to 0

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

488 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property drainageFirst
If true, activate drainage first (initial saturated), then imbibition; if false, activate imbibition
first (initial unsaturated), then drainage.

property dt
timestep [s]

property dtDynTPF
Parameter which stores the smallest time step, based on the residence time

edgeSize((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((TwoPhaseFlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property entryMethodCorrection
Parameter that is used in computing entry pressure of a pore throat: P_ij = entryMethod-
Correction * surfaceTension / radius_porethroat

property entryPressureMethod
integer to define the method used to determine the pore throat radii and the according entry
pressures. 1)radius of entry pore throat based on MS-P method; 2) radius of the inscribed
circle; 3) radius of the circle with equivalent surface area of the pore throat.

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((TwoPhaseFlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((TwoPhaseFlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property firstDynTPF
this bool activated the initialization of the dynamic flow engine, such as merging and defining
initial values

2.3. Yade wrapper class reference 489

Yade Documentation, Release 3rd ed.

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property fluxInViaWBC
Total water flux over water boundary conditions

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

property fractionMinSaturationInvasion
Set the threshold saturation at which drainage can occur (Sthr = fractionMinSaturationInva-
sion), note that -1 implied the conventional definition of Sthr

getBoundaryFluidArea((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((TwoPhaseFlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((TwoPhaseFlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

490 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((TwoPhaseFlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((TwoPhaseFlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((TwoPhaseFlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCell2((TwoPhaseFlowEngine)arg1, (float)arg2, (float)arg3, (float)pos) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellEntrySaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → list :
get the entry saturation of each pore throat

getCellFlux((TwoPhaseFlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((TwoPhaseFlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
indicates whether a NW-W interface is present within the cell

getCellInSphereRadius((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the radius of the inscribed sphere in a pore unit

getCellInvVoidVolume((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellIsFictious((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
Check the connection between pore and boundary. If true, pore throat connects the boundary.

getCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘non-wetting reservoir’ state

getCellIsTrapNW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped non-wetting phase’ state

getCellIsTrapW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped wetting phase’ state

getCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘wetting reservoir’ state

getCellLabel((TwoPhaseFlowEngine)arg1, (int)arg2) → int :
get cell label. 0 for NW-reservoir; 1 for W-reservoir; others for disconnected W-clusters.

getCellMergedID((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

2.3. Yade wrapper class reference 491

Yade Documentation, Release 3rd ed.

getCellMergedVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the merged volume of pore space in each pore unit

getCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPorosity((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the porosity of individual cells.

getCellPressure((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get saturation of one pore

getCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellThresholdSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellVelocity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVoidVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of pore space in each pore unit

getCellVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of each cell

getClusters((TwoPhaseFlowEngine)arg1) → list :
Get the list of clusters.

getConductivity((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getCuboidSubdomainPorosity((UnsaturatedEngine)arg1, (Vector3)pos1, (Vector3)pos2,
(bool)isSideBoundaryIncluded) → float :

Get the porosity of cuboid subdomain defined by (pos1,pos2). If isSideBoundaryIn-
cluded=false, the pores of side boundary are excluded in porosity calculating; if isSideBound-
aryIncluded=true (only in isInvadeBoundary=true drainage mode), the pores of side boundary
are included in porosity calculating.

492 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getCuboidSubdomainSaturation((UnsaturatedEngine)arg1, (Vector3)pos1, (Vector3)pos2,
(bool)isSideBoundaryIncluded) → float :

Get saturation of cuboid subdomain defined by (pos1,pos2). If isSideBoundaryIncluded=false,
the pores of side boundary are excluded in saturation calculating; if isSideBoundaryIn-
cluded=true (only in isInvadeBoundary=true drainage mode), the pores of side boundary
are included in saturation calculating.

getDiffusionCoeff((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEffRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get effective radius by three spheres position and radius.(inscribed sphere)

getEquivalentCompressibility((TwoPhaseFlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((TwoPhaseFlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getInvadeDepth((UnsaturatedEngine)arg1) → float :
Get NW-phase invasion depth. (the distance from NW-reservoir to front of NW-W interface.)

getMSPRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get entry radius wrt MSP method by three spheres position and radius.

getMaxImbibitionPc((TwoPhaseFlowEngine)arg1) → float :
Get the maximum entry capillary pressure for the next imbibition step.

getMinDrainagePc((TwoPhaseFlowEngine)arg1) → float :
Get the minimum entry capillary pressure for the next drainage step.

getNeighbors((TwoPhaseFlowEngine)arg1, (int)id[, (bool)withInfCell=True]) → list :
get 4 neigboring cells, optionally exclude the infinite cells if withInfCell is False

getPorePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → float :
get the pore throat radius between cell1 and cell2.

getPoreThroatRadiusList((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get 4 pore throat radii of a cell.

getPotentialPendularSpheresPair((TwoPhaseFlowEngine)arg1) → list :
Get the list of sphere ID pairs of potential pendular liquid bridge.

property getQuantitiesUpdateCont
Continuous update of various macro-scale quantities or not. Note that the updating quantities
is computationally expensive

getSaturation((TwoPhaseFlowEngine)arg1, (bool)isSideBoundaryIncluded) → float :
Get saturation of entire packing. If isSideBoundaryIncluded=false (default), the pores of side
boundary are excluded in saturation calculating; if isSideBoundaryIncluded=true (only in
isInvadeBoundary=true drainage mode), the pores of side boundary are included in saturation
calculating.

2.3. Yade wrapper class reference 493

Yade Documentation, Release 3rd ed.

getSolidSurfaceAreaPerParticle((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get solid area inside a packing of particles

getSpecificInterfacialArea((UnsaturatedEngine)arg1) → float :
get specific interfacial area (defined as the amount of fluid-fluid interfacial area per unit volume
pf the porous medium).

getSphericalSubdomainSaturation((UnsaturatedEngine)arg1, (Vector3)pos, (float)radius) →
float :

Get saturation of spherical subdomain defined by (pos, radius). The subdomain exclude
boundary pores.

getVertices((TwoPhaseFlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

getWindowsSaturation((UnsaturatedEngine)arg1, (int)windowsID,
(bool)isSideBoundaryIncluded) → float :

get saturation of subdomain with windowsID. If isSideBoundaryIncluded=false (default), the
pores of side boundary are excluded in saturation calculating; if isSideBoundaryIncluded=true
(only in isInvadeBoundary=true drainage mode), the pores of side boundary are included in
saturation calculating.

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeDeformationFluxTPF((TwoPhaseFlowEngine)arg1) → None :
Impose fluxes defined in dvTPF

imposeFlux((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((TwoPhaseFlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

property initialPC
Initial capillary pressure of the water-air inside the packing

494 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property initialWetting
Initial wetting saturated (=true) or non-wetting saturated (=false)

initialization((TwoPhaseFlowEngine)arg1) → None :
Initialize invasion setup. Build network, compute pore geometry info and initialize reservoir
boundary conditions.

initializeCellWindowsID((UnsaturatedEngine)arg1) → None :
Initialize cell windows index. A temporary function for comparison with experiments, will
delete soon

initializeVolumes((TwoPhaseFlowEngineT)arg1) → None :
initialize pore volumes.

invasion((TwoPhaseFlowEngine)arg1) → None :
Run the drainage invasion.

property isActivated
Activates Flow Engine

property isCellLabelActivated
Activate cell labels for marking disconnected wetting clusters. NW-reservoir label 0; W-
reservoir label 1; disconnected W-clusters label from 2.

isCellNeighbor((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property isDrainageActivated
Activates drainage.

property isImbibitionActivated
Activates imbibition.

property isInvadeBoundary
Invasion side boundary condition. If True, pores of side boundary can be invaded; if False,
the pore throats connecting side boundary are closed, those pores are excluded in saturation
calculation.

property isPhaseTrapped
If True, both phases can be entrapped by the other, which would correspond to snap-off. If
false, both phases are always connected to their reservoirs, thus no snap-off.

property iterationTPF
Iteration number

property keepTriangulation
this bool activated triangulation or not during initialization

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxIDMergedCells
maximum number of merged ID, this is computed in mergeCells()

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

2.3. Yade wrapper class reference 495

Yade Documentation, Release 3rd ed.

property maximumRatioPoreThroatoverPoreBody
maximum ratio of pore throat radius over pore body radius, this is used during merging of
tetrahedra.

property meanKStat
report the local permeabilities’ correction

mergeCells((TwoPhaseFlowEngine)arg1) → None :
Extract the pore network of the granular material

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((TwoPhaseFlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property modelRunName
Name of simulation, to be implemented into output files

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((TwoPhaseFlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property numberOfPores
Number of pores (i.e. number of tetrahedra, but compensated for merged tetrahedra

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

496 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

onlySpheresInteractions((TwoPhaseFlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((TwoPhaseFlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

property primaryTPF
Boolean to indicate whether the initial conditions are for primary drainage of imbibition (dic-
tated by drainageFirst) or secondary drainage or imbibition. Note that during simulations, a
switch from drainage to imbibition or vise versa can easily be made by changing waterBound-
aryPressure

printSomething((UnsaturatedEngine)arg1) → None :
print debug.

printVertices((TwoPhaseFlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

reTriangulateSpheres((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

property recursiveInvasion
If true the invasion stops only when no entry pc is less than current capillary pressure, implying
simultaneous invasion of many pores. Else only one pore invasion per invasion step.

property relax
Gauss-Seidel relaxation

property remesh
update triangulation? – YET TO BE IMPLEMENTED

resetLinearSystem((TwoPhaseFlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

property safetyFactorTimeStep
Safey coefficient for time step

2.3. Yade wrapper class reference 497

Yade Documentation, Release 3rd ed.

savePhaseVtk((TwoPhaseFlowEngine)arg1[, (str)folder=’./phaseVtk’[,
(bool)withBoundaries=True]]) → None :

Save the saturation of local pores in vtk format. Sw(NW-pore)=0, Sw(W-pore)=1. Specify a
folder name for output.

savePoreNetwork((TwoPhaseFlowEngine)arg1[, (str)folder=’./poreNetwork’]) → None :
Extract the pore network of the granular material (i.e. based on triangulation of the pore
space

saveVtk((TwoPhaseFlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((TwoPhaseFlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellDeltaVolume((TwoPhaseFlowEngine)arg1, (int)id, (float)value) → None :
get id of the cell containing (X,Y,Z).

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
change wheter a cell has a NW-W interface

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) ->
None :

change wheter a cell has a NW-W interface

setCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((TwoPhaseFlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
change saturation of one pore

setCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

property setFractionParticles
Correction fraction for swelling of particles by mismatch of surface area of particles with those
from actual surface area in pore units

setImposedPressure((TwoPhaseFlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

setPoreBodyRadius((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
set the entry pore body radius.

setPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID, (float)radius)→ None :
set the pore throat radius between cell1 and cell2.

498 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

shearLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property simpleWaterPressure
Water pressure based on averaging over pore volume

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property solvePressureSwitch
solve for pressure during actionTPF()

property stiffness
equivalent contact stiffness used in the lubrication model

property stopSimulation
Boolean to indicate that dynamic flow simulations cannot find a solution (or next time step).
If True, stop simulations

surfaceDistanceParticle((TwoPhaseFlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property surfaceTension
Water Surface Tension in contact with air at 20 Degrees Celsius is: 0.0728(N/m)

property swelling
If true, include swelling of particles during TPF computations

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

2.3. Yade wrapper class reference 499

Yade Documentation, Release 3rd ed.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property totalWaterVolume
total watervolume

property truncationPrecision
threshold at which a saturation is truncated

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((TwoPhaseFlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

updatePressure((TwoPhaseFlowEngine)arg1) → None :
Apply the values of FlowEngine::bndCondValue to the boundary cells. Note: boundary pres-
sure will be updated automatically in many cases, this function is for some low-level manipu-
lations.

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((TwoPhaseFlowEngineT)arg1) → None :
update rates of volume change

property useFastInvasion
use fast version of invasion

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

500 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property viscousShearBodyStress
compute shear viscous stress applied on each body

property voidVolume
total void volume, excluding boundary cells

volume((TwoPhaseFlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waterBoundaryPressure
Water pressure at boundary used in computations, is set automaticaly, but this value can be
used to change water pressure during simulations

property waterPressure
Volume-averaged water pressure

property waterPressurePartiallySatPores
water pressure based on the volume-averaged water pressure in partially-saturated pore units
(i.e. pore units having an interface)

property waterSaturation
Water saturation, excluding the boundary cells

property waterVolumeTruncatedLost
Water volume that has been truncated.

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property windowsNo
Number of genrated windows(or zoomed samples).

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

2.3. Yade wrapper class reference 501

Yade Documentation, Release 3rd ed.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

2.3.5 Dispatchers

Dispatcher

GlBoundDispatcher

GlStateDispatcher

IGeomDispatcher

GlShapeDispatcher

GlIGeomDispatcher

GlIPhysDispatcher

LawDispatcher

BoundDispatcher

InternalForceDispatcher

IPhysDispatcher

Fig. 31: Inheritance graph of Dispatcher, gray dashed classes are discussed in their own sections: IGe-
omDispatcher, LawDispatcher, BoundDispatcher, InternalForceDispatcher, IPhysDispatcher. See also:
GlBoundDispatcher, GlIGeomDispatcher, GlIPhysDispatcher, GlShapeDispatcher, GlStateDispatcher.

class yade.wrapper.Dispatcher(inherits Engine → Serializable)
Engine dispatching control to its associated functors, based on types of argument it receives. This
abstract base class provides no functionality in itself.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

502 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlBoundDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlBoundDispatcher)arg1, (Bound)arg2) → GlBoundFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlBoundDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlIGeomDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 503

Yade Documentation, Release 3rd ed.

dispFunctor((GlIGeomDispatcher)arg1, (IGeom)arg2) → GlIGeomFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlIGeomDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlIPhysDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlIPhysDispatcher)arg1, (IPhys)arg2) → GlIPhysFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlIPhysDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

504 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlShapeDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlShapeDispatcher)arg1, (Shape)arg2) → GlShapeFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlShapeDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3. Yade wrapper class reference 505

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlStateDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlStateDispatcher)arg1, (State)arg2) → GlStateFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlStateDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.6 Functors

class yade.wrapper.Functor(inherits Serializable)
Function-like object that is called by Dispatcher, if types of arguments match those the Functor
declares to accept.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

506 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Functor

GlStateFunctor

BoundFunctor

GlShapeFunctor

InternalForceFunctor

GlBoundFunctor

IGeomFunctor

GlIPhysFunctor

GlIGeomFunctor

IPhysFunctor

LawFunctor

Fig. 32: Inheritance graph of Functor, gray dashed classes are discussed in their own sections: GlState-
Functor, BoundFunctor, GlShapeFunctor, InternalForceFunctor, GlBoundFunctor, IGeomFunctor, GlI-
PhysFunctor, GlIGeomFunctor, IPhysFunctor, LawFunctor.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.7 Bounding volume creation

BoundFunctor

class yade.wrapper.BoundFunctor(inherits Functor → Serializable)
Functor for creating/updating Body::bound.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Box_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update an Aabb of a Box.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 507

Yade Documentation, Release 3rd ed.

BoundFunctor

Bo1_ChainedCylinder_Aabb

Bo1_Cylinder_Aabb

Bo1_FluidDomainBbox_Aabb

Bo1_Node_Aabb

Bo1_Subdomain_Aabb

Bo1_PFacet_Aabb

PotentialParticle2AABB

PotentialBlock2AABB

Bo1_Wall_Aabb

Bo1_LevelSet_Aabb

Bo1_Box_Aabb

Bo1_Tetra_Aabb

Bo1_Facet_Aabb

Bo1_DeformableElement_Aabb

Bo1_Sphere_Aabb

Bo1_Polyhedra_Aabb

Bo1_GridConnection_Aabb

Fig. 33: Inheritance graph of BoundFunctor. See also: Bo1_Box_Aabb, Bo1_ChainedCylin-
der_Aabb, Bo1_Cylinder_Aabb, Bo1_DeformableElement_Aabb, Bo1_Facet_Aabb, Bo1_FluidDo-
mainBbox_Aabb, Bo1_GridConnection_Aabb, Bo1_LevelSet_Aabb, Bo1_Node_Aabb, Bo1_PFacet_-
Aabb, Bo1_Polyhedra_Aabb, Bo1_Sphere_Aabb, Bo1_Subdomain_Aabb, Bo1_Tetra_Aabb, Bo1_-
Wall_Aabb, PotentialBlock2AABB, PotentialParticle2AABB.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_ChainedCylinder_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from ChainedCylinder.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

508 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Cylinder_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Cylinder.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_DeformableElement_Aabb(inherits BoundFunctor → Functor →
Serializable)

Functor creating Aabb from DeformableElement.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.3. Yade wrapper class reference 509

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Facet_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Facet.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_FluidDomainBbox_Aabb(inherits BoundFunctor → Functor → Serializable)
creates/updates an Aabb of a FluidDomainBbox.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_GridConnection_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from a GridConnection.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

510 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_LevelSet_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a LevelSet

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Node_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Node.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_PFacet_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from a PFacet.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

2.3. Yade wrapper class reference 511

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Polyhedra_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update Aabb of a Polyhedra

property aabbEnlargeFactor
see Bo1_Sphere_Aabb.aabbEnlargeFactor

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Sphere_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Sphere.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

512 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Subdomain_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Subdomain (mpi parallel simulations).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Tetra_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update Aabb of a Tetra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Bo1_Wall_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Wall

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.3. Yade wrapper class reference 513

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.PotentialBlock2AABB(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from PotentialBlock.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.PotentialParticle2AABB(inherits BoundFunctor → Functor → Serializable)
EXPERIMENTAL. Functor creating Aabb from PotentialParticle.

property aabbEnlargeFactor
see Sphere2AABB.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

514 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

BoundDispatcher

class yade.wrapper.BoundDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property activated
Whether the engine is activated (only should be changed by the collider)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((BoundDispatcher)arg1, (Shape)arg2) → BoundFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((BoundDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property minSweepDistFactor
Minimal distance by which enlarge all bounding boxes; superseeds computed value of sweep-
Dist when lower that (minSweepDistFactor x sweepDist). Updated by the collider. (auto-
updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sweepDist
Distance by which enlarge all bounding boxes, to prevent collider from being run at every
step (only should be changed by the collider).

property targetInterv
see InsertionSortCollider::targetInterv (auto-updated)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3. Yade wrapper class reference 515

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatingDispFactor
see InsertionSortCollider::updatingDispFactor (auto-updated)

2.3.8 Interaction Geometry creation

IGeomFunctor

IGeomFunctor

Ig2_LevelSet_LevelSet_MultiScGeom

Ig2_LevelSet_LevelSet_ScGeom
Ig2_Wall_Sphere_L3Geom

Ig2_Sphere_Sphere_L3Geom

Ig2_PB_PB_ScGeom

Ig2_Sphere_GridConnection_ScGridCoGeom

Ig2_Sphere_ChainedCylinder_CylScGeom

Ig2_GridNode_GridNode_GridNodeGeom6DIg2_Sphere_Sphere_ScGeom

Ig2_Facet_Sphere_ScGeom6D

Ig2_Facet_Sphere_ScGeom

Ig2_Wall_Polyhedra_PolyhedraGeom

Ig2_Facet_Sphere_L3Geom

Ig2_GridConnection_GridConnection_GridCoGridCoGeom

Ig2_Facet_Polyhedra_PolyhedraGeom

Ig2_Wall_Sphere_ScGeom

Ig2_PP_PP_ScGeom

Ig2_Sphere_LevelSet_ScGeom

Ig2_Wall_LevelSet_VolumeGeom

Ig2_Sphere_Sphere_ScGeom6D

Ig2_Sphere_Sphere_L6Geom

Ig2_Tetra_Tetra_TTetraGeom

Ig2_GridConnection_PFacet_ScGeom

Ig2_Wall_PFacet_ScGeom

Ig2_PFacet_PFacet_ScGeomIg2_Sphere_PFacet_ScGridCoGeom

Ig2_Box_Sphere_ScGeom6DIg2_Box_Sphere_ScGeom

Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D

Ig2_Tetra_Tetra_TTetraSimpleGeom

Ig2_Polyhedra_Polyhedra_PolyhedraGeom

Ig2_LevelSet_LevelSet_VolumeGeom

Ig2_Polyhedra_Polyhedra_ScGeom

Ig2_Wall_LevelSet_ScGeom

Ig2_Box_LevelSet_ScGeom

Ig2_Sphere_Polyhedra_ScGeom

Ig2_Wall_LevelSet_MultiScGeom

Ig2_Sphere_ChainedCylinder_CylScGeom6D

Ig2_Polyhedra_Polyhedra_PolyhedraGeomOrScGeom

Fig. 34: Inheritance graph of IGeomFunctor. See also: Ig2_Box_LevelSet_ScGeom,
Ig2_Box_Sphere_ScGeom, Ig2_Box_Sphere_ScGeom6D, Ig2_ChainedCylinder_ChainedCylinder_Sc-
Geom6D, Ig2_Facet_Polyhedra_PolyhedraGeom, Ig2_Facet_Sphere_L3Geom, Ig2_Facet_Sphere_-
ScGeom, Ig2_Facet_Sphere_ScGeom6D, Ig2_GridConnection_GridConnection_GridCoGridCoGeom,
Ig2_GridConnection_PFacet_ScGeom, Ig2_GridNode_GridNode_GridNodeGeom6D, Ig2_LevelSet_-
LevelSet_MultiScGeom, Ig2_LevelSet_LevelSet_ScGeom, Ig2_LevelSet_LevelSet_VolumeGeom, Ig2_-
PB_PB_ScGeom, Ig2_PFacet_PFacet_ScGeom, Ig2_PP_PP_ScGeom, Ig2_Polyhedra_Polyhedra_-
PolyhedraGeom, Ig2_Polyhedra_Polyhedra_PolyhedraGeomOrScGeom, Ig2_Polyhedra_Polyhedra_Sc-
Geom, Ig2_Sphere_ChainedCylinder_CylScGeom, Ig2_Sphere_ChainedCylinder_CylScGeom6D, Ig2_-
Sphere_GridConnection_ScGridCoGeom, Ig2_Sphere_LevelSet_ScGeom, Ig2_Sphere_PFacet_Sc-
GridCoGeom, Ig2_Sphere_Polyhedra_ScGeom, Ig2_Sphere_Sphere_L3Geom, Ig2_Sphere_Sphere_-
L6Geom, Ig2_Sphere_Sphere_ScGeom, Ig2_Sphere_Sphere_ScGeom6D, Ig2_Tetra_Tetra_TTetra-
Geom, Ig2_Tetra_Tetra_TTetraSimpleGeom, Ig2_Wall_LevelSet_MultiScGeom, Ig2_Wall_Lev-
elSet_ScGeom, Ig2_Wall_LevelSet_VolumeGeom, Ig2_Wall_PFacet_ScGeom, Ig2_Wall_Polyhedra_-
PolyhedraGeom, Ig2_Wall_Sphere_L3Geom, Ig2_Wall_Sphere_ScGeom.

class yade.wrapper.IGeomFunctor(inherits Functor → Serializable)
Functor for creating/updating Interaction::geom objects.

property bases
Ordered list of types (as strings) this functor accepts.

516 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Box_LevelSet_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Creates or updates a ScGeom instance representing the intersection of one LevelSet body with
one Box body. Normal is given by the box geometry while overlap and contact points are defined
likewise to Ig2_LevelSet_LevelSet_ScGeom. Restricted to the case of Boxes for which local and
global axes coincide, and with non zero thickness, and assuming the center of the level set body
never enters into the box (ie excluding big overlaps). You may prefer using Ig2_Wall_LevelSet_-
ScGeom.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Box_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create an interaction geometry ScGeom from Box and Sphere, representing the box with a projected
virtual sphere of same radius.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Box (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian theory, where it is infinite). Both are equal if False

property interactionDetectionFactor
Enlarge sphere radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad) > distance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

2.3. Yade wrapper class reference 517

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Box_Sphere_ScGeom6D(inherits Ig2_Box_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create an interaction geometry ScGeom6D from Box and Sphere, representing the box with a
projected virtual sphere of same radius.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Box (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian theory, where it is infinite). Both are equal if False

property interactionDetectionFactor
Enlarge sphere radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad) > distance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D(inherits IGeomFunctor →
Functor → Serializable)

Create/update a ScGeom instance representing connexion between chained cylinders.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property halfLengthContacts
If True, Cylinders nodes interact like spheres of radius 0.5*length, else one node has size length
while the other has size 0. The difference is mainly the locus of rotation definition.

518 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Polyhedra_PolyhedraGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between Facet and Polyhedra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_L3Geom(inherits Ig2_Sphere_Sphere_L3Geom →
IGeomFunctor → Functor → Serializable)

Incrementally compute L3Geom for contact between Facet and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 519

Yade Documentation, Release 3rd ed.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update a ScGeom instance representing intersection of Facet and Sphere. Denoting un the
corresponding overlap, C the contact point and n the contact normal while S stands for sphere’s
center, H for its projection into the facet plane, and R for the sphere’s radius, we have:

• un = R− ||HS||

• n =
HS

||HS||

when H strictly belongs to the Facet surface (different expressions otherwise) and

• C = S− (||HS||− un/2)n

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Facet (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
twice the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multiplied by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

520 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_ScGeom6D(inherits Ig2_Facet_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create an interaction geometry ScGeom6D from Facet and Sphere, representing the Facet with a
projected virtual sphere of same radius.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Facet (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
twice the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multiplied by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_GridConnection_GridConnection_GridCoGridCoGeom(inherits
IGeomFunctor →
Functor →
Serializable)

Create/update a GridCoGridCoGeom instance representing the geometry of a contact point be-
tween two GridConnection , including relative rotations.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 521

Yade Documentation, Release 3rd ed.

class yade.wrapper.Ig2_GridConnection_PFacet_ScGeom(inherits Ig2_Sphere_GridConnection_-
ScGridCoGeom → IGeomFunctor →
Functor → Serializable)

Create/update a ScGeom instance representing intersection of Facet and GridConnection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_GridNode_GridNode_GridNodeGeom6D(inherits
Ig2_Sphere_Sphere_ScGeom →
IGeomFunctor → Functor →
Serializable)

Create/update a GridNodeGeom6D instance representing the geometry of a contact point between
two GridNode, including relative rotations.

property avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom).

Short explanation of what we want to avoid :

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1. translation dx in the normal direction

2. rotation a

3. translation -dx (back to the initial position)

4. rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

522 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

property bases
Ordered list of types (as strings) this functor accepts.

property creep
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateRotations
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_LevelSet_LevelSet_MultiScGeom(inherits
Ig2_LevelSet_LevelSet_ScGeom →
IGeomFunctor → Functor →
Serializable)

Multiple contact points version of Ig2_LevelSet_LevelSet_ScGeom for a MultiScGeom description
of a contact between two (non-convex typically) LevelSet-shaped bodies (with a ScGeom interaction
at each contacting surface node). Does not support periodic boundary conditions at the moment.

2.3. Yade wrapper class reference 523

Yade Documentation, Release 3rd ed.

It is designed to be used in combination with MultiFrictPhys for what concerns the interaction
physics (which is here also touched by that Ig2 in some contrast with general YADE design, from
a developer point of view) [Duriez2023].

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_LevelSet_LevelSet_ScGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a ScGeom instance representing the contact of two (convex) LevelSet-
shaped bodies after executing a master-slave algorithm that combines distance function φ (Lev-
elSet.distField) with surface nodes N (LevelSet.surfNodes) [Duriez2021a] [Duriez2021b]. Denoting
S, resp. B, the smallest, resp. biggest, contacting body, Nc the surface node of S with the greatest
penetration depth into B (its current position), un the corresponding overlap, C the contact point
and n the contact normal, we have:

• un = −φB(Nc)

• n = ±∇φS(Nc) chosen to be oriented from 1 to 2

• C = Nc −
un

2
n

Note: in case the two LevelSet grids no longer overlap for a previously existing interaction,
the above workflow does not apply and un is assigned an infinite tensile value that should insure
interaction removal in the same DEM iteration (for sure with Law2_ScGeom_FrictPhys_Cundall-
Strack).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_LevelSet_LevelSet_VolumeGeom(inherits IGeomFunctor → Functor →
Serializable)

524 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Creates or updates a VolumeGeom instance representing the contact of two LevelSet bodies of
arbitrary shape. An algorithm is used that recursively evaluates the signed distance function φ

(LevelSet.distField) at increasingly finer mesh sizes to compute the overlap volume V . Surface
nodes are obsolete if this functor is used. Denoting un as the overlap, C the contact point and n

the contact normal, we have:

• un = Vn =
∑

i Vi(xi)

• n =
∑

i Vi∇φ1(xi)−
∑

i Vi∇φ2(xi)

2Vn
chosen to be oriented from 1 to 2

• C = 1
Vn

∑
i xi ∗ Vi(xi)

Note: Because this functor expresses the particle overlap un as a volume, care needs to be taken
that only volume-based contact laws are used. Current contact laws in YADE mainly use the
overlap distance to determine the force.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property nRefineOctree
The number of refinements performed by the Octree algorithm used to compute the overlap
volume between two particles. Default is 5. Note: (nr of layers, effective nr of integration
elements): (1,1), (2,8), (3,64), (4,512), (5,4096), (n,8^(n-1)).

property smearCoeffOctree
Smearing coefficient for the smeared Heaviside step function in the overlap volume integra-
tion. The transition width, or smearing width, is equal to half the diagonal of the smallest
integration cell divided by the smearing coefficient.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useAABE
If true, use the provided (locally) axis-aligned bounding ellipsoid (AABE) to reduce the poten-
tial overlap volume between the particles. Increases accuracy of the Octree algrithm because
the smallest integration cells will be smaller.

class yade.wrapper.Ig2_PB_PB_ScGeom(inherits IGeomFunctor → Functor → Serializable)
PB

property accuracyTol
accuracy desired, tolerance criteria for SOCP

property bases
Ordered list of types (as strings) this functor accepts.

property calContactArea
Whether to calculate jointLength for 2-D contacts and contactArea for 2-D and 3-D contacts

2.3. Yade wrapper class reference 525

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twoDdir
Direction of 2D

property twoDimension
Whether the contact is 2-D

property unitWidth2D
Unit width in 2D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_PFacet_PFacet_ScGeom(inherits Ig2_Sphere_PFacet_ScGridCoGeom →
Ig2_Sphere_GridConnection_ScGridCoGeom →
IGeomFunctor → Functor → Serializable)

Create/update a ScGridCoGeom instance representing intersection of Facet and Sphere.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_PP_PP_ScGeom(inherits IGeomFunctor → Functor → Serializable)
EXPERIMENTAL. IGeom functor for PotentialParticle - PotentialParticle pair

property accuracyTol
accuracy desired, tolerance criteria for SOCP

526 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property areaStep
Angular step (degrees) to calculate KnKsPhys.contactArea. Must be a divisor of 360, e.g.
1,2,3,4,5,6,8,9 and so on, to form a closed loop. Must be smaller than 90 degrees. Smaller
angles lead to more accurate calculations but are more expensive

property bases
Ordered list of types (as strings) this functor accepts.

property calContactArea
Whether to calculate jointLength for 2-D contacts and contactArea for 2-D and 3-D contacts

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twoDdir
Direction of 2D

property twoDimension
Whether the contact is 2-D

property unitWidth2D
Unit width in 2D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Polyhedra_Polyhedra_PolyhedraGeom(inherits IGeomFunctor → Functor→ Serializable)
Create/update geometry of collision between 2 Polyhedras

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
see Ig2_Sphere_Sphere_ScGeom.interactionDetectionFactor

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Polyhedra_Polyhedra_PolyhedraGeomOrScGeom(inherits IGeomFunctor→ Functor →
Serializable)

2.3. Yade wrapper class reference 527

Yade Documentation, Release 3rd ed.

EXPERIMENTAL. A hacky helper Ig2 functor combining two Polyhedra shapes to give, according
to the settings, either ScGeom or PolyhedraGeom, through appropriate use of either Ig2_Polyhe-
dra_Polyhedra_ScGeom (through ig2scGeom attribute) or Ig2_Polyhedra_Polyhedra_Polyhedra-
Geom (ig2polyhedraGeom attribute).

property bases
Ordered list of types (as strings) this functor accepts.

property createScGeom
When true (resp. false), new contacts’ IGeom are created as ScGeom (resp. PolyhedraGeom).
Existing contacts are dealt with according to their present IGeom instance.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property ig2polyhedraGeom
Helper Ig2 functor responsible for handling PolyhedraGeom.

property ig2scGeom
Helper Ig2 functor responsible for handling ScGeom.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Polyhedra_Polyhedra_ScGeom(inherits IGeomFunctor → Functor →
Serializable)

EXPERIMENTAL. Ig2 functor creating ScGeom from two Polyhedra shapes. The radii are com-
puted as a distance of contact point (computed using Ig2_Polyhedra_Polyhedra_PolyhedraGeom)
and center of particle. Tested only for face-face contacts (like brick wall).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
see Ig2_Sphere_Sphere_ScGeom.interactionDetectionFactor

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom(inherits IGeomFunctor → Functor→ Serializable)
Create/update a ScGeom instance representing intersection of two Spheres.

528 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom6D(inherits Ig2_Sphere_-
ChainedCylinder_CylScGeom →
IGeomFunctor → Functor →
Serializable)

Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.

property bases
Ordered list of types (as strings) this functor accepts.

property creep
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateRotations
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Sphere_GridConnection_ScGridCoGeom(inherits IGeomFunctor →
Functor → Serializable)

Create/update a ScGridCoGeom6D instance representing the geometry of a contact point between
a GricConnection and a Sphere including relative rotations.

2.3. Yade wrapper class reference 529

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_LevelSet_ScGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a ScGeom instance representing the intersection of one LevelSet-shaped body
with one Sphere-shaped body, where overlap is always chosen to occur inside the level set body
(i.e. spheres will always be expelled). Contact normal n is given by the level set normal at the
centre of the sphere c while overlap is given by R−φ with R the radius and φ the level set value.
And contact points is defined as c − φn. This functionality does not require the level set to have
surface nodes. Approximations for φ outside the level set may become inaccurate if the spheres
are of similar size or larger than the level set body. Accuracy is guaranteed it the largest sphere is
around the same size, or smaller than, the smallest grid cell in the level set.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_PFacet_ScGridCoGeom(inherits Ig2_Sphere_GridConnection_-
ScGridCoGeom → IGeomFunctor →
Functor → Serializable)

Create/update a ScGridCoGeom instance representing intersection of PFacet and Sphere.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

530 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Polyhedra_ScGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between Sphere and Polyhedra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property edgeCoeff
multiplier of penetrationDepth when sphere contacts edge (simulating smaller volume of actual
intersection or when several polyhedrons has common edge)

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertexCoeff
multiplier of penetrationDepth when sphere contacts vertex (simulating smaller volume of
actual intersection or when several polyhedrons has common vertex)

class yade.wrapper.Ig2_Sphere_Sphere_L3Geom(inherits IGeomFunctor → Functor → Serializable)
Functor for computing incrementally configuration of 2 Spheres stored in L3Geom; the configuration
is positioned in global space by local origin c (contact point) and rotation matrix T (orthonormal
transformation matrix), and its degrees of freedom are local displacement u (in one normal and
two shear directions); with Ig2_Sphere_Sphere_L6Geom and L6Geom, there is additionally φ.
The first row of T , i.e. local x-axis, is the contact normal noted n for brevity. Additionally, quasi-
constant values of u0 (and φ0) are stored as shifted origins of u (and φ); therefore, current value
of displacement is always u◦ − u0.

Suppose two spheres with radii ri, positions xi, velocities vi, angular velocities ωi.

When there is not yet contact, it will be created if uN = |x◦2 − x◦1| − |fd|(r1 + r2) < 0, where fd is
distFactor (sometimes also called ‘‘interaction radius’’). If fd > 0, then u0x will be initalized to
uN, otherwise to 0. In another words, contact will be created if spheres enlarged by |fd| touch, and

2.3. Yade wrapper class reference 531

Yade Documentation, Release 3rd ed.

the ‘‘equilibrium distance’’ (where ux − u − 0x is zero) will be set to the current distance if fd is
positive, and to the geometrically-touching distance if negative.

Local axes (rows of T) are initially defined as follows:

• local x-axis is n = xl = ̂x2 − x1;

• local y-axis positioned arbitrarily, but in a deterministic manner: aligned with the xz plane
(if ny < nz) or xy plane (otherwise);

• local z-axis zl = xl × yl.

If there has already been contact between the two spheres, it is updated to keep track of rigid
motion of the contact (one that does not change mutual configuration of spheres) and mutual
configuration changes. Rigid motion transforms local coordinate system and can be decomposed
in rigid translation (affecting c), and rigid rotation (affecting T), which can be split in rotation or

perpendicular to the normal and rotation ot (‘‘twist’’) parallel with the normal:

o⊖
r = n− × n◦.

Since velocities are known at previous midstep (t− ∆t/2), we consider mid-step normal

n⊖ =
n− + n◦

2
.

For the sake of numerical stability, n⊖ is re-normalized after being computed, unless prohibited by
approxMask. If approxMask has the appropriate bit set, the mid-normal is not compute, and we
simply use n⊖ ≈ n−.

Rigid rotation parallel with the normal is

o⊖
t = n⊖

(
n⊖ ·

ω⊖
1 +ω⊖

2

2

)
∆t.

Branch vectors b1, b2 (connecting x◦1, x◦2 with c◦ are computed depending on noRatch (see here).

b1 =

{
r1n

◦ with noRatch
c◦ − x◦1 otherwise

b2 =

{
−r2n

◦ with noRatch
c◦ − x◦2 otherwise

Relative velocity at c◦ can be computed as

v⊖r = (ṽ⊖2 +ω2 × b2) − (v1 +ω1 × b1)

where ṽ2 is v2 without mean-field velocity gradient in periodic boundary conditions (see
Cell.homoDeform). In the numerial implementation, the normal part of incident velocity is re-
moved (since it is computed directly) with v⊖r2 = v⊖r − (n⊖ · v⊖r)n⊖.

Any vector a expressed in global coordinates transforms during one timestep as

a◦ = a− + v⊖r ∆t− a− × o⊖
r − a− × t⊖r

where the increments have the meaning of relative shear, rigid rotation normal to n and rigid
rotation parallel with n. Local coordinate system orientation, rotation matrix T , is updated by
rows, i.e.

T◦ =

 n◦
x n◦

y n◦
z

T−
1,• − T−

1,• × o⊖
r − T−

1,• × o⊖
t

T−
2,• − T−

2,• × o⊖
r − T−

,• × o⊖
t



532 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

This matrix is re-normalized (unless prevented by approxMask) and mid-step transformation is
computed using quaternion spherical interpolation as

T⊖ = Slerp
(
T−; T◦; t = 1/2

)
.

Depending on approxMask, this computation can be avoided by approximating T⊖ = T−.

Finally, current displacement is evaluated as

u◦ = u− + T⊖v⊖r ∆t.

For the normal component, non-incremental evaluation is preferred, giving

u◦
x = |x◦2 − x◦1|− (r1 + r2)

If this functor is called for L6Geom, local rotation is updated as

φ◦ = φ− + T⊖∆t(ω2 −ω1)

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

2.3. Yade wrapper class reference 533

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_L6Geom(inherits Ig2_Sphere_Sphere_L3Geom →
IGeomFunctor → Functor → Serializable)

Incrementally compute L6Geom for contact of 2 spheres.

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update a ScGeom instance representing the geometry of a contact point between two
Spheres s.

property avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom).

Short explanation of what we want to avoid :

534 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1. translation dx in the normal direction

2. rotation a

3. translation -dx (back to the initial position)

4. rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom6D(inherits Ig2_Sphere_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.

2.3. Yade wrapper class reference 535

Yade Documentation, Release 3rd ed.

property avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom).

Short explanation of what we want to avoid :

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1. translation dx in the normal direction

2. rotation a

3. translation -dx (back to the initial position)

4. rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

property bases
Ordered list of types (as strings) this functor accepts.

property creep
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

536 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateRotations
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Tetra_Tetra_TTetraGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between 2 tetrahedra (TTetraGeom instance)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Tetra_Tetra_TTetraSimpleGeom(inherits IGeomFunctor → Functor →
Serializable)

EXPERIMANTAL. Create/update geometry of collision between 2 tetrahedra (TTetraSimpleGeom
instance)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_LevelSet_MultiScGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a MultiScGeom instance representing the multiple contact points interaction
kinematics of one LevelSet body with one Wall body, extending Ig2_Wall_LevelSet_ScGeom to

2.3. Yade wrapper class reference 537

Yade Documentation, Release 3rd ed.

non-convex LevelSet-shaped bodies. Relative orientation of wall wrt global axes is again not sup-
ported. TODO: time cost could / should be improved (wrt Ig2_LevelSet_LevelSet_MultiScGeom;
jduriez note see aor8* and aor9*)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_LevelSet_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Creates or updates a ScGeom instance representing the intersection of one LevelSet-shaped body
with one Wall-shaped body, where overlap is chosen to occur on the opposite wall side than the
LevelSet body’s center. Contact normal is given by the wall normal (relative orientation of wall
wrt global axes is not supported) while overlap and contact points are defined likewise to Ig2_-
LevelSet_LevelSet_ScGeom.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_LevelSet_VolumeGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a VolumeGeom instance representing the intersection of one LevelSet body with
one Wall body, where overlap is chosen to occur on the opposite wall side than the LevelSet body’s
center. Contact normal is given by the wall normal while overlap and contact points are defined
likewise to Ig2_LevelSet_LevelSet_VolumeGeom.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

538 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property nRefineOctree
The number of refinements performed by the Octree algorithm used to compute the overlap
volume between two particles. Default is 5.

property smearCoeffOctree
Smearing coefficient for the smeared Heaviside step function in the overlap volume integra-
tion. The transition width, or smearing width, is equal to half the diagonal of the smallest
integration cell divided by the smearing coefficient.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useAABE
If true, use the provided (locally) axis-aligned bounding ellipsoid (AABE) to reduce the poten-
tial overlap volume between the particles. Increases accuracy of the Octree algrithm because
the smallest integration cells will be smaller.

class yade.wrapper.Ig2_Wall_PFacet_ScGeom(inherits Ig2_Wall_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create/update a ScGeom instance representing intersection of Wall and PFacet.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Wall (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
Avoid granular ratcheting

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Polyhedra_PolyhedraGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between Wall and Polyhedra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 539

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Sphere_L3Geom(inherits Ig2_Sphere_Sphere_L3Geom →
IGeomFunctor → Functor → Serializable)

Incrementally compute L3Geom for contact between Wall and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update a ScGeom instance representing intersection of Wall and Sphere.

540 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Wall (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
Avoid granular ratcheting

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

IGeomDispatcher

class yade.wrapper.IGeomDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((IGeomDispatcher)arg1, (Shape)arg2, (Shape)arg3) → IGeomFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((IGeomDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.3. Yade wrapper class reference 541

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.9 Interaction Physics creation

IPhysFunctor

class yade.wrapper.IPhysFunctor(inherits Functor → Serializable)
Functor for creating/updating Interaction::phys objects from bodies’ material properties.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_2xInelastCohFrictMat_InelastCohFrictPhys(inherits IPhysFunctor →
Functor → Serializable)

Generates cohesive-frictional interactions with moments. Used in the contact law Law2_Sc-
Geom6D_InelastCohFrictPhys_CohesionMoment.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

542 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

IPhysFunctor

Ip2_FrictMat_FrictMat_CapillaryPhysDelaunay
Ip2_FrictMat_FrictMat_FrictPhys

Ip2_FrictMat_FrictMat_CapillaryPhys

Ip2_ElastMat_ElastMat_NormPhys

Ip2_FrictMat_FrictMat_KnKsPhys

Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM

Ip2_FrictMat_FrictMat_CapillaryMindlinPhysDelaunayIp2_FrictMat_FrictMat_MindlinPhys

Ip2_PartialSatMat_PartialSatMat_MindlinPhys

Ip2_2xInelastCohFrictMat_InelastCohFrictPhys

Ip2_ViscElCapMat_ViscElCapMat_ViscElCapPhysIp2_ViscElMat_ViscElMat_ViscElPhys

Ip2_FrictMat_FrictMat_MultiFrictPhys

Ip2_FrictViscoMat_FrictViscoMat_FrictViscoPhys

Ip2_MortarMat_MortarMat_MortarPhys

Ip2_CpmMat_CpmMat_CpmPhys

Ip2_FrictMat_FrictViscoMat_FrictViscoPhys

Ip2_LudingMat_LudingMat_LudingPhys

Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys

Ip2_CohFrictMat_CohFrictMat_CohFrictPhys

Ip2_JCFpmMat_JCFpmMat_JCFpmPhys

Ip2_FrictMat_CpmMat_FrictPhys

Ip2_FrictMat_FrictMat_ViscoFrictPhys

Ip2_FrictMat_FrictMat_MindlinCapillaryPhys

Ip2_BubbleMat_BubbleMat_BubblePhys

Ip2_WireMat_WireMat_WirePhys

Ip2_FrictMat_PolyhedraMat_FrictPhys

Ip2_ElastMat_ElastMat_NormShearPhys

Ip2_FrictMat_FrictMat_KnKsPBPhys

Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM

Ip2_FrictMat_FrictMat_LubricationPhys

Fig. 35: Inheritance graph of IPhysFunctor. See also: Ip2_2xInelastCohFrictMat_Inelast-
CohFrictPhys, Ip2_BubbleMat_BubbleMat_BubblePhys, Ip2_CohFrictMat_CohFrictMat_CohFrict-
Phys, Ip2_CpmMat_CpmMat_CpmPhys, Ip2_ElastMat_ElastMat_NormPhys, Ip2_ElastMat_Elast-
Mat_NormShearPhys, Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM , Ip2_FrictMat_Cpm-
Mat_FrictPhys, Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM , Ip2_FrictMat_FrictMat_Capillary-
MindlinPhysDelaunay, Ip2_FrictMat_FrictMat_CapillaryPhys, Ip2_FrictMat_FrictMat_Capillary-
PhysDelaunay, Ip2_FrictMat_FrictMat_FrictPhys, Ip2_FrictMat_FrictMat_KnKsPBPhys, Ip2_-
FrictMat_FrictMat_KnKsPhys, Ip2_FrictMat_FrictMat_LubricationPhys, Ip2_FrictMat_FrictMat_-
MindlinCapillaryPhys, Ip2_FrictMat_FrictMat_MindlinPhys, Ip2_FrictMat_FrictMat_MultiFrict-
Phys, Ip2_FrictMat_FrictMat_ViscoFrictPhys, Ip2_FrictMat_FrictViscoMat_FrictViscoPhys, Ip2_-
FrictMat_PolyhedraMat_FrictPhys, Ip2_FrictViscoMat_FrictViscoMat_FrictViscoPhys, Ip2_JCF-
pmMat_JCFpmMat_JCFpmPhys, Ip2_LudingMat_LudingMat_LudingPhys, Ip2_MortarMat_Mor-
tarMat_MortarPhys, Ip2_PartialSatMat_PartialSatMat_MindlinPhys, Ip2_PolyhedraMat_Polyhe-
draMat_PolyhedraPhys, Ip2_ViscElCapMat_ViscElCapMat_ViscElCapPhys, Ip2_ViscElMat_ViscEl-
Mat_ViscElPhys, Ip2_WireMat_WireMat_WirePhys.

2.3. Yade wrapper class reference 543

Yade Documentation, Release 3rd ed.

class yade.wrapper.Ip2_BubbleMat_BubbleMat_BubblePhys(inherits IPhysFunctor → Functor →
Serializable)

Generates bubble interactions.Used in the contact law Law2_ScGeom_BubblePhys_Bubble.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(inherits IPhysFunctor →
Functor → Serializable)

Generates cohesive-frictional interactions with moments, used in the contact law Law2_Sc-
Geom6D_CohFrictPhys_CohesionMoment. The normal/shear stiffness and friction definitions are
the same as in Ip2_FrictMat_FrictMat_FrictPhys, check the documentation there for details.

Adhesions related to the normal and the shear components are calculated from CohFrict-
Mat::normalCohesion (Cn) and CohFrictMat::shearCohesion (Cs). For particles of size R1,R2 the
adhesion will be ai = Cimin(R1, R2)

2, i = n, s.

Twist and rolling stiffnesses are proportional to the shear stiffness through dimensionless fac-
tors alphaKtw and alphaKr, such that the rotational stiffnesses are defined by ksαiR1R2,
i = tw, r.Theadhesivecontributionstorollingandtwistingresistancearebydefault‘ Cr =
Cn

4
min(R1, R2)

3 : math : and ‘C_{tw}=frac{C_s}{2} min(R_1,R_2)^3$ (inspired by the case
of beams).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property normalCohesion
Instance of MatchMaker determining tensile strength

property rollingCohesion
Instance of MatchMaker determining cohesive part of the rolling strength (a frictional term
might be added depending on CohFrictPhys::cohesionDisablesFriction). The default is r

4
Rt

with Rt the shear strength (inspired by stress in beams with circular cross-section).

setCohesion((Ip2_CohFrictMat_CohFrictMat_CohFrictPhys)arg1, (Interaction)interaction,
(bool)cohesive, (bool)resetDisp) → None :

Bond or un-bond an interaction with cohesion.

544 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

When True, the resulting state is the same as what is obtained by executing an
InteractionLoop with the functor’s setCohesionNow or the interaction’s CohFrict-
Phys::initCohesion True. It will use the matchmakers if defined. The only difference
is that calling this function explicitly will make the contact cohesive even if not both
materials have CohFrictMat::isCohesive‘=‘‘True‘.

When False, the resulting state is the same as after breaking a fragile interaction. If resetDisp
is True, the current distance is taken as the reference for computing normal displacement and
normal force.

property setCohesionNow
If true, assign cohesion to all existing contacts in current time-step. The flag is turned false
automatically, so that assignment is done in the current timestep only.

property setCohesionOnNewContacts
If true, assign cohesion at all new contacts. If false, only existing contacts can be cohesive (also
see Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow), and new contacts are
only frictional.

property shearCohesion
Instance of MatchMaker determining cohesive part of the shear strength (a frictional term
might be added depending on CohFrictPhys::cohesionDisablesFriction)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twistingCohesion
Instance of MatchMaker determining cohesive part of the twisting strength (a frictional term
might be added depending on CohFrictPhys::cohesionDisablesFriction). The default is r

2
Rs

with Rs the shear strength (inspired by stress in beams with circular cross-section).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_CpmMat_CpmMat_CpmPhys(inherits IPhysFunctor → Functor → Serializable)
Convert 2 CpmMat instances to CpmPhys with corresponding parameters. Uses simple (arithmetic)
averages if material are different. Simple copy of parameters is performed if the material is shared
between both particles. See cpm-model for detals.

property E
Instance of MatchMaker determining how to compute interaction’s normal modulus. If None,
average value is used.

property bases
Ordered list of types (as strings) this functor accepts.

property cohesiveThresholdIter
Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
0, they will never be. If negative, they will always be created as cohesive (10 by default).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.3. Yade wrapper class reference 545

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_ElastMat_ElastMat_NormPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a NormPhys from two ElastMats. TODO. EXPERIMENTAL

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_ElastMat_ElastMat_NormShearPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a NormShearPhys from two ElastMats. TODO. EXPERIMENTAL

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM(inherits IPhysFunctor →
Functor → Serializable)

Create a MindlinPhysCDM from two FrictMatCDMsExts.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

546 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_CpmMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

Convert CpmMat instance and FrictMat instance to FrictPhys with corresponding parameters
(young, poisson, frictionAngle). Uses simple (arithmetic) averages if material parameters are dif-
ferent.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
See Ip2_FrictMat_FrictMat_FrictPhys.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM(inherits IPhysFunctor →
Functor → Serializable)

Create a MindlinPhysCDM from one FrictMat and one FrictMatCDM instance.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 547

Yade Documentation, Release 3rd ed.

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryMindlinPhysDelaunay(inherits
Ip2_FrictMat_-
FrictMat_-
MindlinPhys →
IPhysFunctor →
Functor →
Serializable)

Variant of Ip2_(matType)_(matType)_(iPhysType) to be used with CapillarityEngine.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

property computeDefault
bool to assign the default value of computeBridge.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property frictAngle
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vn
Impact velocity corresponding to the en value to calculate the dissipative constant An used
in the viscous damping model of [Mueller2011].

548 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryPhys(inherits IPhysFunctor → Functor →
Serializable)

RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity.

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryPhysDelaunay(inherits Ip2_FrictMat_-
FrictMat_FrictPhys →
IPhysFunctor → Functor→ Serializable)

Variant of Ip2_FrictMat_FrictMat_FrictPhys to be used with CapillarityEngine.

property bases
Ordered list of types (as strings) this functor accepts.

property computeDefault
bool to assign the default value of computeBridge.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kn
Instance of MatchMaker determining how to compute interaction’s normal stiffness. If None,
harmonic average is used.

property ks
Instance of MatchMaker determining how to compute interaction’s shear stiffness. If None,
harmonic average is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.3. Yade wrapper class reference 549

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a FrictPhys from two FrictMats. The compliance of one sphere under point load is defined
here as 1/(E.D), with E the stiffness of the sphere and D its diameter. The compliance of the
contact itself is taken as the sum of compliances from each sphere, i.e. 1/(E1.D1) + 1/(E2.D2)
in the general case, or 2/(E.D) in the special case of equal sizes and equal stiffness. Note that
summing compliances is equivalent to summing the harmonic average of stiffnesses. This reasoning
is applied in both the normal and the tangential directions (as in e.g. [Scholtes2009a]), hence the
general form of the contact stiffness:

k = E1D1∗E2D2

E1D1+E2D2
= k1∗k2

k1+k2
, with ki = EiDi.

In the above equation Ei is taken equal to FrictMat::young of sphere i for the normal stiffness,
and FrictMat::young × ElastMat::poisson for the shear stiffness. In the case of a contact between
a ViscElMat and a FrictMat, be sure to set FrictMat::young and FrictMat::poisson, otherwise the
default value will be used.

The contact friction is defined according to Ip2_FrictMat_FrictMat_FrictPhys::frictAngle (mini-
mum of the two materials by default).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kn
Instance of MatchMaker determining how to compute interaction’s normal stiffness. If None,
harmonic average is used.

property ks
Instance of MatchMaker determining how to compute interaction’s shear stiffness. If None,
harmonic average is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_KnKsPBPhys(inherits IPhysFunctor → Functor →
Serializable)

EXPERIMENTAL. Ip2 functor for KnKsPBPhys

property Knormal
Volumetric stiffness in the contact normal direction (units: stress/length)

property Kshear
Volumetric stiffness in the contact shear direction (units: stress/length)

550 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

property cohesion
Cohesion (stress units)

property cohesionBroken
Whether cohesion is already broken

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property intactRock
Whether to consider cohesive force in the Mohr-Coulomb criterion, if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw.allowBreakage=False and cohesionBroken=False

property kn_i
Volumetric stiffness in the contact normal direction (units: stress/length) when isBound-
ary=True for one of the PBs

property ks_i
Volumetric stiffness in the contact shear direction (units: stress/length) when isBound-
ary=True for one of the PBs

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property phi_b
Basic friction angle (degrees)

property tension
Tension (stress units)

property tensionBroken
Whether tension is already broken

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping

class yade.wrapper.Ip2_FrictMat_FrictMat_KnKsPhys(inherits IPhysFunctor → Functor →
Serializable)

EXPERIMENTAL. Ip2 functor for KnKsPhys

property Knormal
Volumetric stiffness in the contact normal direction (units: stress/length)

property Kshear
Volumetric stiffness in the contact shear direction (units: stress/length)

property bases
Ordered list of types (as strings) this functor accepts.

2.3. Yade wrapper class reference 551

Yade Documentation, Release 3rd ed.

property brittleLength
Shear length for degradation

property cohesion
Cohesion

property cohesionBroken
Whether cohesion is already broken

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property kn_i
Currently, we assume kn_i and Knormal are adopting the same value in Ip2 initialisation

property ks_i
Currently, we assume ks_i and Kshear are adopting the same value in Ip2 initialisation

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property maxClosure
not fully in use

property phi_b
Basic friction angle

property tension
Tension

property tensionBroken
Whether tension is already broken

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping ratio βn, see Ip2_FrictMat_FrictMat_MindlinPhys documentation

class yade.wrapper.Ip2_FrictMat_FrictMat_LubricationPhys(inherits IPhysFunctor → Functor→ Serializable)
Ip2 creating LubricationPhys from two Material instances.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property eps
Roughness: fraction of radius enlargement for contact asperities

property eta
Fluid viscosity [Pa.s]

552 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property keps
Dimensionless stiffness coefficient of the asperities, relative to the stiffness of the surface (the
final stiffness will be keps*kn). Only used with resolution method=0, with resolution>0 it is
always equal to 1. [-]

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinCapillaryPhys(inherits IPhysFunctor →
Functor → Serializable)

RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.3. Yade wrapper class reference 553

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinPhys(inherits IPhysFunctor → Functor →
Serializable)

Calculate physical parameters needed to obtain the normal and shear stiffness values according to
the Hertz-Mindlin formulation (no slip solution).\

There are two available viscous damping models for (1) constant and (2) velocity-dependent co-
efficient of restitution. In both cases, the viscous forces are calculated as Fn,viscous = cn · vn
(Fs,viscous = cs ·vs), where cn (cs) the normal (shear) viscous damping coefficient and vn (vs) the
normal (shear) component of the relative velocity.\

(1) Constant coefficient of restitution: The normal (shear) viscous damping coefficient is given by
cn = 2 · βn ·

√
mbar · kn (cs = 2 · βs ·

√
mbar · ks), where mbar the effective mass, βn (βs)

normal (shear) viscous damping ratios, and kn = 2 · E∗ ·
√
R∗ · N (ks = 8 · G∗ ·

√
R · uN) the

normal (shear) tangential stiffness values, according to the formulations of Hertz and Mindlin,
respectively, and R∗, E∗, G∗ the effective radius, elastic and shear moduli of the interacting
particles.

The normal (shear) viscous damping coefficient cn (cs) can be specified either by providing the
normal (shear) viscous damping ratio βn (βs), which is then assigned directly to MindlinPhys.betan
(MindlinPhys.betas), or by defining the normal (shear) coefficient of restitution en (es) in which case
the viscous damping ratios are computed using formula (B6) of [Thornton2013], written specifically
for the Hertz-Mindlin model (no-slip solution) where the end of contact is considered to take place
once the normal force is zero and not once the overlap is zero, thus not allowing attractive elastic
forces for non-adhesive contacts, as also discussed in [Schwager2007].

(2) Velocity-dependent coefficient of restitution: The viscous damping coefficients are given by
cn = cs = A · kn, where A a dissipative constant. To calculate this constant, the user has to
provide a coefficient of restitution (en) and an impact velocity (vn) corresponding to this en,
as described in [Mueller2011].

The following rules apply: # It is an error to specify both en and βn (es and βs) or both vn and
βn.

If neither en nor βn is given, then MindlinPhys.betan will be zero and no viscous damping will
be considered.

If neither es nor βs is given, the value of Ip2_FrictMat_FrictMat_MindlinPhys.en is used for
Ip2_FrictMat_FrictMat_MindlinPhys.es and the value of MindlinPhys.betan is used for Mindlin-
Phys.betas, respectively.

The en, βn, es, βs, vn are MatchMaker objects; they can be constructed from float values to
always return constant values.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

554 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property frictAngle
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vn
Impact velocity corresponding to the en value to calculate the dissipative constant An used
in the viscous damping model of [Mueller2011].

class yade.wrapper.Ip2_FrictMat_FrictMat_MultiFrictPhys(inherits IPhysFunctor → Functor→ Serializable)
Create a MultiFrictPhys from two FrictMats. Mother contact stiffnesses (MultiFrictPhys.kn and
MultiFrictPhys.ks) are directly assigned from below attributes, independent of FrictMat properties.
Global friction angle (MultiFrictPhys.frictAngle) is taken as the minimum of the 2 material friction
angles (FrictMat.frictionAngle).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property kn
Chosen value for MultiFrictPhys.kn

property ks
Chosen value for MultiFrictPhys.ks

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.3. Yade wrapper class reference 555

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_ViscoFrictPhys(inherits
Ip2_FrictMat_FrictMat_FrictPhys→ IPhysFunctor → Functor →
Serializable)

Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads
is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,
or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2_FrictMat_-
FrictMat_FrictPhys functor.

The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kn
Instance of MatchMaker determining how to compute interaction’s normal stiffness. If None,
harmonic average is used.

property ks
Instance of MatchMaker determining how to compute interaction’s shear stiffness. If None,
harmonic average is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictViscoMat_FrictViscoPhys(inherits IPhysFunctor →
Functor → Serializable)

Converts a FrictMat and FrictViscoMat instance to FrictViscoPhys with corresponding parameters.
Basically this functor corresponds to Ip2_FrictMat_FrictMat_FrictPhys with the only difference
that damping in normal direction can be considered.

property bases
Ordered list of types (as strings) this functor accepts.

556 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kRatio
Instance of MatchMaker determining how to compute interaction’s shear contact stiffnesses.
If this value is not given the elastic properties (i.e. poisson) of the two colliding materials are
used to calculate the stiffness.

property kn
Instance of MatchMaker determining how to compute interaction’s normal contact stiffnesses.
If this value is not given the elastic properties (i.e. young) of the two colliding materials are
used to calculate the stiffness.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_PolyhedraMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictViscoMat_FrictViscoMat_FrictViscoPhys(inherits IPhysFunctor→ Functor →
Serializable)

Converts 2 FrictViscoMat instances to FrictViscoPhys with corresponding parameters. Basically
this functor corresponds to Ip2_FrictMat_FrictMat_FrictPhys with the only difference that damp-
ing in normal direction can be considered.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 557

Yade Documentation, Release 3rd ed.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kRatio
Instance of MatchMaker determining how to compute interaction’s shear contact stiffnesses.
If this value is not given the elastic properties (i.e. poisson) of the two colliding materials are
used to calculate the stiffness.

property kn
Instance of MatchMaker determining how to compute interaction’s normal contact stiffnesses.
If this value is not given the elastic properties (i.e. young) of the two colliding materials are
used to calculate the stiffness.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_JCFpmMat_JCFpmMat_JCFpmPhys(inherits IPhysFunctor → Functor →
Serializable)

Converts 2 JCFpmMat instances to one JCFpmPhys instance, with corresponding parameters. See
JCFpmMat and [Duriez2016] for details

property bases
Ordered list of types (as strings) this functor accepts.

property cohesiveTresholdIteration
should new contacts be cohesive? If strictly negativ, they will in any case. If positiv, they
will before this iter, they won’t afterward.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property weibullCutOffMax
Factor that cuts off the largest values of the weibull distributed interaction areas.

property weibullCutOffMin
Factor that cuts off the smallest values of the weibull distributed interaction areas.

property xSectionWeibullScaleParameter
Scale parameter used to generate interaction radii for the crosssectional areas (changing
strength criteria only) according to Weibull distribution. Activated for any value other than
0. Needs to be combined with a shape parameter

558 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property xSectionWeibullShapeParameter
Shape parameter used to generate interaction radii for the crossSectional areas (changing
strength criteria only) according to Weibull distribution. Activated for any value other than
0. Needs to be combined with a scale parameter)

class yade.wrapper.Ip2_LudingMat_LudingMat_LudingPhys(inherits IPhysFunctor → Functor →
Serializable)

Convert 2 instances of LudingMat to LudingPhys using the rule of consecutive connection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_MortarMat_MortarMat_MortarPhys(inherits IPhysFunctor → Functor →
Serializable)

Ip2 creating MortarPhys from two MortarMat instances.

property bases
Ordered list of types (as strings) this functor accepts.

property cohesiveThresholdIter
Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
<=0, they will never be.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_PartialSatMat_PartialSatMat_MindlinPhys(inherits IPhysFunctor →
Functor → Serializable)

PartialSat variant of HertzMindlin

Calculate some physical parameters needed to obtain the normal and shear stiffnesses
according to the Hertz-Mindlin formulation (as implemented in PFC).

Viscous parameters can be specified either using coefficients of restitution (en, es) or viscous
damping ratio (βn, βs). The following rules apply: #. If the βn (βs) ratio is given, it is assigned to
MindlinPhys.betan (MindlinPhys.betas) directly. #. If en is given, MindlinPhys.betan is computed
using βn = −(log en)/

√
π2 + (log en)2. The same applies to es, MindlinPhys.betas. #. It is an

2.3. Yade wrapper class reference 559

Yade Documentation, Release 3rd ed.

error (exception) to specify both en and βn (es and βs). #. If neither en nor βn is given, zero
value for MindlinPhys.betan is used; there will be no viscous effects. #.If neither es nor βs is given,
the value of MindlinPhys.betan is used for MindlinPhys.betas as well.

The en, βn, es, βs are MatchMaker objects; they can be constructed from float values to always
return constant value.

See scripts/test/shots.py for an example of specifying en based on combination of parameters.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property frictAngle
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys(inherits IPhysFunctor →
Functor → Serializable)

Computes the interaction properties from the material properties of the two interacting bodies 1,2.
Contact friction angle is taken as the minimum of the two frictionAngle, and contact stiffnesses kn
and ks obey 1/kn = 1/Y1+1/Y2 and 1/ks = 1/(Y1P1)+1/(Y2P2), with Yi and Pi corresponding to
young and poisson for 1 and 2. The unit system to interpret these equations and quantities depend
on Law2_PolyhedraGeom_PolyhedraPhys_Volumetric.volumePower.

560 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/shots.py

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_ViscElCapMat_ViscElCapMat_ViscElCapPhys(inherits Ip2_ViscElMat_-
ViscElMat_ViscElPhys →
IPhysFunctor → Functor→ Serializable)

Convert 2 instances of ViscElCapMat to ViscElCapPhys using the rule of consecutive connection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Instance of MatchMaker determining restitution coefficient in normal direction

property et
Instance of MatchMaker determining restitution coefficient in tangential direction

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property tc
Instance of MatchMaker determining contact time

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_ViscElMat_ViscElMat_ViscElPhys(inherits IPhysFunctor → Functor →
Serializable)

Convert 2 instances of ViscElMat to ViscElPhys using the rule of consecutive connection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 561

Yade Documentation, Release 3rd ed.

property en
Instance of MatchMaker determining restitution coefficient in normal direction

property et
Instance of MatchMaker determining restitution coefficient in tangential direction

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property tc
Instance of MatchMaker determining contact time

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Ip2_WireMat_WireMat_WirePhys(inherits IPhysFunctor → Functor →
Serializable)

Converts 2 WireMat instances to WirePhys with corresponding parameters.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property linkThresholdIteration
Iteration to create the link.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

IPhysDispatcher

class yade.wrapper.IPhysDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

562 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispFunctor((IPhysDispatcher)arg1, (Material)arg2, (Material)arg3) → IPhysFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((IPhysDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.10 Constitutive laws

LawFunctor

class yade.wrapper.LawFunctor(inherits Functor → Serializable)
Functor for applying constitutive laws on interactions.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 563

Yade Documentation, Release 3rd ed.

LawFunctor

Law2_L6Geom_FrictPhys_LinearLaw2_L3Geom_FrictPhys_ElPerfPl

Law2_ScGeom_MortarPhys_Lourenco Law2_MultiScGeom_MultiFrictPhys_CundallStrack

Law2_ScGeom_FrictPhys_CundallStrack

Law2_ScGeom6D_CohFrictPhys_CohesionMoment

Law2_CylScGeom6D_CohFrictPhys_CohesionMoment

Law2_ScGeom_ViscElCapPhys_Basic

Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment

Law2_GridCoGridCoGeom_FrictPhys_CundallStrack

Law2_ScGeom_VirtualLubricationPhys

Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM

Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM

Law2_ScGeom_MindlinPhys_MindlinDeresiewitz

Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment

Law2_ScGeom_BubblePhys_Bubble

Law2_ScGeom_ImplicitLubricationPhys

Law2_ScGridCoGeom_FrictPhys_CundallStrack

Law2_TTetraSimpleGeom_NormPhys_Simple

Law2_ScGeom_FrictViscoPhys_CundallStrackVisco

Law2_VolumeGeom_ViscoFrictPhys_ElasticLaw2_VolumeGeom_FrictPhys_Elastic

Law2_ScGeom_MindlinPhys_HertzWithLinearShear

Law2_ScGeom_CpmPhys_Cpm

Law2_ScGeom_LudingPhys_Basic

Law2_ScGridCoGeom_CohFrictPhys_CundallStrack

Law2_ScGeom_ViscElPhys_Basic

Law2_PolyhedraGeom_PolyhedraPhys_Volumetric

Law2_ScGeom_MindlinPhys_Mindlin

Law2_ScGeom_ViscoFrictPhys_CundallStrack

Law2_SCG_KnKsPhys_KnKsLaw

Law2_CylScGeom_FrictPhys_CundallStrack

Law2_ScGeom_PotentialLubricationPhys

Law2_SCG_KnKsPBPhys_KnKsPBLaw

Law2_ScGeom_WirePhys_WirePM

Fig. 36: Inheritance graph of LawFunctor. See also: Law2_ChCylGeom6D_CohFrictPhys_CohesionMo-
ment, Law2_CylScGeom6D_CohFrictPhys_CohesionMoment, Law2_CylScGeom_FrictPhys_Cundall-
Strack, Law2_GridCoGridCoGeom_FrictPhys_CundallStrack, Law2_L3Geom_FrictPhys_ElPerfPl,
Law2_L6Geom_FrictPhys_Linear, Law2_MultiScGeom_MultiFrictPhys_CundallStrack, Law2_Poly-
hedraGeom_PolyhedraPhys_Volumetric, Law2_SCG_KnKsPBPhys_KnKsPBLaw, Law2_SCG_-
KnKsPhys_KnKsLaw, Law2_ScGeom6D_CohFrictPhys_CohesionMoment, Law2_ScGeom6D_Inelast-
CohFrictPhys_CohesionMoment, Law2_ScGeom_BubblePhys_Bubble, Law2_ScGeom_CpmPhys_-
Cpm, Law2_ScGeom_FrictPhys_CundallStrack, Law2_ScGeom_FrictViscoPhys_CundallStrackVisco,
Law2_ScGeom_ImplicitLubricationPhys, Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM ,
Law2_ScGeom_LudingPhys_Basic, Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM , Law2_Sc-
Geom_MindlinPhys_HertzWithLinearShear, Law2_ScGeom_MindlinPhys_Mindlin, Law2_ScGeom_-
MindlinPhys_MindlinDeresiewitz, Law2_ScGeom_MortarPhys_Lourenco, Law2_ScGeom_Poten-
tialLubricationPhys, Law2_ScGeom_VirtualLubricationPhys, Law2_ScGeom_ViscElCapPhys_Basic,
Law2_ScGeom_ViscElPhys_Basic, Law2_ScGeom_ViscoFrictPhys_CundallStrack, Law2_ScGeom_-
WirePhys_WirePM , Law2_ScGridCoGeom_CohFrictPhys_CundallStrack, Law2_ScGridCoGeom_-
FrictPhys_CundallStrack, Law2_TTetraSimpleGeom_NormPhys_Simple, Law2_VolumeGeom_Frict-
Phys_Elastic, Law2_VolumeGeom_ViscoFrictPhys_Elastic.

564 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor →
Functor → Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

property always_use_moment_law
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

property bases
Ordered list of types (as strings) this functor accepts.

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys…

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useIncrementalForm
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_CylScGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor →
Functor → Serializable)

This law generalises Law2_CylScGeom_FrictPhys_CundallStrack by adding cohesion and mo-
ments at contact.

property always_use_moment_law
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

2.3. Yade wrapper class reference 565

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys…

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useIncrementalForm
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_CylScGeom_FrictPhys_CundallStrack(inherits LawFunctor → Functor→ Serializable)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law uses ScGeom.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

566 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_GridCoGridCoGeom_FrictPhys_CundallStrack(inherits
Law2_ScGeom_-
FrictPhys_CundallStrack→ LawFunctor →
Functor → Serializable)

Frictional elastic contact law between two gridConnection . See Law2_ScGeom_FrictPhys_Cun-
dallStrack for more details.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

2.3. Yade wrapper class reference 567

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_L3Geom_FrictPhys_ElPerfPl(inherits LawFunctor → Functor →
Serializable)

Basic law for testing L3Geom; it bears no cohesion (unless noBreak is True), and plastic slip obeys
the Mohr-Coulomb criterion (unless noSlip is True).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noBreak
Do not break contacts when particles separate.

property noSlip
No plastic slipping.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_L6Geom_FrictPhys_Linear(inherits Law2_L3Geom_FrictPhys_ElPerfPl→ LawFunctor → Functor → Serializable)
Basic law for testing L6Geom – linear in both normal and shear sense, without slip or breakage.

property bases
Ordered list of types (as strings) this functor accepts.

property charLen
Characteristic length with the meaning of the stiffness ratios bending/shear and tor-
sion/normal.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noBreak
Do not break contacts when particles separate.

property noSlip
No plastic slipping.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

568 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.Law2_MultiScGeom_MultiFrictPhys_CundallStrack(inherits
Law2_ScGeom_-
FrictPhys_CundallStrack→ LawFunctor →
Functor → Serializable)

Applies Law2_ScGeom_FrictPhys_CundallStrack at each contact point of a
(yref:MultiScGeom;yref:MultiFrictPhys) contact [Duriez2023].

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_PolyhedraGeom_PolyhedraPhys_Volumetric(inherits LawFunctor →
Functor → Serializable)

Calculate physical response of 2 Polyhedra in interaction, based on penetration configuration given
by PolyhedraGeom. Normal force is proportional to the volume of intersection

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 569

Yade Documentation, Release 3rd ed.

elasticEnergy((Law2_PolyhedraGeom_PolyhedraPhys_Volumetric)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_PolyhedraGeom_PolyhedraPhys_Volumetric)arg1,
(float)arg2) → None :

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

plasticDissipation((Law2_PolyhedraGeom_PolyhedraPhys_Volumetric)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
PolyhedraGeom_PolyhedraPhys_Volumetric::traceEnergy is true.

property shearForce
Shear force from last step of the interaction that has just been handled by InteractionLoop
(for debugging 2 bodies simulations, mostly)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property volumePower
Power of volume used in evaluation of normal force. Default is 1.0 - normal force is linearly
proportional to volume. 1.0/3.0 would mean that normal force is proportional to the cube
root of volume, approximation of penetration depth.

class yade.wrapper.Law2_SCG_KnKsPBPhys_KnKsPBLaw(inherits LawFunctor → Functor →
Serializable)

Law for linear compression, without cohesion and Mohr-Coulomb plasticity surface.

Note: This law uses ScGeom; there is also functionally equivalent Law2_Dem3DofGeom_-
FrictPhys_Basic, which uses Dem3DofGeom (sphere-box interactions are not implemented for the
latest).

property Talesnick
Use contact law developed for validation against model test

property allowBreakage
Allow cohesion to break. Once broken, cohesion = 0

property allowViscousAttraction
Whether to allow attractive forces due to viscous damping

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

570 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

elasticEnergy((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts. Computed only if
Law2_SCG_KnKsPBPhys_KnKsPBLaw::traceEnergy is true.

initPlasticDissipation((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property initialOverlapDistance
Initial overlap distance, defining the offset distance for tension overlap, i.e. negative overlap.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normDampDissip((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Total energy dissipated in normal viscous damping. Computed only if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw::traceEnergy is true.

plasticDissipation((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
SCG_KnKsPBPhys_KnKsPBLaw::traceEnergy is true.

property preventGranularRatcheting
bool to avoid granular ratcheting

ratioSlidingContacts((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Total energy dissipated in shear viscous damping. Computed only if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw::traceEnergy is true.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Whether to calculate energy terms (elastic potential energy (normal and shear), plastic dis-
sipation due to friction and dissipation of energy (normal and tangential) due to viscous
damping)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_SCG_KnKsPhys_KnKsLaw(inherits LawFunctor → Functor → Serializable)
Law for linear compression, without cohesion and Mohr-Coulomb plasticity surface.

Note: This law uses ScGeom; there is also functionally equivalent Law2_Dem3DofGeom_-
FrictPhys_Basic, which uses Dem3DofGeom (sphere-box interactions are not implemented for the
latest).

property Talesnick
Use contact law developed for validation against model test

2.3. Yade wrapper class reference 571

Yade Documentation, Release 3rd ed.

property allowBreakage
Allow cohesion to break. Once broken, cohesion = 0

property allowViscousAttraction
Whether to allow attractive forces due to viscous damping

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts. Computed only if
Law2_SCG_KnKsPhys_KnKsLaw::traceEnergy is true.

initPlasticDissipation((Law2_SCG_KnKsPhys_KnKsLaw)arg1, (float)arg2) → None :
Initialize cummulated plastic dissipation to a value (0 by default).

property initialOverlapDistance
Initial overlap distance, defining the offset distance for tension overlap, i.e. negative overlap.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normDampDissip((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Total energy dissipated in normal viscous damping. Computed only if Law2_SCG_-
KnKsPhys_KnKsLaw::traceEnergy is true.

plasticDissipation((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
SCG_KnKsPhys_KnKsLaw::traceEnergy is true.

property preventGranularRatcheting
bool to avoid granular ratcheting

ratioSlidingContacts((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Total energy dissipated in shear viscous damping. Computed only if Law2_SCG_KnKsPhys_-
KnKsLaw::traceEnergy is true.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor →
Functor → Serializable)

Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb

572 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

plasticity surface. This law adds adhesion and moments to Law2_ScGeom_FrictPhys_Cundall-
Strack.

The normal force is (with the convention of positive tensile forces) Fn = min(kn ∗ (un −u
p
n), an),

with an the normal adhesion and u
p
n the plastic part of normal displacement. The shear force is

Fs = ks ∗ us, the plasticity condition defines the maximum value of the shear force, by default
Fmax
s = Fn ∗ tan(φ) + as, with φ the friction angle and as the shear adhesion. If CohFrict-

Phys::cohesionDisablesFriction is True, friction is ignored as long as adhesion is active, and the
maximum shear force is only Fmax

s = as.

If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present, the
contact is lost, else the shear strength is Fmax

s = Fn ∗ tan(φ). If CohFrictPhys::fragile =False, the
behaviour is perfectly plastic, and the shear strength is kept constant.

If Law2_ScGeom6D_CohFrictPhys_CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively kt and kr, so that
the moments are : Mb = kb ∗ Θb and Mt = kt ∗ Θt, with Θb,t the relative rotations between
interacting bodies (details can be found in [Bourrier2013]). The maximum values of the moments
depend on constant terms (CohFrictPhys::rollingAdhesion and CohFrictPhys::twistingAdhesion)
and on terms which depend on the normal force Fn through the generalized friction coefficients
CohFrictPhys::maxRollPl and CohFrictPhys::maxTwistPl; the instantaneous rolling resistance is
thus a− Fn ∗ η if a is adhesion and η is the friction coefficient.

Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus,e/dt = −Fs/νs and dΘt,e/dt = −Mt/νt.

For turning adhesion on or off during a simulation, see Ip2_CohFrictMat_CohFrictMat_Co-
hFrictPhys::setCohesion (subsequently, it is possible to modify the adhesion values directly, e.g.
i.phys.shearAdhesion=…)

property always_use_moment_law
If false, compute moments only for cohesive contacts, broken contacts will have only normal
and shear forces. If true, compute bending/twisting moments at all contacts and use the
frictional coefficients CohFrictMat::etaRoll and CohFrictMat::etaTwist to define the strength
of the broken contacts.

property bases
Ordered list of types (as strings) this functor accepts.

bendingElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute bending elastic energy.

checkConsistency((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1,
(CohFrictPhys)ip, (int)id1, (int)id2) → None :

Runs consistency checks on an interaction physics and warn if some issues are suspected (e.g.
if there is finite cohesion on the shear force and pure elasticity on bending moment). Most
inconsistencies should occur when interaction properties are modified in a script; they are
not supposed to result from the interaction loop, else please report the bug. This function is
called automatically by the law functor on the first instance of a cohesive interaction. To call
it in a script: law.checkConsistency(i.phys,i.id1,i.id2).

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute total elastic energy.

2.3. Yade wrapper class reference 573

Yade Documentation, Release 3rd ed.

initPlasticDissipation((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1,
(float)arg2) → None :

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute normal elastic energy.

plasticDissipation((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Total energy dissipated in plastic slips at all CohFrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

shearElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute shear elastic energy.

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at contacts. Note that it will not reflect
any energy associated to de-bonding, as it may occur for fragile contacts, nor does it include
plastic dissipation in traction.

twistElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute twist elastic energy.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useIncrementalForm
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment(inherits LawFunctor→ Functor →
Serializable)

This law is currently under developpement. Final version and documentation will come before the
end of 2014.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

574 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

normElastEnergy((Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment)arg1) → float :
Compute normal elastic energy.

shearElastEnergy((Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment)arg1) → float :
Compute shear elastic energy.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_BubblePhys_Bubble(inherits LawFunctor → Functor →
Serializable)

Constitutive law for Bubble model.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property pctMaxForce
Chan[2011] states the contact law is valid only for small interferences; therefore an exponential
force-displacement curve models the contact stiffness outside that regime (large penetration).
This artificial stiffening ensures that bubbles will not pass through eachother or completely
overlap during the simulation. The maximum force is Fmax = (2*pi*surfaceTension*rAvg).
pctMaxForce is the percentage of the maximum force dictates the separation threshold, Dmax,
for each contact. Penetrations less than Dmax calculate the reaction force from the derived
contact law, while penetrations equal to or greater than Dmax calculate the reaction force
from the artificial exponential curve.

property surfaceTension
The surface tension in the liquid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CpmPhys_Cpm(inherits LawFunctor → Functor → Serializable)
Constitutive law for the cpm-model.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_CpmPhys_Cpm)arg1) → float :
Compute and return the total elastic energy in all “CpmPhys” contacts

2.3. Yade wrapper class reference 575

Yade Documentation, Release 3rd ed.

property epsSoft
Strain at which softening in compression starts (non-negative to deactivate). The default
value is such that plasticity does not occur

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property omegaThreshold
damage after which the contact disappears (<1), since omega reaches 1 only for strain →+∞

property relKnSoft
Relative rigidity of the softening branch in compression (0=perfect elastic-plastic, <0 soften-
ing, >0 hardening)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property yieldEllipseShift
horizontal scaling of the ellipse (shifts on the +x axis as interactions with +y are given)

property yieldLogSpeed
scaling in the logarithmic yield surface (should be <1 for realistic results; >=0 for meaningful
results)

yieldSigmaTMagnitude((Law2_ScGeom_CpmPhys_Cpm)arg1, (float)sigmaN , (float)omega,
(float)undamagedCohesion, (float)tanFrictionAngle) → float :

Return radius of yield surface for given material and state parameters; uses attributes of the
current instance (yieldSurfType etc), change them before calling if you need that.

property yieldSurfType
yield function: 0: mohr-coulomb (original); 1: parabolic; 2: logarithmic, 3: log+lin_tension,
4: elliptic, 5: elliptic+log

class yade.wrapper.Law2_ScGeom_FrictPhys_CundallStrack(inherits LawFunctor → Functor →
Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and moments
at contact.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

576 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_FrictViscoPhys_CundallStrackVisco(inherits LawFunctor →
Functor → Serializable)

Constitutive law for the FrictViscoPM. Corresponds to Law2_ScGeom_FrictPhys_CundallStrack
with the only difference that viscous damping in normal direction can be considered.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictViscoPhys_CundallStrackVisco)arg1) → float :
Compute and return the total elastic energy in all “FrictViscoPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictViscoPhys_CundallStrackVisco)arg1,
(float)arg2) → None :

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictViscoPhys_CundallStrackVisco)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if
:yref:Law2_ScGeom_FrictViscoPhys_CundallStrackVisco::traceEnergy‘ is true.

2.3. Yade wrapper class reference 577

Yade Documentation, Release 3rd ed.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ImplicitLubricationPhys(inherits Law2_ScGeom_-
VirtualLubricationPhys →
LawFunctor → Functor →
Serializable)

Material law for lubrication and contact between two spheres, solved using implicit method. The
full description of this contact law is available in [Chevremont2020] . Several resolution methods
are available. Iterative exact, solving the 2nd order polynomia. Other resolutions methods are nu-
merical (Newton-Rafson and Dichotomy) with a variable change δ = log(u), solved in dimentionless
coordinates.

property MaxDist
Maximum distance (d/a) for the interaction

property MaxIter
Maximum iterations for numerical resolution (Dichotomy and Newton-Rafson)

property SolutionTol
Tolerance for numerical resolution (Dichotomy and Newton-Rafson)

property activateRollLubrication
Activate roll lubrication (default: true)

property activateTangencialLubrication
Activate tangencial lubrication (default: true)

property activateTwistLubrication
Activate twist lubrication (default: true)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

static getStressForEachBody() → tuple :
Get stresses tensors for each bodies: normal contact stress, shear contact stress, normal
lubrication stress, shear lubrication stress, stress from additionnal potential forces.

static getTotalStresses() → tuple :
Get total stresses tensors: normal contact stress, shear contact stress, normal lubrication
stress, shear lubrication stress, stress from additionnal potential forces.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

578 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxSubSteps
max recursion depth of adaptative timestepping in the theta-method, the minimal time in-
terval is thus Omega::dt/2depth. If still not converged the integrator will switch to backward
Euler.

property resolution
Change normal component resolution method, 0: Iterative exact resolution with substepping
(theta method, linear contact), 1: Newton-Rafson dimensionless resolution (theta method,
linear contact), 2: (default) Dichotomy dimensionless resolution (theta method, linear con-
tact), 3: Exact dimensionless solution with contact prediction (theta method, linear contact).
Method 3 is better if the volumic fraction is not too high. Use 2 otherwise.

property theta
parameter of the ‘theta’-method, 1: backward Euler, 0.5: trapezoidal rule, 0: not used, 0.55:
suggested optimum)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM(inherits LawFunctor→ Functor →
Serializable)

Interaction law for cohesive frictional material, e.g. rock, possibly presenting joint surfaces, that
can be mechanically described with a smooth contact logic [Ivars2011] (implemented in Yade in
[Scholtes2012]). See examples/jointedCohesiveFrictionalPM for script examples. Joint surface
definitions (through stl meshes or direct definition with gts module) are illustrated there.

property Key
string specifying the name of saved file ‘cracks___.txt’, when recordCracks is true.

property bases
Ordered list of types (as strings) this functor accepts.

property clusterMoments
computer clustered moments? (on by default

property computedCentroid
computer clustered moments?

property cracksFileExist
if true (and if recordCracks), data are appended to an existing ‘cracksKey’ text file; otherwise
its content is reset.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property eventNumber
cluster event number (used for clustering and paraview visualization of groups).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property momentFudgeFactor
Fudge factor used by Hazzard and Damjanac 2013 to improve moment size accuracy (set to
1 for no impact by default)

2.3. Yade wrapper class reference 579

Yade Documentation, Release 3rd ed.

property momentRadiusFactor
Average particle diameter multiplier for moment magnitude calculation

property momentsFileExist
if true (and if recordCracks), data are appended to an existing ‘momentsKey’ text file; other-
wise its content is reset.

property nbShearCracks
number of shear microcracks.

property nbTensCracks
number of tensile microcracks.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene

property recordCracks
if true, data about interactions that lose their cohesive feature are stored in the text file
cracksKey.txt (see Key and cracksFileExist). It contains 9 columns: the break iteration, the
3 coordinates of the contact point, the type (1 means shear break, while 0 corresponds to
tensile break), the ‘’cross section’’ (mean radius of the 2 spheres) and the 3 coordinates of the
contact normal.

property recordMoments
Combines with :yref: Key<Law2ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM.Key>
to compute acoustic emissions according to clustered broken bond method? (off by default)

property smoothJoint
if true, interactions of particles belonging to joint surface (JCFpmPhys.isOnJoint) are handled
according to a smooth contact logic [Ivars2011], [Scholtes2012].

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property totalCracksSurface
calculate the total cracked surface.

property totalShearCracksE
calculate the overall energy dissipated by interparticle microcracking in shear.

property totalTensCracksE
calculate the overall energy dissipated by interparticle microcracking in tension.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useStrainEnergy
use strain energy for moment magnitude estimation (if false, use kinetic energy)

class yade.wrapper.Law2_ScGeom_LudingPhys_Basic(inherits LawFunctor → Functor →
Serializable)

Linear viscoelastic model operating on ScGeom and LudingPhys. See [Luding2008] ,[Singh2013]_-
for more details.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

580 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM(inherits LawFunctor →
Functor → Serializable)

Hertz-Mindlin model extended: Normal direction: conical damage model from Harkness et al.
2016./ Suhr & Six 2017. Tangential direction: stress dependent interparticle friction coefficient,
Suhr & Six 2016. Both models can be switched on/off separately. In this version there is NO
damping (neither viscous nor linear), NO adhesion and NO calc_energy, NO includeMoment, NO
preventGranularRatcheting. NOT tested for periodic simulations.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

ratioSlidingContacts((Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

ratioYieldingContacts((Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM)arg1) → float
:

Return the ratio between the number of contacts yielding to the total number at a given time.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_HertzWithLinearShear(inherits LawFunctor →
Functor → Serializable)

Constitutive law for the Hertz formulation (using MindlinPhys.kno) and linear behavior in shear
(using MindlinPhys.kso for stiffness and FrictPhys.tangensOfFrictionAngle).

Note: No viscosity or damping. If you need those, look at Law2_ScGeom_MindlinPhys_Mindlin,
which also includes non-linear Mindlin shear.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 581

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property nonLin
Shear force nonlinearity (the value determines how many features of the non-linearity are
taken in account). 1: ks as in HM 2: shearElastic increment computed as in HM 3. granular
ratcheting disabled.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_Mindlin(inherits LawFunctor → Functor →
Serializable)

Constitutive law for the Hertz-Mindlin formulation. It includes non linear elasticity in the normal
direction as predicted by Hertz for two non-conforming elastic contact bodies. In the shear direc-
tion, instead, it reseambles the simplified case without slip discussed in Mindlin’s paper, where a
linear relationship between shear force and tangential displacement is provided. Finally, the Mohr-
Coulomb criterion is employed to established the maximum friction force which can be developed
at the contact. Moreover, it is also possible to include the effect of linear viscous damping through
the definition of the parameters βn and βs.

property bases
Ordered list of types (as strings) this functor accepts.

property calcEnergy
bool to calculate energy terms (shear potential energy, dissipation of energy due to friction
and dissipation of energy due to normal and tangential damping)

contactsAdhesive((Law2_ScGeom_MindlinPhys_Mindlin)arg1) → float :
Compute total number of adhesive contacts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictionDissipation
Energy dissipation due to sliding

property includeAdhesion
bool to include the adhesion force following the DMT formulation. If true, also the normal
elastic energy takes into account the adhesion effect.

property includeMoment
bool to consider rolling resistance (if Ip2_FrictMat_FrictMat_MindlinPhys::eta is 0.0, no
plastic condition is applied.)

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

582 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property normDampDissip
Energy dissipated by normal damping

normElastEnergy((Law2_ScGeom_MindlinPhys_Mindlin)arg1) → float :
Compute normal elastic potential energy. It handles the DMT formulation if Law2_ScGeom_-
MindlinPhys_Mindlin::includeAdhesion is set to true.

property nothing
dummy attribute for declaring preventGranularRatcheting deprecated

ratioSlidingContacts((Law2_ScGeom_MindlinPhys_Mindlin)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

property shearDampDissip
Energy dissipated by tangential damping

property shearEnergy
Shear elastic potential energy

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_MindlinDeresiewitz(inherits LawFunctor →
Functor → Serializable)

Hertz-Mindlin contact law with partial slip solution, as described in [Thornton1991].

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MortarPhys_Lourenco(inherits LawFunctor → Functor →
Serializable)

Material law for mortar layer according to [Lourenco1994]. The contact behaves elastic until brittle
failure when reaching strength envelope. The envelope has three parts.

Tensile with condition σN − ft.

Shear part with Mohr-Coulomb condition |σT |+ σN tanφ− c.

Compressive part with condition σ2
N +A2σ2

T − f2c

The main idea is to begin simulation with this model and when the contact is broken, to use
standard non-cohesive Law2_PolyhedraGeom_PolyhedraPhys_Volumetric.

2.3. Yade wrapper class reference 583

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_PotentialLubricationPhys(inherits Law2_ScGeom_-
ImplicitLubricationPhys →
Law2_ScGeom_-
VirtualLubricationPhys →
LawFunctor → Functor →
Serializable)

Material law for lubrication + potential between two spheres. The potential model include contact.
This material law will solve the system with lubrication and the provided potential.

property MaxDist
Maximum distance (d/a) for the interaction

property MaxIter
Maximum iterations for numerical resolution (Dichotomy and Newton-Rafson)

property SolutionTol
Tolerance for numerical resolution (Dichotomy and Newton-Rafson)

property activateRollLubrication
Activate roll lubrication (default: true)

property activateTangencialLubrication
Activate tangencial lubrication (default: true)

property activateTwistLubrication
Activate twist lubrication (default: true)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

static getStressForEachBody() → tuple :
Get stresses tensors for each bodies: normal contact stress, shear contact stress, normal
lubrication stress, shear lubrication stress, stress from additionnal potential forces.

static getTotalStresses() → tuple :
Get total stresses tensors: normal contact stress, shear contact stress, normal lubrication
stress, shear lubrication stress, stress from additionnal potential forces.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

584 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxSubSteps
max recursion depth of adaptative timestepping in the theta-method, the minimal time in-
terval is thus Omega::dt/2depth. If still not converged the integrator will switch to backward
Euler.

property potential
Physical potential force between spheres.

property resolution
Change normal component resolution method, 0: Iterative exact resolution with substepping
(theta method, linear contact), 1: Newton-Rafson dimensionless resolution (theta method,
linear contact), 2: (default) Dichotomy dimensionless resolution (theta method, linear con-
tact), 3: Exact dimensionless solution with contact prediction (theta method, linear contact).
Method 3 is better if the volumic fraction is not too high. Use 2 otherwise.

property theta
parameter of the ‘theta’-method, 1: backward Euler, 0.5: trapezoidal rule, 0: not used, 0.55:
suggested optimum)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_VirtualLubricationPhys(inherits LawFunctor → Functor →
Serializable)

Virtual class for sheared lubrication functions. This don’t do any computation and shouldn’t be
used directly!

property MaxDist
Maximum distance (d/a) for the interaction

property activateRollLubrication
Activate roll lubrication (default: true)

property activateTangencialLubrication
Activate tangencial lubrication (default: true)

property activateTwistLubrication
Activate twist lubrication (default: true)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

static getStressForEachBody() → tuple :
Get stresses tensors for each bodies: normal contact stress, shear contact stress, normal
lubrication stress, shear lubrication stress, stress from additionnal potential forces.

static getTotalStresses() → tuple :
Get total stresses tensors: normal contact stress, shear contact stress, normal lubrication
stress, shear lubrication stress, stress from additionnal potential forces.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.3. Yade wrapper class reference 585

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscElCapPhys_Basic(inherits LawFunctor → Functor →
Serializable)

Extended version of Linear viscoelastic model with capillary parameters.

property NLiqBridg
The total number of liquid bridges

property VLiqBridg
The total volume of liquid bridges

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscElPhys_Basic(inherits LawFunctor → Functor →
Serializable)

Linear viscoelastic model operating on ScGeom and ViscElPhys. The contact law is visco-elastic
in the normal direction, and visco-elastic frictional in the tangential direction. The normal contact
is modelled as a spring of equivalent stiffness kn, placed in parallel with a viscous damper of
equivalent viscosity cn. As for the tangential contact, it is made of a spring-dashpot system (in
parallel with equivalent stiffness ks and viscosity cs) in serie with a slider of friction coefficient
µ = tanφ.

The friction coefficient µ = tanφ is always evaluated as tan(min(φ1, φ2)), where φ1 and φ2

are respectively the friction angle of particle 1 and 2. For the other parameters, depending on the
material input, the equivalent parameters of the contact (Kn,Cn,Ks,Cs,φ) are evaluated differently.
In the following, the quantities in parenthesis are the material constant which are precised for each
particle. They are then associated to particle 1 and 2 (e.g. kn1,kn2,cn1…), and should not be
confused with the equivalent parameters of the contact (Kn,Cn,Ks,Cs,φ).

• If contact time (tc), normal and tangential restitution coefficient (en,et) are precised, the
equivalent parameters are evaluated following the formulation of Pournin [Pournin2001].

• If normal and tangential stiffnesses (kn, ks) and damping constant (cn,cs) of each particle
are precised, the equivalent stiffnesses and damping constants of each contact made of two
particles 1 and 2 is made A = 2 a1a2

a1+a2
, where A is Kn, Ks, Cn and Cs, and 1 and 2 refer to

the value associated to particle 1 and 2.

• Alternatively it is possible to precise the Young’s modulus (young) and Poisson’s ratio (pois-
son) instead of the normal and spring constant (kn and ks). In this case, the equivalent
parameters are evaluated the same way as the previous case with knx = Exdx, ksx = vxknx,
where Ex, vx and dx are Young’s modulus, Poisson’s ratio and diameter of particle x.

586 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• If Young’s modulus (young), Poisson’s ratio (poisson), normal and tangential restitution co-
efficient (en,et) are precised, the equivalent stiffnesses are evaluated as previously: Kn =
2 kn1kn2

kn1+kn2
, knx = Exdx, Ks = 2(ks1ks2)/(ks1 + ks2), ksx = vknx. The damping con-

stant is computed at each contact in order to fulfill the normal restitution coefficient
en = (en1 + en2)/2. This is achieved resolving numerically equation 21 of [Schwager2007]
(There is in fact a mistake in the article from equation 18 to 19, so that there is a change
in sign). Be careful in this configuration the tangential restitution coefficient is set to 1 (no
tangential damping). This formulation imposes directly the normal restitution coefficient of
the collisions instead of the damping constant.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscoFrictPhys_CundallStrack(inherits Law2_ScGeom_-
FrictPhys_CundallStrack →
LawFunctor → Functor →
Serializable)

Law similar to Law2_ScGeom_FrictPhys_CundallStrack with the addition of shear creep at con-
tacts.

property bases
Ordered list of types (as strings) this functor accepts.

property creepStiffness

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

2.3. Yade wrapper class reference 587

Yade Documentation, Release 3rd ed.

property shearCreep

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscosity

class yade.wrapper.Law2_ScGeom_WirePhys_WirePM(inherits LawFunctor → Functor →
Serializable)

Constitutive law for the wire model.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property linkThresholdIteration
Iteration to create the link.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGridCoGeom_CohFrictPhys_CundallStrack(inherits LawFunctor →
Functor → Serializable)

Law between a cohesive frictional GridConnection and a cohesive frictional Sphere. Almost the
same than Law2_ScGeom6D_CohFrictPhys_CohesionMoment, but THE ROTATIONAL MO-
MENTS ARE NOT COMPUTED.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

588 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGridCoGeom_FrictPhys_CundallStrack(inherits LawFunctor →
Functor → Serializable)

Law between a frictional GridConnection and a frictional Sphere. Almost the same than Law2_-
ScGeom_FrictPhys_CundallStrack, but the force is divided and applied on the two GridNodes
only.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Law2_TTetraSimpleGeom_NormPhys_Simple(inherits LawFunctor → Functor →
Serializable)

EXPERIMENTAL. TODO

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 589

Yade Documentation, Release 3rd ed.

class yade.wrapper.Law2_VolumeGeom_FrictPhys_Elastic(inherits LawFunctor → Functor →
Serializable)

Contact law for elasticity, scaling exponentially with the overlap volume, with Mohr-Coulomb
plastic failure without cohesion. This law implements a volumetric variant of the classical
elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]). The normal force is
Fn = min(knVa

overlap, 0) with a = 1 (linear) as the default and the convention of positive tensile
forces. The shear force is Fs = ksus, the plasticity condition defines the maximum value of the
shear force: Fmax

s = Fn tan(φ), with φ the friction angle.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

initPlasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1, (float)arg2) → None :
Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only useful if another contact law
is used as well).

plasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
VolumeGeom_FrictPhys_Elastic::traceEnergy is true.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property volumePower
The exponent a on the overlap volume within the contact law. Setting to 0.5 gives a near-linear
relationship of force with respect to penetration distance for spheres.

class yade.wrapper.Law2_VolumeGeom_ViscoFrictPhys_Elastic(inherits Law2_VolumeGeom_-
FrictPhys_Elastic → LawFunctor→ Functor → Serializable)

Law similar to Law2_VolumeGeom_FrictPhys_Elastic with the addition of shear creep at contacts.

property bases
Ordered list of types (as strings) this functor accepts.

property creepStiffness

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

initPlasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1, (float)arg2) → None :
Initialize cummulated plastic dissipation to a value (0 by default).

590 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only useful if another contact law
is used as well).

plasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
VolumeGeom_FrictPhys_Elastic::traceEnergy is true.

property shearCreep

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscosity

property volumePower
The exponent a on the overlap volume within the contact law. Setting to 0.5 gives a near-linear
relationship of force with respect to penetration distance for spheres.

LawDispatcher

class yade.wrapper.LawDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((LawDispatcher)arg1, (IGeom)arg2, (IPhys)arg3) → LawFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((LawDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

2.3. Yade wrapper class reference 591

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.11 Internal forces

InternalForceFunctor

InternalForceFunctor
If2_Lin4NodeTetra_LinIsoRayleighDampElast

If2_2xLin4NodeTetra_LinCohesiveStiffPropDampElastMat

Fig. 37: Inheritance graph of InternalForceFunctor. See also: If2_2xLin4NodeTetra_LinCohesiveStiff-
PropDampElastMat, If2_Lin4NodeTetra_LinIsoRayleighDampElast.

class yade.wrapper.InternalForceFunctor(inherits Functor → Serializable)
Functor for creating/updating Body::bound.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.If2_2xLin4NodeTetra_LinCohesiveStiffPropDampElastMat(inherits Internal-
ForceFunctor →
Functor →
Serializable)

Apply internal forces of the tetrahedral element using lumped mass theory

property bases
Ordered list of types (as strings) this functor accepts.

592 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.If2_Lin4NodeTetra_LinIsoRayleighDampElast(inherits InternalForceFunctor→ Functor → Serializable)
Apply internal forces of the tetrahedral element using lumped mass theory

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

InternalForceDispatcher

class yade.wrapper.InternalForceDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((InternalForceDispatcher)arg1, (Shape)arg2, (Material)arg3) →
InternalForceFunctor :

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((InternalForceDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.3. Yade wrapper class reference 593

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.12 Callbacks

IntrCallback SumIntrForcesCb

Fig. 38: Inheritance graph of IntrCallback. See also: SumIntrForcesCb.

class yade.wrapper.IntrCallback(inherits Serializable)
Abstract callback object which will be called for every (real) Interaction after the interaction has
been processed by InteractionLoop.

At the beginning of the interaction loop, stepInit is called, initializing the object; it returns either
NULL (to deactivate the callback during this time step) or pointer to function, which will then be
passed (1) pointer to the callback object itself and (2) pointer to Interaction.

Note: (NOT YET DONE) This functionality is accessible from python by passing 4th argument
to InteractionLoop constructor, or by appending the callback object to InteractionLoop::callbacks.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.SumIntrForcesCb(inherits IntrCallback → Serializable)
Callback summing magnitudes of forces over all interactions. IPhys of interactions must derive
from NormShearPhys (responsability fo the user).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

594 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.3.13 Preprocessors

FileGenerator

SimpleShear

TriaxialTest

BlockGen

Fig. 39: Inheritance graph of FileGenerator. See also: BlockGen, SimpleShear, TriaxialTest.

class yade.wrapper.FileGenerator(inherits Serializable)
Base class for scene generators, preprocessors.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.BlockGen(inherits FileGenerator → Serializable)
Prepare a scene for Block Generation using the Potential Blocks.

property Kn
Volumetric contact normal stiffness

property Ks
Volumetric contact shear stiffness

property RForPP
R in Potential Particles

property Talesnick
Whether to choose the Talesnick contact law, used for validating code previously against
model test

property boundaries
Whether to check for filename boundaries

property boundarySizeXmax
Max X of domain

property boundarySizeXmin
Min X of domain

property boundarySizeYmax
Max Y of domain

property boundarySizeYmin
Min Y of domain

property boundarySizeZmax
Max Z of domain

2.3. Yade wrapper class reference 595

Yade Documentation, Release 3rd ed.

property boundarySizeZmin
Min Z of domain

property calContactArea
Whether to calculate jointLength for 2-D contacts and contactArea for 2-D and 3-D contacts

property color
color of generated blocks (random color will be assigned to each sub-block if a color is not
specified)

property dampingMomentum
Coefficient of global damping

property defaultDt
Max time-step. Used as initial value if defined. Later adjusted by the time stepper

property density
Density of blocks

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property directionA
Local x-direction to check minSize

property directionB
Local y-direction to check minSize

property directionC
Local z-direction to check minSize

property exactRotation
Whether to handle the rotational motion of aspherical bodies more accurately

property filenameBoundaries
filename to look for joint with probabilistic models

property filenameOpening
filename to look for joint outline of joints

property filenamePersistentPlanes
filename to look for joint properties

property filenameProbabilistic
filename to look for joint with probabilistic models

property filenameSliceBoundaries
filename to look for joint outline of joints

property filenameSlopeFace
filename to look for joint outline of joints

property frictionDeg
Friction angle [°]

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

property globalOrigin
Global origin (reference point) for the discontinuities to be imposed

property gravity
Gravity

596 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property inertiaFactor
Scaling of inertia

property initialOverlap
Initial overlap between blocks

property intactRockDegradation
Whether to activate degradation of parameters for contact

property jointProbabilistic
Whether to check for filename jointProbabilistic

property joint_a
Introduce discontinuities from Python: List of a coefficients of plane normals

property joint_b
Introduce discontinuities from Python: List of b coefficients of plane normals

property joint_c
Introduce discontinuities from Python: List of c coefficients of plane normals

property joint_d
Introduce discontinuities from Python: List of d coefficients of plane equations

property kForPP
k in Potential Particles

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

property maxRatio
Minimum ratio for all blocks

property minSize
Minimum size for all blocks

property neverErase
Whether to erase non interacting contacts

property opening
Whether to check for filename opening

property outputFile
Filename where the data of the block generation are saved. Leave blank if an output file is
not needed

property persistentPlanes
Whether to check persistence

property probabilisticOrientation
Whether to generate rock joints randomly

property rForPP
r in Potential Particles

property saveBlockGenData
Whether to write the data of the block generation in a text file (if true) or display on the
terminal (if false)

property shrinkFactor
Ratio to shrink r

2.3. Yade wrapper class reference 597

Yade Documentation, Release 3rd ed.

property sliceBoundaries
Whether to check for filename sliceBoundaries

property slopeFace
Whether to check for filename slopeFace

property timeStepUpdateInterval
Interval for GlobalStiffnessTimeStepper

property traceEnergy
Whether to calculate energy terms (elastic potential energy (normal and shear), plastic dis-
sipation due to friction and dissipation of energy (normal and tangential) due to viscous
damping)

property twoDimension
Whether the model is 2D

property unitWidth2D
Unit width in 2D (out of plane distance)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to use face properties

property useGlobalStiffnessTimeStepper
Whether to use GlobalStiffnessTimeStepper

property viscousDamping
Viscous damping

class yade.wrapper.SimpleShear(inherits FileGenerator → Serializable)
Preprocessor for a simple shear box model. The packing initially conforms a gas-like, very loose,
state (see utils.makeCloud function), but importing some existing packing from a text file can be
also performed after little change in the source code. In its current state, the preprocessor carries out
an oedometric compression, until a value of normal stress equal to 2 MPa (and a stable mechanical
state). Others Engines such as KinemCNDEngine, KinemCNSEngine and KinemCNLEngine, could
be used to apply resp. constant normal displacement, constant normal rigidity and constant normal
stress paths using such a simple shear box.

property density
density of the spheres [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

property gravApplied
depending on this, GravityEngine is added or not to the scene to take into account the weight
of particles

property gravity
vector corresponding to used gravity (if gravApplied) [m/s2]

property height
initial height (along y-axis) of the shear box [m]

property length
initial length (along x-axis) of the shear box [m]

598 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

property matFrictionDeg
value of FrictMat.frictionAngle within the packing and for the two horizontal boundaries
(friction is zero along other boundaries) [◦] (the necessary conversion in [rad] is done auto-
matically)

property matPoissonRatio
value of FrictMat.poisson for the bodies [-]

property matYoungModulus
value of FrictMat.young for the bodies [Pa]

property thickness
thickness of the boxes constituting the shear box [m]

property timeStepUpdateInterval
value of TimeStepper::timeStepUpdateInterval for the TimeStepper used here

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property width
initial width (along z-axis) of the shear box [m]

class yade.wrapper.TriaxialTest(inherits FileGenerator → Serializable)
Create a scene for triaxal test.

Introduction
Yade includes tools to simulate triaxial tests on particles assemblies. This pre-processor (and
variants like e.g. CapillaryTriaxialTest) illustrate how to use them. It generates a scene which
will - by default - go through the following steps :

• generate random loose packings in a parallelepiped.

• compress the packing isotropicaly, either squeezing the packing between moving rigid
boxes or expanding the particles while boxes are fixed (depending on flag internalCom-
paction). The confining pressure in this stage is defined via sigmaIsoCompaction.

• when the packing is dense and stable, simulate a loading path and get the mechanical
response as a result.

The default loading path corresponds to a constant lateral stress (sigmaLateralConfinement)
in 2 directions and constant strain rate on the third direction. This default loading path is
performed when the flag autoCompressionActivation it True, otherwise the simulation stops
after isotropic compression.

Different loading paths might be performed. In order to define them, the user can modify
the flags found in engine TriaxialStressController at any point in the simulation (in c++).
If TriaxialStressController.wall_X_activated is true boundary X is moved automati-
cally to maintain the defined stress level sigmaN (see axis conventions below). If false the
boundary is not controlled by the engine at all. In that case the user is free to prescribe fixed
position, constant velocity, or more complex conditions.

Note: Axis conventions. Boundaries perpendicular to the x axis are called “left” and “right”,
y corresponds to “top” and “bottom”, and axis z to “front” and “back”. In the default loading
path, strain rate is assigned along y, and constant stresses are assigned on x and z.

Essential engines

2.3. Yade wrapper class reference 599

Yade Documentation, Release 3rd ed.

1. The TriaxialCompressionEngine is used for controlling the state of the sample and simu-
lating loading paths. TriaxialCompressionEngine inherits from TriaxialStressController,
which computes stress- and strain-like quantities in the packing and maintain a constant
level of stress at each boundary. TriaxialCompressionEngine has few more members in
order to impose constant strain rate and control the transition between isotropic com-
pression and triaxial test. Transitions are defined by changing some flags of the Triaxial-
StressController, switching from/to imposed strain rate to/from imposed stress.

2. The class TriaxialStateRecorder is used to write to a file the history of stresses and strains.

3. TriaxialTest is using GlobalStiffnessTimeStepper to compute an appropriate ∆t for the
numerical scheme.

Note: TriaxialStressController::ComputeUnbalancedForce returns a value that can
be useful for evaluating the stability of the packing. It is defined as (mean force on parti-
cles)/(mean contact force), so that it tends to 0 in a stable packing. This parameter is checked
by TriaxialCompressionEngine to switch from one stage of the simulation to the next one (e.g.
stop isotropic confinment and start axial loading)

Frequently Asked Questions

1. How is generated the packing? How to change particles sizes distribution? Why
do I have a message “Exceeded 3000 tries to insert non-overlapping sphere?

The initial positioning of spheres is done by generating random (x,y,z) in a box and
checking if a sphere of radius R (R also randomly generated with respect to a uniform
distribution between mean*(1-std_dev) and mean*(1+std_dev) can be inserted at this
location without overlaping with others.

If the sphere overlaps, new (x,y,z)’s are generated until a free position for the new sphere is
found. This explains the message you have: after 3000 trial-and-error, the sphere couldn’t
be placed, and the algorithm stops.

You get the message above if you try to generate an initialy dense packing, which is not
possible with this algorithm. It can only generate clouds. You should keep the default
value of porosity (n~0.7), or even increase if it is still to low in some cases. The dense
state will be obtained in the second step (compaction, see below).

2. How is the compaction done, what are the parameters maxWallVelocity and
finalMaxMultiplier?

Compaction is done

1. by moving rigid boxes or

2. by increasing the sizes of the particles (decided using the option internalCompaction
� size increase).

Both algorithm needs numerical parameters to prevent instabilities. For instance, with
the method (1) maxWallVelocity is the maximum wall velocity, with method (2) final-
MaxMultiplier is the max value of the multiplier applied on sizes at each iteration (always
something like 1.00001).

3. During the simulation of triaxial compression test, the wall in one direction
moves with an increment of strain while the stresses in other two directions are
adjusted to sigma_iso. How the stresses in other directions are maintained
constant to sigma_iso? What is the mechanism? Where is it implemented in
Yade?

The control of stress on a boundary is based on the total stiffness K of all contacts between
the packing and this boundary. In short, at each step, displacement=stress_error/K.
This algorithm is implemented in TriaxialStressController, and the control itself is in
TriaxialStressController::ControlExternalStress. The control can be turned off
independently for each boundary, using the flags wall_XXX_activated, with XXX�{top,

600 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

bottom, left, right, back, front}. The imposed sress is a unique value (sigma_iso) for
all directions if TriaxialStressController.isAxisymetric, or 3 independent values sigma1,
sigma2, sigma3.

4. Which value of friction angle do you use during the compaction phase of the
Triaxial Test?

The friction during the compaction (whether you are using the expansion method or the
compression one for the specimen generation) can be anything between 0 and the final
value used during the Triaxial phase. Note that higher friction than the final one would
result in volumetric collapse at the beginning of the test. The purpose of using a different
value of friction during this phase is related to the fact that the final porosity you get
at the end of the sample generation essentially depends on it as well as on the assumed
Particle Size Distribution. Changing the initial value of friction will get to a different
value of the final porosity.

5. Which is the aim of the bool isRadiusControlIteration?
This internal variable (updated automatically) is true each N timesteps (with
N=radiusControlInterval). For other timesteps, there is no expansion. Cycling without
expanding is just a way to speed up the simulation, based on the idea that 1% increase
each 10 iterations needs less operations than 0.1% at each iteration, but will give similar
results.

6. How comes the unbalanced force reaches a low value only after many timesteps
in the compaction phase?

The value of unbalanced force (dimensionless) is expected to reach low value (i.e. identi-
fying a static-equilibrium condition for the specimen) only at the end of the compaction
phase. The code is not aiming at simulating a quasistatic isotropic compaction process,
it is only giving a stable packing at the end of it.

property Key
A code that is added to output filenames.

property StabilityCriterion
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

property WallStressRecordFile

property autoCompressionActivation
Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

property autoStopSimulation
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

property autoUnload
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

property boxFrictionDeg
Friction angle [°] of boundaries contacts.

property boxKsDivKn
Ratio of shear vs. normal contact stiffness for boxes.

property boxYoungModulus
Stiffness of boxes.

2.3. Yade wrapper class reference 601

Yade Documentation, Release 3rd ed.

property compactionFrictionDeg
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

property dampingForce
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

property dampingMomentum
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

property defaultDt
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

property density
density of spheres

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property facetWalls
Use facets for boundaries (not tested)

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment)

property fixedBoxDims
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

property importFilename
File with positions and sizes of spheres.

property internalCompaction
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

property lowerCorner
Lower corner of the box.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase)

property maxWallVelocity
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

property noFiles
Do not create any files during run (.xml, .spheres, wall stress records)

property numberOfGrains
Number of generated spheres.

property radiusControlInterval
interval between size changes when growing spheres.

602 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property radiusMean
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

property radiusStdDev
Normalized standard deviation of generated sizes.

property recordIntervalIter
interval between file outputs

property seed
Seed used for the call to makeCloud

property sigmaIsoCompaction
Confining stress during isotropic compaction (< 0 for real - compressive - compaction).

property sigmaLateralConfinement
Lateral stress during triaxial loading (< 0 for classical compressive cases). An isotropic un-
loading is performed if the value is not equal to TriaxialTest::sigmaIsoCompaction.

property sphereFrictionDeg
Friction angle [°] of spheres assigned just before triaxial testing.

property sphereKsDivKn
Ratio of shear vs. normal contact stiffness for spheres.

property sphereYoungModulus
Stiffness of spheres.

property strainRate
Strain rate in triaxial loading.

property thickness
thickness of boundaries. It is arbitrary and should have no effect

property timeStepUpdateInterval
interval for GlobalStiffnessTimeStepper

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property upperCorner
Upper corner of the box.

property wallOversizeFactor
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

property wallStiffnessUpdateInterval
interval for updating the stiffness of sample/boundaries contacts

property wallWalls
Use walls for boundaries (not tested)

2.3. Yade wrapper class reference 603

Yade Documentation, Release 3rd ed.

2.3.14 Rendering

OpenGLRenderer

class yade.wrapper.OpenGLRenderer(inherits Serializable)
Class responsible for rendering scene on OpenGL devices.

property bgColor
Color of the background canvas (RGB)

property blinkHighlight
Adjust blinking of the body selected in the ‘Simulation Inspection’ window.

property bound
Render body Bound

property cellColor
Color of the periodic cell (RGB).

property clipPlaneActive
Activate/deactivate respective clipping planes

property clipPlaneSe3
Position and orientation of clipping planes

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property dispScale
Artificially enlarge (scale) dispalcements from bodies’ reference positions by this relative
amount, so that they become better visible (independently in 3 dimensions). Disbled if (1,1,1).

property dof
Show which degrees of freedom are blocked for each body

property extraDrawers
Additional rendering components (GlExtraDrawer).

property ghosts
Render objects crossing periodic cell edges by cloning them in multiple places (periodic sim-
ulations only).

hideBody((OpenGLRenderer)arg1, (int)id) → None :
Hide body from id (see OpenGLRenderer::showBody)

property id
Show body id’s

property intrAllWire
Draw wire for all interactions, blue for potential and green for real ones (mostly for debugging)

property intrGeom
Render Interaction::geom objects.

property intrPhys
Render Interaction::phys objects

property intrWire
If rendering interactions, use only wires to represent them.

property light1
Turn light 1 on.

604 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property light2
Turn light 2 on.

property light2Color
Per-color intensity of secondary light (RGB).

property light2Pos
Position of secondary OpenGL light source in the scene.

property lightColor
Per-color intensity of primary light (RGB).

property lightPos
Position of OpenGL light source in the scene.

property mask
Bitmask for showing only bodies where ((mask & Body::mask)!=0)

render((OpenGLRenderer)arg1) → None :
Render the scene in the current OpenGL context.

property rotScale
Artificially enlarge (scale) rotations of bodies relative to their reference orientation, so the
they are better visible.

property selId
Id of particle that was selected by the user.

setRefSe3((OpenGLRenderer)arg1) → None :
Make current positions and orientation reference for scaleDisplacements and scaleRotations.

property shape
Render body Shape

showBody((OpenGLRenderer)arg1, (int)id) → None :
Make body visible (see OpenGLRenderer::hideBody)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Render all bodies with wire only (faster)

GlShapeFunctor

class yade.wrapper.GlShapeFunctor(inherits Functor → Serializable)
Abstract functor for rendering Shape objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.3. Yade wrapper class reference 605

Yade Documentation, Release 3rd ed.

GlShapeFunctor

Gl1_PotentialParticle

Gl1_DeformableElement

Gl1_LevelSet

Gl1_Cylinder

Gl1_Sphere

Gl1_Node

Gl1_Facet

Gl1_Tetra

Gl1_Polyhedra

Gl1_PFacet

Gl1_PotentialBlock

Gl1_Box

Gl1_GridConnection

Gl1_ChainedCylinder

Gl1_Wall

Fig. 40: Inheritance graph of GlShapeFunctor. See also: Gl1_Box, Gl1_ChainedCylinder, Gl1_Cylin-
der, Gl1_DeformableElement, Gl1_Facet, Gl1_GridConnection, Gl1_LevelSet, Gl1_Node, Gl1_PFacet,
Gl1_Polyhedra, Gl1_PotentialBlock, Gl1_PotentialParticle, Gl1_Sphere, Gl1_Tetra, Gl1_Wall.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_Box(inherits GlShapeFunctor → Functor → Serializable)
Renders Box object

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_ChainedCylinder(inherits Gl1_Cylinder → GlShapeFunctor → Functor →
Serializable)

Renders ChainedCylinder object including a shift for compensating flexion.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutNormalize = True

606 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

glutSlices = 8

glutStacks = 4

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_Cylinder(inherits GlShapeFunctor → Functor → Serializable)
Renders Cylinder object

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

glutNormalize(=true) [static]
Fix normals for non-wire rendering

glutSlices(=8) [static]
Number of sphere slices.

glutStacks(=4) [static]
Number of sphere stacks.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutNormalize = True

glutSlices = 8

glutStacks = 4

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_DeformableElement(inherits GlShapeFunctor → Functor → Serializable)
Renders Node object

property bases
Ordered list of types (as strings) this functor accepts.

2.3. Yade wrapper class reference 607

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_Facet(inherits GlShapeFunctor → Functor → Serializable)
Renders Facet object

normals(=false) [static]
In wire mode, render normals of facets and edges; facet’s colors are disregarded in that case.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normals = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_GridConnection(inherits GlShapeFunctor → Functor → Serializable)
Renders Cylinder object

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

glutNormalize(=true) [static]
Fix normals for non-wire rendering

glutSlices(=8) [static]
Number of cylinder slices.

glutStacks(=4) [static]
Number of cylinder stacks.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutNormalize = True

608 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

glutSlices = 8

glutStacks = 4

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_LevelSet(inherits GlShapeFunctor → Functor → Serializable)
Renders LevelSet object

recompute(=false) [static]
Whether to recompute the triangulation every time it is rendered.

wire(=false) [static]
Only show wireframe

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

recompute = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_Node(inherits GlShapeFunctor → Functor → Serializable)
Renders Node object

quality(=1.0) [static]
Change discretization level of spheres. quality>1 for better image quality, at the price of more
cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color spheres are displayed (Gl1_-
Node::stripes = False), quality mutiplies Gl1_Node::glutSlices and Gl1_Node::glutStacks. If
striped spheres are displayed (Gl1_Node::stripes = True), only integer increments are mean-
ingfull : quality=1 and quality=1.9 will give the same result, quality=2 will give finer result.

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=false) [static]
In non-wire rendering, show stripes clearly showing particle rotation.

2.3. Yade wrapper class reference 609

Yade Documentation, Release 3rd ed.

localSpecView(=true) [static]
Compute specular light in local eye coordinate system.

glutSlices(=12) [static]
Base number of sphere slices, multiplied by Gl1_Node::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6) [static]
Base number of sphere stacks, multiplied by Gl1_Node::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutSlices = 12

glutStacks = 6

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

localSpecView = True

quality = 1.0

stripes = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_PFacet(inherits GlShapeFunctor → Functor → Serializable)
Renders Facet object

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

610 Chapter 2. Yade for users

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Documentation, Release 3rd ed.

wire = False

class yade.wrapper.Gl1_Polyhedra(inherits GlShapeFunctor → Functor → Serializable)
Renders Polyhedra object

wire(=false) [static]
Only show wireframe

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_PotentialBlock(inherits GlShapeFunctor → Functor → Serializable)
Renders PotentialBlock object

wire(=false) [static]
Only show wireframe

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_PotentialParticle(inherits GlShapeFunctor → Functor → Serializable)
Renders PotentialParticle object

sizeX(=20) [static]
Number of divisions in the X direction for triangulation

sizeY(=20) [static]
Number of divisions in the Y direction for triangulation

sizeZ(=20) [static]
Number of divisions in the Z direction for triangulation

2.3. Yade wrapper class reference 611

Yade Documentation, Release 3rd ed.

store(=true) [static]
Whether to store computed triangulation or not

initialized(=false) [static]
Whether the triangulation is initialized

aabbEnlargeFactor(=1.3) [static]
Enlargement factor of the Marching Cubes drawing grid, used for displaying purposes. Try
different value if the particles are not displayed properly

wire(=false) [static]
Only show wireframe

aabbEnlargeFactor = 1.3

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

initialized = False

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

sizeX = 20

sizeY = 20

sizeZ = 20

store = True

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_Sphere(inherits GlShapeFunctor → Functor → Serializable)
Renders Sphere object

quality(=1.0) [static]
Change discretization level of spheres. quality>1 for better image quality, at the price of more
cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color spheres are displayed (Gl1_-
Sphere::stripes = False), quality mutiplies Gl1_Sphere::glutSlices and Gl1_Sphere::glutStacks.
If striped spheres are displayed (Gl1_Sphere::stripes = True), only integer increments are
meaningfull : quality=1 and quality=1.9 will give the same result, quality=2 will give finer
result.

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=true) [static]
In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true) [static]
Compute specular light in local eye coordinate system.

612 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

glutSlices(=12) [static]
Base number of sphere slices, multiplied by Gl1_Sphere::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6) [static]
Base number of sphere stacks, multiplied by Gl1_Sphere::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

circleView(=false) [static]
For 2D simulations : display tori instead of spheres, so they will appear like circles if the viewer
is looking in the right direction. In this case, remember to disable perspective by pressing
“t”-key in the viewer.

circleRelThickness(=0.2) [static]
If Gl1_Sphere::circleView is enabled, this is the torus diameter relative to the sphere radius
(i.e. the circle relative thickness).

circleAllowedRotationAxis(=’z’) [static]
If Gl1_Sphere::circleView is enabled, this is the only axis (‘x’, ‘y’ or ‘z’) along which rotation
is allowed for the 2D simulation. It allows right orientation of the tori to appear like circles in
the viewer. For example, if circleAllowedRotationAxis=’x’ is set, blockedDOFs=”YZ” should
also be set for all your particles.

property bases
Ordered list of types (as strings) this functor accepts.

circleAllowedRotationAxis = 'z'

circleRelThickness = 0.2

circleView = False

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutSlices = 12

glutStacks = 6

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

localSpecView = True

quality = 1.0

stripes = True

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.wrapper.Gl1_Tetra(inherits GlShapeFunctor → Functor → Serializable)
Renders Tetra object

wire(=true) [static]
TODO

2.3. Yade wrapper class reference 613

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = True

class yade.wrapper.Gl1_Wall(inherits GlShapeFunctor → Functor → Serializable)
Renders Wall object

div(=20) [static]
Number of divisions of the wall inside visible scene part.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

div = 20

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

GlStateFunctor

class yade.wrapper.GlStateFunctor(inherits Functor → Serializable)
Abstract functor for rendering State objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

614 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

GlBoundFunctor

GlBoundFunctor Gl1_Aabb

Fig. 41: Inheritance graph of GlBoundFunctor. See also: Gl1_Aabb.

class yade.wrapper.GlBoundFunctor(inherits Functor → Serializable)
Abstract functor for rendering Bound objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_Aabb(inherits GlBoundFunctor → Functor → Serializable)
Render Axis-aligned bounding box (Aabb).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 615

Yade Documentation, Release 3rd ed.

GlIGeomFunctor

GlIGeomFunctor
Gl1_L3Geom Gl1_L6Geom

Gl1_PolyhedraGeom

Fig. 42: Inheritance graph of GlIGeomFunctor. See also: Gl1_L3Geom, Gl1_L6Geom, Gl1_Polyhedra-
Geom.

class yade.wrapper.GlIGeomFunctor(inherits Functor → Serializable)
Abstract functor for rendering IGeom objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_L3Geom(inherits GlIGeomFunctor → Functor → Serializable)
Render L3Geom geometry.

axesLabels(=false) [static]
Whether to display labels for local axes (x,y,z)

axesScale(=1.) [static]
Scale local axes, their reference length being half of the minimum radius.

axesWd(=1.) [static]
Width of axes lines, in pixels; not drawn if non-positive

uPhiWd(=2.) [static]
Width of lines for drawing displacements (and rotations for L6Geom); not drawn if non-
positive.

uScale(=1.) [static]
Scale local displacements (u - u0); 1 means the true scale, 0 disables drawing local displace-
ments; negative values are permissible.

axesLabels = False

axesScale = 1.0

axesWd = 1.0

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

616 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0

uScale = 1.0

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_L6Geom(inherits Gl1_L3Geom → GlIGeomFunctor → Functor →
Serializable)

Render L6Geom geometry.

phiScale(=1.) [static]
Scale local rotations (phi - phi0). The default scale is to draw π rotation with length equal to
minimum radius.

axesLabels = False

axesScale = 1.0

axesWd = 1.0

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

phiScale = 1.0

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0

uScale = 1.0

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_PolyhedraGeom(inherits GlIGeomFunctor → Functor → Serializable)
Render PolyhedraGeom geometry.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 617

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

GlIPhysFunctor

GlIPhysFunctor

Gl1_NormPhys

Gl1_CpmPhys

Gl1_PolyhedraPhys

Fig. 43: Inheritance graph of GlIPhysFunctor. See also: Gl1_CpmPhys, Gl1_NormPhys, Gl1_Polyhed-
raPhys.

class yade.wrapper.GlIPhysFunctor(inherits Functor → Serializable)
Abstract functor for rendering IPhys objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_CpmPhys(inherits GlIPhysFunctor → Functor → Serializable)
Render CpmPhys objects of interactions.

contactLine(=true) [static]
Show contact line

dmgLabel(=true) [static]
Numerically show contact damage parameter

dmgPlane(=false) [static]
[what is this?]

epsT(=false) [static]
Show shear strain

epsTAxes(=false) [static]
Show axes of shear plane

618 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

normal(=false) [static]
Show contact normal

colorStrainRatio(=-1) [static]
If positive, set the interaction (wire) color based on εN normalized by ε0 x colorStrainRatio
(ε0 = CpmPhys.epsCrackOnset). Otherwise, color based on the residual strength.

epsNLabel(=false) [static]
Numerically show normal strain

property bases
Ordered list of types (as strings) this functor accepts.

colorStrainRatio = -1.0

contactLine = True

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dmgLabel = True

dmgPlane = False

epsNLabel = False

epsT = False

epsTAxes = False

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normal = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Gl1_NormPhys(inherits GlIPhysFunctor → Functor → Serializable)
Renders NormPhys objects as cylinders of which diameter and color depends on Norm-
Phys.normalForce magnitude.

maxFn(=0) [static]
Value of NormPhys.normalForce corresponding to maxRadius. This value will be increased
(but not decreased) automatically.

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius; used only if maxRadius is negative. This value will be
decreased (but not increased) automatically. (auto-updated)

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force. If negative, auto-updated re-
fRadius will be used instead.

2.3. Yade wrapper class reference 619

Yade Documentation, Release 3rd ed.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

maxWeakFn(=NaN) [static]
Value that divides contacts by their normal force into the ‘weak fabric’ and ‘strong fabric’.
This value is set as side-effect by utils.fabricTensor.

weakFilter(=0) [static]
If non-zero, only display contacts belonging to the ‘weak’ (-1) or ‘strong’ (+1) fabric.

weakScale(=1.) [static]
If maxWeakFn is set, scale radius of the weak fabric by this amount (usually smaller than 1).
If zero, 1 pixel line is displayed. Colors are not affected by this value.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0

maxRadius = -1.0

maxWeakFn = nan

refRadius = inf

signFilter = 0

slices = 6

stacks = 1

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

weakFilter = 0

weakScale = 1.0

class yade.wrapper.Gl1_PolyhedraPhys(inherits GlIPhysFunctor → Functor → Serializable)
Renders PolyhedraPhys objects as cylinders of which diameter and color depends on Polyhedra-
Phys::normForce magnitude.

maxFn(=0) [static]
Value of NormPhys.normalForce corresponding to maxDiameter. This value will be increased
(but not decreased) automatically.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius

620 Chapter 2. Yade for users

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Documentation, Release 3rd ed.

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0

maxRadius = -1.0

refRadius = inf

signFilter = 0

slices = 6

stacks = 1

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3.15 Simulation data

Omega

class yade.wrapper.Omega
The whole YADE world made of one or, possibly, several scenes serving as independent simulations.
The Omega instance is accessed as O, e.g., O.bodies

addScene((Omega)arg1) → int :
Add new scene to Omega, returns its number

property bodies
Bodies in the current simulation (container supporting index access by id and iteration)

bufferFromIntrsct((Omega)arg1, (Subdomain)subdomain, (int)rank, (int)size, (bool)mirror) →
object :

returns a (char*) pointer to the underying buffer of intersections[rank], so that it can be
overwritten. Size must be passed in advance. Pointer to mirrorIntersections[rank] is returned
if mirror=True. Python syntax: bufferFromIntrsct(…)[:]=bytes(something)

2.3. Yade wrapper class reference 621

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Documentation, Release 3rd ed.

property cell
Periodic Cell of the current scene (None if the scene is aperiodic).

childClassesNonrecursive((Omega)arg1, (str)arg2) → list :
Return list of all classes deriving from given class, as registered in the class factory

disableGdb((Omega)arg1) → None :
Revert SEGV and ABRT handlers to system defaults.

property dt
Current timestep (Δt) value. See dynDt for enabling/disabling automatic Δt updates through
a TimeStepper.

property dynDt
Whether a TimeStepper (when present in O.engines) is used for dynamic Δt control.

property dynDtAvailable
Whether a TimeStepper is amongst O.engines, activated or not.

property energy
EnergyTracker of the current simulation. (meaningful only with O.trackEnergy)

property engines
List of engines in the simulation (corresponds to Scene::engines in C++ source code).

exitNoBacktrace((Omega)arg1[, (int)status=0]) → None :
Disable SEGV handler and exit, optionally with given status number.

property filename
Filename under which the current simulation was saved (None if never saved).

property forceSyncCount
Counter for number of syncs in ForceContainer, for profiling purposes.

property forces
ForceContainer (forces, torques) in the current simulation.

property interactions
Access to interactions of simulation, by using

1. id’s of both Bodies of the interactions, e.g. O.interactions[23,65]

2. iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are not real.

intrsctToBytes((Omega)arg1, (Subdomain)subdomain, (int)rank, (bool)mirror) → object :
returns a copy of intersections[rank] (a vector<int>) from a subdomain in the form of bytes.
Returns a copy mirrorIntersections[rank] if mirror=True.

isChildClassOf((Omega)arg1, (str)arg2, (str)arg3) → bool :
Tells whether the first class derives from the second one (both given as strings).

property iter
Get current step number

622 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

labeledEngine((Omega)arg1, (str)arg2) → object :
Return instance of engine/functor with the given label. This function shouldn’t be called
by the user directly; every ehange in O.engines will assign respective global python variables
according to labels.

For example:

O.engines=[InsertionSortCollider(label=’collider’)]

collider.nBins=5 # collider has become a variable after assignment to O.engines
automatically

load((Omega)arg1, (str)file[, (bool)quiet=False]) → None :
Load simulation from file. The file should have been saved in the same version of Yade built
or compiled with the same features, otherwise compatibility is not guaranteed. Compatibility
may also be affected by different versions of external libraries such as Boost

loadTmp((Omega)arg1[, (str)mark=’’[, (bool)quiet=False]]) → None :
Load simulation previously stored in memory by saveTmp. mark optionally distinguishes
multiple saved simulations

lsTmp((Omega)arg1) → list :
Return list of all memory-saved simulations.

property materials
Shared materials; they can be accessed by id or by label

property miscParams
MiscParams in the simulation (Scene::mistParams), usually used to save serializables that
don’t fit anywhere else, like GL functors

property numThreads
Get maximum number of threads openMP can use.

pause((Omega)arg1) → None :
Stop simulation execution. (May be called from within the loop, and it will stop after the
current step).

property periodic
Get/set whether the current scene is periodic or not (True/False).

plugins((Omega)arg1) → list :
Return list of all plugins registered in the class factory.

property realtime
Return clock (human world) time the simulation has been running.

reload((Omega)arg1[, (bool)quiet=False]) → None :
Reload current simulation

reset((Omega)arg1) → None :
Reset simulations completely (including another scenes!).

resetAllScenes((Omega)arg1) → None :
Reset all scenes.

resetCurrentScene((Omega)arg1) → None :
Reset current scene.

resetThisScene((Omega)arg1) → None :
Reset current scene.

2.3. Yade wrapper class reference 623

Yade Documentation, Release 3rd ed.

resetTime((Omega)arg1) → None :
Reset simulation time: step number, virtual and real time. (Doesn’t touch anything else,
including timings).

run((Omega)arg1[, (int)nSteps=-1[, (bool)wait=False]]) → None :
Run the simulation. nSteps how many steps to run, then stop (if positive); wait will cause
not returning to python until simulation will have stopped.

runEngine((Omega)arg1, (Engine)arg2) → None :
Run given engine exactly once; simulation time, step number etc. will not be incremented
(use only if you know what you do).

property running
Whether background thread is currently running a simulation.

save((Omega)arg1, (str)file[, (bool)quiet=False]) → None :
Save current simulation to file (should be .xml or .xml.bz2 or .yade or .yade.gz). .xml files are
bigger than .yade, but can be more or less easily (due to their size) opened and edited, e.g.
with text editors. .bz2 and .gz correspond both to compressed versions. There are software
requirements for successful reloads, see O.load.

saveTmp((Omega)arg1[, (str)mark=’’[, (bool)quiet=False]]) → None :
Save simulation to memory (disappears at shutdown), can be loaded later with loadTmp.
mark optionally distinguishes different memory-saved simulations.

sceneToString((Omega)arg1) → object :
Return the entire scene as a string. Equivalent to using O.save(…) except that the scene goes
to a string instead of a file. (see also stringToScene())

property speed
Return current calculation speed [iter/sec].

step((Omega)arg1) → None :
Advance the simulation by one step. Returns after the step will have finished.

property stopAtIter
Get/set number of iteration after which the simulation will stop.

property stopAtTime
Get/set time after which the simulation will stop.

stringToScene((Omega)arg1, (str)arg2[, (str)mark=’’]) → None :
Load simulation from a string passed as argument (see also sceneToString).

property subStep
Get the current subStep number (only meaningful if O.subStepping==True); -1 when out-
side the loop, otherwise either 0 (O.subStepping==False) or number of engine to be run
(O.subStepping==True)

property subStepping
Get/set whether subStepping is active.

switchScene((Omega)arg1) → None :
Switch to alternative simulation (while keeping the old one). Calling the function again
switches back to the first one. Note that most variables from the first simulation will still
refer to the first simulation even after the switch (e.g. b=O.bodies[4]; O.switchScene(); [b still
refers to the body in the first simulation here])

switchToScene((Omega)arg1, (int)arg2) → None :
Switch to defined scene. Default scene has number 0, other scenes have to be created by
addScene method.

624 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property tags
Tags (string=string dictionary) of the current simulation (container supporting string-index
access/assignment)

property thisScene
Return current scene’s id.

property time
Return virtual (model world) time of the simulation.

property timingEnabled
Globally enable/disable timing services (see documentation of the timing module).

tmpFilename((Omega)arg1) → str :
Return unique name of file in temporary directory which will be deleted when yade exits.

tmpToFile((Omega)arg1, (str)fileName[, (str)mark=’’]) → None :
Save XML of saveTmp’d simulation into fileName.

tmpToString((Omega)arg1[, (str)mark=’’]) → str :
Return XML of saveTmp’d simulation as string.

property trackEnergy
When energy tracking is enabled or disabled in this simulation.

wait((Omega)arg1) → None :
Don’t return until the simulation will have been paused. (Returns immediately if not running).

BodyContainer

class yade.wrapper.BodyContainer

__init__((object)arg1, (BodyContainer)arg2) → None

addToClump((BodyContainer)arg1, (object)arg2, (int)arg3[, (int)discretization=0]) → None :
Add body b (or a list of bodies) to an existing clump c. c must be clump and b may not be
a clump member of c. Clump masses and inertia are adapted automatically (for details see
clump()).

See examples/clumps/addToClump-example.py for an example script.

Note: If b is a clump itself, then all members will be added to c and b will be deleted. If
b is a clump member of clump d, then all members from d will be added to c and d will be
deleted. If you need to add just clump member b, release this member from d first.

append((BodyContainer)arg1, (Body)arg2) → int :
Append one Body instance, return its id.

append((BodyContainer)arg1, (object)arg2) -> object :
Append list of Body instance, return list of ids

appendClumped((BodyContainer)arg1, (object)arg2[, (int)discretization=0]) → tuple :
Append given list of bodies as a clump (rigid aggregate); returns a tuple of (clumpId,
[memberId1,memberId2,...]). Clump masses and inertia are computed automatically de-
pending upon discretization (for details see clump()).

clear((BodyContainer)arg1) → None :
Remove all bodies (interactions not checked)

2.3. Yade wrapper class reference 625

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/addToClump-example.py

Yade Documentation, Release 3rd ed.

clump((BodyContainer)arg1, (object)arg2[, (int)discretization=0]) → int :
Clump given bodies together (creating a rigid aggregate); returns clumpId. A precise defini-
tion of clump masses and inertia when clump members overlap requires spherical members to-
gether with discretization>0 and is achieved in this case by integration/summation over mass
points using a regular grid of cells (grid cells length is defined as Lmin/discretization, where
Lmin is the minimum length of an Axis-Aligned Bounding Box. If *discretization*<=0 sum
of inertias from members is simply used, which is faster but accurate only for non-overlapping
members).

deleteClumpBody((BodyContainer)arg1, (Body)arg2) → None :
Erase clump member.

deleteClumpMember((BodyContainer)arg1, (Body)arg2, (Body)arg3) → None :
Erase clump member.

property enableRedirection
let collider switch to optimized algorithm with body redirection when bodies are erased - true
by default

erase((BodyContainer)arg1, (int)arg2[, (bool)eraseClumpMembers=0]) → bool :
Erase body with the given id; all interaction will be deleted by InteractionLoop in the next
step. If a clump is erased use O.bodies.erase(clumpId,True) to erase the clump AND its
members.

getRoundness((BodyContainer)arg1[, (list)excludeList=[]]) → float :
Returns roundness coefficient RC = R2/R1. R1 is the equivalent sphere radius of a clump.
R2 is the minimum radius of a sphere, that imbeds the clump. If just spheres are present
RC = 1. If clumps are present 0 < RC < 1. Bodies can be excluded from the calculation by
giving a list of ids: O.bodies.getRoundness([ids]).

See examples/clumps/replaceByClumps-example.py for an example script.

insertAtId((BodyContainer)arg1, (Body)arg2, (int)insertatid) → int :
Insert a body at theid, (no body should exist in this id)

releaseFromClump((BodyContainer)arg1, (int)arg2, (int)arg3[, (int)discretization=0]) → None :
Release body b from clump c. b must be a clump member of c. Clump masses and inertia
are adapted automatically (for details see clump()).

See examples/clumps/releaseFromClump-example.py for an example script.

Note: If c contains only 2 members b will not be released and a warning will appear. In
this case clump c should be erased.

replace((BodyContainer)arg1, (object)arg2) → object

replaceByClumps((BodyContainer)arg1, (list)arg2, (object)arg3[, (int)discretization=0]) → list :
Replace spheres by clumps using a list of clump templates and a list of amounts; returns a list
of tuples: [(clumpId1,[memberId1,memberId2,...]),(clumpId2,[memberId1,memberId2,
...]),...]. A new clump will have the same volume as the sphere, that was replaced. Clump
masses and inertia are adapted automatically (for details see clump()).

O.bodies.replaceByClumps([utils.clumpTemplate([1,1],[.5,.5])] , [.9]) #will replace
90 % of all standalone spheres by ‘dyads’

See examples/clumps/replaceByClumps-example.py for an example script.

subdomainBodies((BodyContainer)arg1) → object :
id’s of bodies with bounds in MPI subdomain

626 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/replaceByClumps-example.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/releaseFromClump-example.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/replaceByClumps-example.py

Yade Documentation, Release 3rd ed.

updateClumpProperties((BodyContainer)arg1[, (list)excludeList=[][, (int)discretization=5]])→ None :
Manually force Yade to update clump properties mass, volume and inertia (for details of
‘discretization’ value see clump()). Can be used, when clumps are modified or erased dur-
ing a simulation. Clumps can be excluded from the calculation by giving a list of ids:
O.bodies.updateProperties([ids]).

property useRedirection
true if the scene uses up-to-date lists for boundedBodies and realBodies; turned true auto-
matically 1/ after removal of bodies if enableRedirection=True , and 2/ in MPI execution.
(auto-updated)

InteractionContainer

class yade.wrapper.InteractionContainer
Access to interactions of simulation, by using

1. id’s of both Bodies of the interactions, e.g. O.interactions[23,65]

2. iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are virtual i.e. not real.

__init__((object)arg1, (InteractionContainer)arg2) → None

all((InteractionContainer)arg1[, (bool)onlyReal=False]) → list :
Return list of all interactions. Virtual interaction are filtered out if onlyReal=True, else
(default) it dumps the full content.

clear((InteractionContainer)arg1) → None :
Remove all interactions, and invalidate persistent collider data (if the collider supports it).

countReal((InteractionContainer)arg1) → int :
Return number of interactions that are real.

erase((InteractionContainer)arg1, (int)arg2, (int)arg3) → None :
Erase one interaction, given by id1, id2 (internally, requestErase is called – the interaction
might still exist as potential, if the Collider decides so).

eraseNonReal((InteractionContainer)arg1) → None :
Erase all interactions that are not real .

has((InteractionContainer)arg1, (int)id1, (int)id2[, (bool)onlyReal=False]) → bool :
Tell if a pair of ids id1, id2 corresponds to an existing interaction (real or not depending on
onlyReal)

nth((InteractionContainer)arg1, (int)arg2) → Interaction :
Return n-th interaction from the container (usable for picking random interaction). The
virtual interactions are not reached.

property serializeSorted

withBody((InteractionContainer)arg1, (int)arg2) → list :
Return list of real interactions of given body.

withBodyAll((InteractionContainer)arg1, (int)arg2) → list :
Return list of all (real as well as non-real) interactions of given body.

2.3. Yade wrapper class reference 627

Yade Documentation, Release 3rd ed.

ForceContainer

class yade.wrapper.ForceContainer

__init__((object)arg1, (ForceContainer)arg2) → None

addF((ForceContainer)arg1, (int)id, (Vector3)f [, (bool)permanent=False]) → None :
Apply force on body (accumulates). The force applies for one iteration, then it is reset by
ForceResetter. # permanent parameter is deprecated, instead of addF(…,permanent=True)
use setPermF(…).

addT((ForceContainer)arg1, (int)id, (Vector3)t[, (bool)permanent=False]) → None :
Apply torque on body (accumulates). The torque applies for one iteration, then it is reset by
ForceResetter. # permanent parameter is deprecated, instead of addT(…,permanent=True)
use setPermT(…).

f((ForceContainer)arg1, (int)id[, (bool)sync=False]) → Vector3 :
Resultant force on body, excluding gravity. For clumps in openMP, synchronize the force
container with sync=True, else the value will be wrong.

getPermForceUsed((ForceContainer)arg1) → bool :
Check wether permanent forces are present.

m((ForceContainer)arg1, (int)id[, (bool)sync=False]) → Vector3 :
Deprecated alias for t (torque).

permF((ForceContainer)arg1, (int)id) → Vector3 :
read the value of permanent force on body (set with setPermF()).

permT((ForceContainer)arg1, (int)id) → Vector3 :
read the value of permanent torque on body (set with setPermT()).

reset((ForceContainer)arg1[, (bool)resetAll=True]) → None :
Reset the force container, including user defined permanent forces/torques. resetAll=False
will keep permanent forces/torques unchanged.

setPermF((ForceContainer)arg1, (int)arg2, (Vector3)arg3) → None :
set the value of permanent force on body.

setPermT((ForceContainer)arg1, (int)arg2, (Vector3)arg3) → None :
set the value of permanent torque on body.

property syncCount
Number of synchronizations of ForceContainer (cummulative); if significantly higher than
number of steps, there might be unnecessary syncs hurting performance.

t((ForceContainer)arg1, (int)id[, (bool)sync=False]) → Vector3 :
Torque applied on body. For clumps in openMP, synchronize the force container with
sync=True, else the value will be wrong.

628 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

MaterialContainer

class yade.wrapper.MaterialContainer
Container for Materials. A material can be accessed using

1. numerical index in range(0,len(cont)), like cont[2];

2. textual label that was given to the material, like cont[‘steel’]. This entails traversing all
materials and should not be used frequently.

__init__((object)arg1, (MaterialContainer)arg2) → None

append((MaterialContainer)arg1, (Material)arg2) → int :
Add new shared Material; changes its id and return it.

append((MaterialContainer)arg1, (object)arg2) -> object :
Append list of Material instances, return list of ids.

index((MaterialContainer)arg1, (str)arg2) → int :
Return id of material, given its label.

Scene

class yade.wrapper.Scene(inherits Serializable)
Object comprising a stand-alone simulation.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doSort
Used, when new body is added to the scene.

property dt
Current timestep for integration.

property isPeriodic
Whether periodic boundary conditions are active.

property iter
Current iteration (computational step) number

property selectedBody
Id of body that is selected by the user

property speed
Current calculation speed [iter/s]

property stopAtIter
Iteration after which to stop the simulation.

property stopAtTime
Time after which to stop the simulation

property subD
subdomain (shape) attached to this proc.

property subStep
Number of sub-step; not to be changed directly. -1 means to run loop prologue (cell integra-
tion), 0…n-1 runs respective engines (n is number of engines), n runs epilogue (increment step
number and time.

2.3. Yade wrapper class reference 629

Yade Documentation, Release 3rd ed.

property subStepping
Whether we currently advance by one engine in every step (rather than by single run through
all engines).

property subdomain
the subdomain this scene is assigned in MPI/domain decomposition.

property tags
Arbitrary key=value associations (tags like mp3 tags: author, date, version, description etc.)

property time
Simulation time (virtual time) [s]

property trackEnergy
Whether energies are being traced.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

Cell

class yade.wrapper.Cell(inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

flipCell((Cell)arg1) → Matrix3 :
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible,
using the two following facts:1. repeating in R3 space the corners of a periodic cell defines
a regular grid; 2. two cells leading through this process to a unique grid are equivalent and
can be flipped one over another. Flipping includes adjustment of Interaction.cellDist for
interactions that cross the boundary and didn’t before (or vice versa), and re-initialization of
collider. See also collision detection

property flipFlippable
flip automatically as soon as a more compact geometry is possible (see trsf)

getDefGrad((Cell)arg1) → Matrix3 :
Returns trsf = deformation gradient tensor F of the cell deformation (http://en.wikipedia.
org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain((Cell)arg1) → Matrix3 :
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT)−1) of the cell (http:

//en.wikipedia.org/wiki/Finite_strain_theory)

getFluctuationVelocity((Cell)arg1, (Body)b) → Vector3 :
get velocity fluctuation of a body, i.e. the velocity relative to mean field velocity: ṽ =
v− (∇vm) · x

getLCauchyGreenDef((Cell)arg1) → Matrix3 :
Returns left Cauchy-Green deformation tensor b = FFT of the cell (http://en.wikipedia.org/
wiki/Finite_strain_theory)

getLagrangianStrain((Cell)arg1) → Matrix3 :
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)

getLeftStretch((Cell)arg1) → Matrix3 :
Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU)

630 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 3rd ed.

getPolarDecOfDefGrad((Cell)arg1) → tuple :
Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell (F = RU)

getRCauchyGreenDef((Cell)arg1) → Matrix3 :
Returns right Cauchy-Green deformation tensor C = FTF of the cell (http://en.wikipedia.org/
wiki/Finite_strain_theory)

getRightStretch((Cell)arg1) → Matrix3 :
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT)

getRotation((Cell)arg1) → Matrix3 :
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU)

getSmallStrain((Cell)arg1) → Matrix3 :
Returns small strain tensor ε = 1

2
(F+FT)−I of the cell (http://en.wikipedia.org/wiki/Finite_

strain_theory)

getSpin((Cell)arg1) → Vector3 :
Returns the spin defined by the skew symmetric part of velGrad

property hSize
Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

property hSize0
Value of untransformed hSize with respect to current trsf (computed as trsf �1 × hSize).

property homoDeform
If >0, deform (velGrad) the cell homothetically by adjusting positions and velocities of bodies.
The velocity change is obtained by deriving the expression v=�v.x with respect to time, where
�v is the macroscopic velocity gradient, giving in an incremental form: Δv=Δ �v x + �v Δx
across one DEM iteration. As a result, velocities are modified as soon as velGrad changes,
according to the first term: Δv(t)=Δ �v x(t), while the 2nd term reflects a convective term:
Δv’= �v v(t-dt/2). The second term is neglected if homoDeform=1. All terms are included if
homoDeform=2 (default)

property nextVelGrad
see Cell.velGrad.

property prevHSize
hSize from the previous step, used in the definition of relative velocity across periods.

property prevVelGrad
Velocity gradient in the previous step.

property refHSize
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

property refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

2.3. Yade wrapper class reference 631

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 3rd ed.

setBox((Cell)arg1, (Vector3)arg2) → None :
Set Cell shape to be rectangular, with dimensions along axes specified by given argument.
Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) -> None :
Set Cell shape to be rectangular, with dimensions along x, y, z specified by arguments.
Shorthand for assigning diagonal matrix with the respective entries to hSize.

shearPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Apply shear (cell skew+rot) on the point

property shearTrsf
Current skew+rot transformation (no resize)

property size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
(auto-updated)

property trsf
Current transformation matrix of the cell F giving current Cell vector dx from its reference
state dX as per dx = FdX. Obtained from time integration of velGrad×F as detailed in the
documentation during the prologue of a YADE iteration (before the O.engines loop). (auto-
updated)

unshearPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Apply inverse shear on the point (removes skew+rot of the cell)

property unshearTrsf
Inverse of the current skew+rot transformation (no resize)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velGrad
Velocity gradient of the transformation of the Cell; used in NewtonIntegrator. Values of
velGrad accumulate in trsf at every step.

note: changing velGrad at the beginning of a timestep would lead to inaccurate
integration for that step, as it should normally be changed after the contact laws
(but before Newton). To avoid this problem, assignment is deferred automatically.
The assigned value is internaly stored in Cell.nextVelGrad and will be applied right
in time by Newton integrator.

Warning: Assigning individual components as in O.cell.velGrad[0,0]=1 is not possible
(it will not return any error but it will have no effect). Instead, the whole matrix should
be assigned, as in O.cell.velGrad=Matrix3(…).

property velGradChanged
true when velGrad has been changed manually (see also Cell.nextVelGrad)

property volume
Current volume of the cell.

wrap((Cell)arg1, (Vector3)arg2) → Vector3 :
Transform an arbitrary point into a point in the reference cell

wrapPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Wrap point inside the reference cell, assuming the cell has no skew+rot.

632 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.3.16 Other classes

class yade.wrapper.GlExtra_AlphaGraph(inherits GlExtraDrawer → Serializable)
Display the outer surface defined by alpha contour. Add it to qt.Renderer().extraDrawers.
If no instance of TesselationWrapper is provided, the functor will create its own. See
scripts/examples/alphaShapes/GlDrawAlpha.py.

property alpha
alpha value

property color
color

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fixedAlpha
fixedAlpha option

property lighting
lighting of cylinders

property lineWidth
lineWidth in pixels

property radius
radius of cylinder representation, if null 1/12th of average diameter will be used

refresh((GlExtra_AlphaGraph)arg1) → None :
Refresh internals. Particularly usefull for correct display after the TesselationWrapper is
modified externally, not needed if ‘wire’=True

property shrinkedAlpha
shrinkedAlpha value

property tesselationWrapper
Associated instance of TesselationWrapper.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
display as solid cylinders or lines

class yade.wrapper.EnergyTracker(inherits Serializable)
Storage for tracing energies. Only to be used if O.trackEnergy is True.

clear((EnergyTracker)arg1) → None :
Clear all stored values.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property energies
Energy values, in linear array

items((EnergyTracker)arg1) → list :
Return contents as list of (name,value) tuples.

2.3. Yade wrapper class reference 633

https://gitlab.com/yade-dev/trunk/blob/master/scripts/examples/alphaShapes/GlDrawAlpha.py

Yade Documentation, Release 3rd ed.

keys((EnergyTracker)arg1) → list :
Return defined energies.

total((EnergyTracker)arg1) → float :
Return sum of all energies.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MPIBodyContainer(inherits Serializable)
a dummy container to serialize and send.

property bContainer
a dummy body container to serialize

clearContainer((MPIBodyContainer)arg1) → None :
clear bodies in the container

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

getCount((MPIBodyContainer)arg1) → int :
get container count

insertBody((MPIBodyContainer)arg1, (int)bodyId) → None :
insert a body (by id) in this container

insertBodyListPy((MPIBodyContainer)arg1, (list)listOfIds) → None :
inset a list of bodies (by ids)

property subdomainRank
origin rank of this container

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlExtra_OctreeCubes(inherits GlExtraDrawer → Serializable)
Render boxed read from file

property boxesFile
File to read boxes from; ascii files with x0 y0 z0 x1 y1 z1 c records, where c is an integer
specifying fill (0 for wire, 1 for filled).

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fillRangeDraw
Range of fill indices that will be rendered.

property fillRangeFill
Range of fill indices that will be filled.

property levelRangeDraw
Range of levels that will be rendered.

property noFillZero
Do not fill 0-fill boxed (those that are further subdivided)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

634 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.CundallStrackPotential(inherits GenericPotential → Serializable)
Potential with only Cundall-and-Strack-like contact.

property alpha
Bulk-to-roughness stiffness ratio

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.FastMarchingMethod(inherits Serializable)
Executes a Fast Marching Method (FMM) to solve ||∇φ|| = c for a discrete field φ defined on grid,
with phiIni serving as boundary condition. Typically, c = 1 (see speed) and φ is a distance field.
See [Duriez2021b] for more details (where the class was coined DistFMM) and pay attention to
heapSort for possibly faster executions.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property grid
The underlying regular grid.

property heapSort
Whether to use a heap-sort (if True) when advancing the narrow band and picking the closest-
to-surface gridpoint, for a much faster execution (one or more order of magnitude for significant
grid with 1e5 gridpoints or more). Note that the present implementation is not fully bullet-
proof in principle for non-convex cases, from the point of view of conserving a heap-structure
over the course of all operations, but that no significant consequences of using True have been
observed to date.

property known
Gridpoints (indices) with distance known for good: they have been at some point the shortest
gp to the surface while executing the FMM.

phi((FastMarchingMethod)arg1) → object :
Executes the FMM and returns its solution as a list of list of list, with the [i][j][k] element
corresponding to grid.gridPoint(i,j,k).

property phiIni
Initial discrete field defined on the grid that will serve as a boundary condition for the FMM.
Field values have to be - inf (resp. inf) for points being far inside (resp. outside) and
correct (finite) on each side of the interface. Built-in functions distIniSE (for superellipsoids),
phiIniCppPy (for a Python user function, through a mixed C++-Py internal implementation)
or phiIniPy (for a Python user function through a pure Py internal implementation) may be
used for such a purpose.

property speed
Keep to 1 for a true distance, 2 for the flake-like rose verification of [Duriez2021b].

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.RegularGrid(inherits Serializable)
A rectilinear (aka uniform or regular) grid, for LevelSet shapes or other purposes. A cubic regular
grid extending from a min = (m,m,m) to a max at (M,M,M), with nGP = (n,n,n) ie a spacing
= (M-m)/(n-1), can be conveniently obtained from RegularGrid(m,M,n). For more general cases,
minimum point min, spacing and nGP have to be passed as such at instantiation.

2.3. Yade wrapper class reference 635

Yade Documentation, Release 3rd ed.

closestCorner((RegularGrid)arg1, (Vector3)pt[, (bool)unbound=False]) → Vector3i :
Returns the Vector3i indices of the closest gridpoint which is smaller (for all components)
than pt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dims((RegularGrid)arg1) → Vector3 :
Returns the grid dimensions along the three axes, as a Vector3.

gridPoint((RegularGrid)arg1, (int)i, (int)j, (int)k) → Vector3 :
Returns the Vector3 position of any grid point, given its indices i (along the X-axis), j (Y-axis),
k (Z-axis).

max((RegularGrid)arg1) → Vector3 :
Returns the maximum corner of the grid.

property min
The minimum corner of the grid.

property nGP
The number of grid points along the three axes as a Vector3i.

property spacing
The (uniform and isotropic) grid spacing between two axis-consecutive grid points.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.LinExponentialPotential(inherits CundallStrackPotential →
GenericPotential → Serializable)

LinExponential Potential with only Cundall-and-Strack-like contact. The LinExponential potential
formula is F(u) = k∗(xe−x0)

xe
(u/a− x0) exp

(
−(u/a)
xe−x0

)
. Where k is the slope at the origin, x0 is the

position where the potential cross 0 and xe is the position of the extremum.

property F0
Force at contact. Force when F0 = F(u = 0) (LinExponential)

property Fe
Extremum force. Value of force at extremum. (LinExponential)

property alpha
Bulk-to-roughness stiffness ratio

computeParametersFromF0((LinExponentialPotential)arg1, (float)F0, (float)xe, (float)k) → None
:

Set parameters of the potential, with k computed from F0

computeParametersFromF0Fe((LinExponentialPotential)arg1, (float)xe, (float)Fe, (float)F0) →
None :

Set parameters of the potential, with k and x0 computed from F0 and Fe

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property k
Slope at the origin (stiffness). (LinExponential)

potential((LinExponentialPotential)arg1, (float)u) → float :
Get potential value at any point.

636 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

setParameters((LinExponentialPotential)arg1, (float)x0, (float)xe, (float)k) → None :
Set parameters of the potential

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property x0
Equilibrium distance. Potential force is 0 at x0 (LinExponential)

property xe
Extremum position. Position of local max/min of force. (LinExponential)

class yade.wrapper.GenericPotential(inherits Serializable)
Generic class for potential representation in PotentialLubrication law. Don’t do anything. If set
as potential, the result will be a lubrication-only simulation.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.TimingDeltas

property data
Get timing data as list of tuples (label, execTime[nsec], execCount) (one tuple per checkpoint)

reset((TimingDeltas)arg1) → None :
Reset timing information

class yade.wrapper.ParallelEngine(inherits Engine → Serializable)
Engine for running other Engine in parallel.

__init__((object)arg1) → None
object __init__(tuple args, dict kwds)

__init__((object)arg1, (list)arg2) -> object :
Construct from (possibly nested) list of slaves.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 637

Yade Documentation, Release 3rd ed.

property slaves
List of lists of Engines; each top-level group will be run in parallel with other groups, while
Engines inside each group will be run sequentially, in given order.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Engine(inherits Serializable)
Basic execution unit of simulation, called from the simulation loop (O.engines)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.GlExtraDrawer(inherits Serializable)
Performing arbitrary OpenGL drawing commands; called from OpenGLRenderer (see OpenGLRen-
derer.extraDrawers) once regular rendering routines will have finished.

This class itself does not render anything, derived classes should override the render method.

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

638 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.GlExtra_LawTester(inherits GlExtraDrawer → Serializable)
Find an instance of LawTester and show visually its data.

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property tester
Associated LawTester object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.CundallStrackAdhesivePotential(inherits CundallStrackPotential →
GenericPotential → Serializable)

CundallStrack model with adhesive part. Contact is created when u/a− ε < 0 and released when
u/a− ε > ladh, where ladh = fadh/kn. This lead to an hysteretic attractive part.

property alpha
Bulk-to-roughness stiffness ratio

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fadh
Adhesion force.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.MatchMaker(inherits Serializable)
Class matching pair of ids to return pre-defined (for a pair of ids defined in matches) or derived
value (computed using algo) of a scalar parameter. It can be called (id1, id2, val1=NaN, val2=NaN)
in both python and c++.

Note: There is a converter from python number defined for this class, which creates a new
MatchMaker returning the value of that number; instead of giving the object instance therefore,
you can only pass the number value and it will be converted automatically.

property algo
Algorithm used to compute value when no match for ids is found. Possible values are

• ‘avg’ (arithmetic average)

• ‘min’ (minimum value)

• ‘max’ (maximum value)

• ‘harmAvg’ (harmonic average)

The following algo algorithms do not require meaningful input values in order to work:

• ‘val’ (return value specified by val)

• ‘zero’ (always return 0.)

computeFallback((MatchMaker)arg1, (float)val1, (float)val2) → float :
Compute algo value for val1 and val2, using algorithm specified by algo.

2.3. Yade wrapper class reference 639

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property matches
Array of (id1,id2,value) items; queries matching id1 + id2 or id2 + id1 will return value

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property val
Constant value returned if there is no match and algo is val

class yade.wrapper.LBMbody(inherits Serializable)
Body class for Lattice Boltzmann Method

property AVel
Angular velocity of body

property Fh
Hydrodynamical force on body

property Mh
Hydrodynamical momentum on body

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fm
Hydrodynamic force (LB unit) at t-0.5dt

property force
Hydrodynamic force, need to be reinitialized (LB unit)

property fp
Hydrodynamic force (LB unit) at t+0.5dt

property isEroded
Hydrodynamical force on body

property mm
Hydrodynamic momentum (LB unit) at t-0.5dt

property momentum
Hydrodynamic momentum,need to be reinitialized (LB unit)

property mp
Hydrodynamic momentum (LB unit) at t+0.5dt

property pos
Position of body

property radius
Radius of body (for sphere)

property saveProperties
To save properties of the body

property type

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

640 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property vel
Velocity of body

class yade.wrapper.Serializable

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.PhaseCluster(inherits Serializable)
Preliminary.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property entryPore
the pore of the cluster incident to the throat with smallest entry Pc.

property entryRadius
smallest entry capillary pressure.

getCapPressure((PhaseCluster)arg1, (int)numf) → float :
get local capillary pressure

getCapVol((PhaseCluster)arg1, (int)numf) → float :
get position of the meniscus - in terms of volume

getConductivity((PhaseCluster)arg1, (int)numf) → float :
get conductivity

getFlux((PhaseCluster)arg1, (int)interface) → float :
get flux at an interface (i.e. velocity of the menicus), the index to be used is the rank of the
interface in the same order as in getInterfaces().

getInterfaces((PhaseCluster)arg1[, (int)cellId=-1]) → list :
get the list of interfacial pore-throats associated to a cluster, listed as [id1,id2,area,index]
where id2 is the neighbor pore outside the cluster and index is the position in the global
cluster’s list of interfaces. If cellId>=0 only the interfaces adjacent to the corresponding inner
cell are returned.

getPores((PhaseCluster)arg1) → object :
get the list of pores by index

property interfacialArea
interfacial area of the cluster

property label
Unique label of this cluster, should be reflected in pores of this cluster.

setCapPressure((PhaseCluster)arg1, (int)numf , (float)pCap) → None :
set local capillary pressure

setCapVol((PhaseCluster)arg1, (int)numf , (float)vCap) → None :
set position of the meniscus - in terms of volume

solvePressure((PhaseCluster)arg1) → None :
Solve 1-phase flow in one single cluster defined by its id.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 641

Yade Documentation, Release 3rd ed.

updateCapVol((PhaseCluster)arg1, (int)numf , (float)dt) → float :
increments throat’s volume of given interface by flux*dt

updateCapVolList((PhaseCluster)arg1, (float)dt) → None :
increments throat’s volume of all interfaces by flux*dt

property volume
cumulated volume of all pores.

class yade.wrapper.LBMnode(inherits Serializable)
Node class for Lattice Boltzmann Method

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.LBMlink(inherits Serializable)
Link class for Lattice Boltzmann Method

property DistMid
Distance between middle of the link and mass center of body

property PointingOutside
True if it is a link pointing outside to the system (from a fluid or solid node)

property VbMid
Velocity of boundary at midpoint

property ct
Coupling term in modified bounce back rule

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fid
Fluid node identifier

property i
direction index of the link

property idx_sigma_i
sigma_i direction index (Fluid->Solid)

property isBd
True if it is a boundary link

property nid1
fixed node identifier

property nid2
fixed node identifier or -1 if node points outside

property sid
Solid node identifier

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.wrapper.Cell(inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.

642 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

flipCell((Cell)arg1) → Matrix3 :
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible,
using the two following facts:1. repeating in R3 space the corners of a periodic cell defines
a regular grid; 2. two cells leading through this process to a unique grid are equivalent and
can be flipped one over another. Flipping includes adjustment of Interaction.cellDist for
interactions that cross the boundary and didn’t before (or vice versa), and re-initialization of
collider. See also collision detection

property flipFlippable
flip automatically as soon as a more compact geometry is possible (see trsf)

getDefGrad((Cell)arg1) → Matrix3 :
Returns trsf = deformation gradient tensor F of the cell deformation (http://en.wikipedia.
org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain((Cell)arg1) → Matrix3 :
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT)−1) of the cell (http:

//en.wikipedia.org/wiki/Finite_strain_theory)

getFluctuationVelocity((Cell)arg1, (Body)b) → Vector3 :
get velocity fluctuation of a body, i.e. the velocity relative to mean field velocity: ṽ =
v− (∇vm) · x

getLCauchyGreenDef((Cell)arg1) → Matrix3 :
Returns left Cauchy-Green deformation tensor b = FFT of the cell (http://en.wikipedia.org/
wiki/Finite_strain_theory)

getLagrangianStrain((Cell)arg1) → Matrix3 :
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)

getLeftStretch((Cell)arg1) → Matrix3 :
Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU)

getPolarDecOfDefGrad((Cell)arg1) → tuple :
Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell (F = RU)

getRCauchyGreenDef((Cell)arg1) → Matrix3 :
Returns right Cauchy-Green deformation tensor C = FTF of the cell (http://en.wikipedia.org/
wiki/Finite_strain_theory)

getRightStretch((Cell)arg1) → Matrix3 :
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT)

getRotation((Cell)arg1) → Matrix3 :
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU)

getSmallStrain((Cell)arg1) → Matrix3 :
Returns small strain tensor ε = 1

2
(F+FT)−I of the cell (http://en.wikipedia.org/wiki/Finite_

strain_theory)

getSpin((Cell)arg1) → Vector3 :
Returns the spin defined by the skew symmetric part of velGrad

2.3. Yade wrapper class reference 643

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 3rd ed.

property hSize
Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

property hSize0
Value of untransformed hSize with respect to current trsf (computed as trsf �1 × hSize).

property homoDeform
If >0, deform (velGrad) the cell homothetically by adjusting positions and velocities of bodies.
The velocity change is obtained by deriving the expression v=�v.x with respect to time, where
�v is the macroscopic velocity gradient, giving in an incremental form: Δv=Δ �v x + �v Δx
across one DEM iteration. As a result, velocities are modified as soon as velGrad changes,
according to the first term: Δv(t)=Δ �v x(t), while the 2nd term reflects a convective term:
Δv’= �v v(t-dt/2). The second term is neglected if homoDeform=1. All terms are included if
homoDeform=2 (default)

property nextVelGrad
see Cell.velGrad.

property prevHSize
hSize from the previous step, used in the definition of relative velocity across periods.

property prevVelGrad
Velocity gradient in the previous step.

property refHSize
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

property refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox((Cell)arg1, (Vector3)arg2) → None :
Set Cell shape to be rectangular, with dimensions along axes specified by given argument.
Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) -> None :
Set Cell shape to be rectangular, with dimensions along x, y, z specified by arguments.
Shorthand for assigning diagonal matrix with the respective entries to hSize.

shearPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Apply shear (cell skew+rot) on the point

property shearTrsf
Current skew+rot transformation (no resize)

property size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
(auto-updated)

property trsf
Current transformation matrix of the cell F giving current Cell vector dx from its reference
state dX as per dx = FdX. Obtained from time integration of velGrad×F as detailed in the
documentation during the prologue of a YADE iteration (before the O.engines loop). (auto-
updated)

644 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

unshearPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Apply inverse shear on the point (removes skew+rot of the cell)

property unshearTrsf
Inverse of the current skew+rot transformation (no resize)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velGrad
Velocity gradient of the transformation of the Cell; used in NewtonIntegrator. Values of
velGrad accumulate in trsf at every step.

note: changing velGrad at the beginning of a timestep would lead to inaccurate
integration for that step, as it should normally be changed after the contact laws
(but before Newton). To avoid this problem, assignment is deferred automatically.
The assigned value is internaly stored in Cell.nextVelGrad and will be applied right
in time by Newton integrator.

Warning: Assigning individual components as in O.cell.velGrad[0,0]=1 is not possible
(it will not return any error but it will have no effect). Instead, the whole matrix should
be assigned, as in O.cell.velGrad=Matrix3(…).

property velGradChanged
true when velGrad has been changed manually (see also Cell.nextVelGrad)

property volume
Current volume of the cell.

wrap((Cell)arg1, (Vector3)arg2) → Vector3 :
Transform an arbitrary point into a point in the reference cell

wrapPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Wrap point inside the reference cell, assuming the cell has no skew+rot.

2.4 Yade modules reference

2.4.1 yade.bf module

Overview

This module contains breakage functions (bf) that can be used for particle breakage by replacement
approach. Functions can be used for both spheres and clumps of spheres. However, this module is
particularly useful for clumps because it deals with multiple clump-specific issues:

• Clump members do not interact. Hence, modification of the Love-Webber stress tensor is proposed
to mimic interactions between clump members when the stress state is computed.

• If clumped spheres overlap, their total mass and volume are bigger than the mass and volume
of the clump. Thus, clump should not split by simply releasing clump members. The mass of
new sub-particles is adjusted to balance the mass of a nonoverlapping volume of the broken clump
member.

• New sub-particles can be generated beyond the outline of the broken clump member to avoid
excessive overlapping. Particles are generated taking into account the positions of neighbor particles
and additional constraints (e.g. predicate can be prescribed to make sure that new particles are
generated inside the container).

2.4. Yade modules reference 645

Yade Documentation, Release 3rd ed.

Clump breakage algorithm

The typical workflow consists of the following steps (full description in [Brzezinski2022]):

• Stress computation of each clump member. The stress is computed using the Love-Weber (LV)
definition of the stress tensor. Then, a proposed correction of the stress tensor is applied.

• Based on the adopted strength criterion, the level of effort for each clump member is computed.
Clump breaks if the level of effort for any member is greater than one. Only the most strained
member can be split in one iteration.

• The most strained member of the clump is first released from the clump and erased from simulation.
New mass and moment of inertia are computed for the new clump. The difference between the
“old” and the “new” mass must be replaced by new bodies in the simulation.

• New, smaller spheres are added to the simulation balancing the mass difference. The spheres are
placed in the void space, hence do not overlap with other bodies that are already present in the
simulation (splitting_clump).

• Finally, the soundness of the remaining part of the original clump needs to be verified. If the
clump members do not contact each other anymore, the clump needs to be replaced with smaller
clumps/spheres (handling_new_clumps).

• Optionally, overlapping between new sub-particles of sub-particles and existing bodies can be al-
lowed (packing_parameters).

Fig. 44: Stages of creating a clump in Yade software and splitting due to the proposed algorithm: (a)
overlapping bodies, (b) clumped body (reduced mass and moments of inertia), (c) selection of clump
member for splitting, (d) searching for potential positions of sub-particles, (e) replacing clump member
with sub-particles, updating clump mass and moments of inertia.

Fig. 45: Different scenarios of clump splitting: (a) clump remains in the simulation - only updated, (b)
clump is split into spheres, (c) clump is split into a sphere and a new clump.

Functions required for clump breakage algorithm described in:
Brzeziński, K., & Gladky, A. (2022), Clump breakage algorithm for DEM simulation of crushable
aggregates. [Brzezinski2022]

Strength Criterion adopted from;
Gladkyy, A., & Kuna, M. (2017). DEM simulation of polyhedral particle cracking using a combined
Mohr–Coulomb–Weibull failure criterion. Granular Matter, 19(3), 41. [Gladky2017]

Source code file

yade.bf.checkFailure(b, tension_strength, compressive_strength, wei_V0=0.01, wei_P=0.63,
wei_m=3, weibull=True, stress_correction=True)

646 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/py/bf.py

Yade Documentation, Release 3rd ed.

Fig. 46: Replacing sphere with sub-particles: (a-c) non-overlapping, (d-f) overlapping sub-particles and
potentially overlapping with neighbor bodies, (g-i) non-overlapping sub-particles but potentially over-
lapping with neighbor bodies.

Strength criterion adopted from [Gladkyy and Kuna 2017]. Returns particles ‘effort’ (equivalent
stress / strength) if the strength is exceeded, and zero othervise.

yade.bf.evalClump(clump_id, radius_ratio, tension_strength, compressive_strength, relative_gap=0,
wei_V0=0.001, wei_P=0.63, wei_m=3, weibull=True, stress_correction=True,
initial_packing_scale=1.5, max_scale=3, search_for_neighbours=True,
outer_predicate=None, discretization=20, grow_radius=1.0,
max_grow_radius=2.0)

Iterates over clump members with “checkFailure” function. Replaces the broken clump member
with subparticles. Split new clump if necessary. If clump is not broken returns False, if broken
True.

yade.bf.replaceSphere(sphere_id, subparticles_mass=None, radius_ratio=2, relative_gap=0,
neighbours_ids=[], initial_packing_scale=1.5, max_scale=3,
scale_multiplier=None, search_for_neighbours=True,
outer_predicate=None, grow_radius=1.0, max_grow_radius=2.0)

This function is intended to replace sphere with subparticles. It is dedicated for spheres replaced
from clumps (but not only). Thus, two features are utilized: - subparticles_mass (mass of the
subparticles after replacement), since in a clump only a fraction of original spheres mass is taken
into account - neighbours_ids - list of ids of the neighbour bodies (e.g. other clump members,
other bodies that sphere is contacting with) that we do not want to penetrate with new spheres
(maybe it could be later use to avoid penetration of other bodies). However, passing neighbours_-
ids is not always necessary. By default (if search_for_neighbours==True), existing spheres are
detected authomatically and added to neighbours_ids. Also, outer_predicate can beused to avoid
penetrating other bodies with subparticles. Spheres will be initially populated in a hexagonal
packing (predicate with dimension of sphere diameter multiplied by initial_packing_scale). Initial
packing scale is greater than one to make sure that sufficient number of spheres will be produced
to obtain reguired mass (taking into account porosity). scale_multiplier - if a sufficient number
of particles cannot be produced with initial packing scale, it is multiplied by scale multiplier. The
procedure is repeated until initial_packing scale is reached. If scale_multiplier is None it will be
changed to max_scale/initial_packing_scale, so the maximum range will be achieved in second
iteration. max_scale - limits the initial_packing_scale which can be increased by the algorithm.
If initial_packing_scale >max_scale, sphere will not be replaced (broken). outer_predicate - it is
an additional constraint for subparticles generation. Can be used when non spherical bodies are in
vicinity of the broken particle, particles are in box etc. search_for_neighbours - if True searches
for additional neighbours (spheres whithin a range of initial_packing_scale *sphere_radius)

Particles can be generated with smaller radius and than sligtly growed (by “grow_radius”). It
allows for adding extra potential energy in the simulation, and increase the chances for successful
packing. relative_gap - is the gap between packed subparticles (relalive to the radius of subparticle),
note that if grow_radius > 1, during subparticles arangemenr their radius is temporarily decreased
by 1/grow radius. It can be used to create special cases for overlapping (described in the paper).

yade.bf.stressTensor(b, stress_correction=True)

2.4. Yade modules reference 647

Yade Documentation, Release 3rd ed.

Modification of Love-Weber stress tensor, that applied to the clump members gives results similar
to standalone bodies.

2.4.2 yade.bodiesHandling module

Miscellaneous functions, which are useful for handling bodies.

yade.bodiesHandling.facetsDimensions(idFacets=[], mask=-1)
The function accepts the list of facet id’s or list of facets and calculates max and min dimensions,
geometrical center.

Parameters

• idFacets (list) – list of spheres

• mask (int) – Body.mask for the checked bodies

Returns
dictionary with keys min (minimal dimension, Vector3), max (maximal dimension,
Vector3), minId (minimal dimension facet Id, Vector3), maxId (maximal dimension
facet Id, Vector3), center (central point of bounding box, Vector3), extends (sizes
of bounding box, Vector3), number (number of facets, int),

yade.bodiesHandling.sphereDuplicate(idSphere)
The functions makes a copy of sphere

yade.bodiesHandling.spheresModify(idSpheres=[], mask=-1, shift=Vector3(0, 0, 0), scale=1.0,
orientation=Quaternion((1, 0, 0), 0), copy=False)

The function accepts the list of spheres id’s or list of bodies and modifies them: rotating, scaling,
shifting. if copy=True copies bodies and modifies them. Also the mask can be given. If idSpheres
not empty, the function affects only bodies, where the mask passes. If idSpheres is empty, the
function search for bodies, where the mask passes.

Parameters

• shift (Vector3) – Vector3(X,Y,Z) parameter moves spheres.

• scale (float) – factor scales given spheres.

• orientation (Quaternion) – orientation of spheres

• mask (int) – Body.mask for the checked bodies

Returns
list of bodies if copy=True, and Boolean value if copy=False

yade.bodiesHandling.spheresPackDimensions(idSpheres=[], mask=-1)
The function accepts the list of spheres id’s or list of bodies and calculates max and min dimensions,
geometrical center.

Parameters

• idSpheres (list) – list of spheres

• mask (int) – Body.mask for the checked bodies

Returns
dictionary with keys min (minimal dimension, Vector3), max (maximal dimension,
Vector3), minId (minimal dimension sphere Id, Vector3), maxId (maximal dimension
sphere Id, Vector3), center (central point of bounding box, Vector3), extends (sizes
of bounding box, Vector3), volume (volume of spheres, Real), mass (mass of spheres,
Real), number (number of spheres, int),

648 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.4.3 yade.export module

Export (not only) geometry to various formats.

class yade.export.VTKExporter(inherits object)
Class for exporting data to VTK Simple Legacy File (for example if, for some reason, you are not
able to use VTKRecorder). Supported export of:

• spheres

• facets

• polyhedra

• PotentialBlocks

• interactions

• contact points

• periodic cell

Usage:

• create object vtkExporter = VTKExporter('baseFileName'),

• add to O.engines a PyRunner with command='vtkExporter.exportSomething(...)'

• alternatively, just use vtkExporter.exportSomething(...) at the end of the script for in-
stance

Example: examples/test/vtk-exporter/vtkExporter.py, examples/test/unv-
read/unvReadVTKExport.py.

Parameters

• baseName (string) – name of the exported files. The files would be named, e.g.,
baseName-spheres-snapNb.vtk or baseName-facets-snapNb.vtk

• startSnap (int) – the numbering of files will start form startSnap

exportContactPoints(ids=’all’, what={}, useRef={}, comment=’comment’, numLabel=None)
exports contact points (CPs) and defined properties.

Parameters

• ids ([(int,int)]) – see exportInteractions()

• what (dictionary) – see exportInteractions()

• useRef (bool) – see exportInteractions()

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

exportFacets(ids=’all’, what={}, comment=’comment’, numLabel=None)
exports facets (positions) and defined properties. Facets are exported with multiplicated nodes

Parameters

• ids ([int]|"all") – if “all”, then export all facets, otherwise only facets from
integer list

• what (dictionary) – see exportSpheres()

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

2.4. Yade modules reference 649

https://www.vtk.org/VTK/img/file-formats.pdf
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/vtk-exporter/vtkExporter.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/unv-read/unvReadVTKExport.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/unv-read/unvReadVTKExport.py

Yade Documentation, Release 3rd ed.

exportFacetsAsMesh(ids=’all’, connectivityTable=None, what={}, comment=’comment’,
numLabel=None)

exports facets (positions) and defined properties. Facets are exported as mesh (not with
multiplicated nodes). Therefore additional parameters connectivityTable is needed

Parameters

• ids ([int]|"all") – if “all”, then export all facets, otherwise only facets from
integer list

• what (dictionary) – see exportSpheres()

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

• nodes ([(float,float,float)|Vector3]) – list of coordinates of nodes

• connectivityTable ([(int,int,int)]) – list of node ids of individual ele-
ments (facets)

exportInteractions(ids=’all’, what={}, verticesWhat={}, comment=’comment’,
numLabel=None, useRef=False)

exports interactions and defined properties.

Parameters

• ids ([(int,int)]|"all") – if “all”, then export all interactions, otherwise
only interactions from (int,int) list

• what (dictionary) – what to export. parameter is a name->command dic-
tionary. Name is string under which it is saved to vtk, command is string to
evaluate. Note that the interactions are labeled as i in this function. Scalar,
vector and tensor variables are supported. For example, to export the stiff-
ness difference (named as dStiff) from a certain value (1e9) you should write:
what=dict(dStiff='i.phys.kn-1e9', ...)

• verticesWhat (dictionary) – what to export on connected bodies. Bodies
are labeled as b (or b1 and b2 if you need to treat both bodies differently)

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

• useRef (bool) – if False (default), use current position of the bodies for export,
use reference position otherwise

exportPeriodicCell(comment=’comment’, numLabel=None)
exports the Cell geometry for periodic simulations.

Parameters

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

exportPolyhedra(ids=’all’, what={}, comment=’comment’, numLabel=None, useRef=False)
Exports polyhedrons and defined properties.

Parameters

• ids ([int] | "all") – if “all”, then export all polyhedrons, otherwise only
polyhedrons from integer list

650 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• what (dictionary) – which additional quantities (in addition to the posi-
tions) to export. parameter is name->command dictionary. Name is string
under which it is saved to vtk, command is string to evaluate. Note that
the bodies are labeled as b in this function. Scalar, vector and tensor
variables are supported. For example, to export velocity (named as parti-
cleVelocity) and the distance from point (0,0,0) (named as dist) you should
write: what=dict(particleVelocity='b.state.vel',dist='b.state.pos.
norm()', ...)

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

exportPotentialBlocks(ids=’all’, what={}, comment=’comment’, numLabel=None,
useRef=False)

Exports Potential Blocks and defined properties.

Parameters

• ids ([int] | "all") – if “all”, then export all Potential Blocks, otherwise
only Potential Blocks from integer list

• what (dictionary) – which additional quantities (in addition to the posi-
tions) to export. parameter is name->command dictionary. Name is string
under which it is saved to vtk, command is string to evaluate. Note that
the bodies are labeled as b in this function. Scalar, vector and tensor
variables are supported. For example, to export velocity (named as parti-
cleVelocity) and the distance from point (0,0,0) (named as dist) you should
write: what=dict(particleVelocity='b.state.vel',dist='b.state.pos.
norm()', ...)

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

exportSpheres(ids=’all’, what={}, comment=’comment’, numLabel=None, useRef=False)
exports spheres (positions and radius) and defined properties.

Parameters

• ids ([int]|"all") – if “all”, then export all spheres, otherwise only spheres
from integer list

• what (dictionary) – which additional quantities (other than the position and
the radius) to export. parameter is name->command dictionary. Name is
string under which it is save to vtk, command is string to evaluate. Note
that the bodies are labeled as b in this function. Scalar, vector and tensor
variables are supported. For example, to export velocity (with name parti-
cleVelocity) and the distance form point (0,0,0) (named as dist) you should
write: what=dict(particleVelocity='b.state.vel',dist='b.state.pos.
norm()', ...)

• comment (string) – comment to add to vtk file

• numLabel (int) – number of file (e.g. time step), if unspecified, the last used
value + 1 will be used

• useRef (bool) – if False (default), use current position of the spheres for export,
use reference position otherwise

class yade.export.VTKWriter(inherits object)
USAGE: create object vtk_writer = VTKWriter(‘base_file_name’), add to engines PyRunner with
command=’vtk_writer.snapshot()’

2.4. Yade modules reference 651

Yade Documentation, Release 3rd ed.

snapshot()

yade.export.gmshGeo(filename, comment=’’, mask=-1, accuracy=-1)
Save spheres in geo-file for the following using in GMSH (http://www.geuz.org/gmsh/doc/texinfo/)
program. The spheres can be there meshed.

Parameters

• filename (string) – the name of the file, where sphere coordinates will be
exported.

• mask (int) – export only spheres with the corresponding mask export only
spheres with the corresponding mask

• accuracy (float) – the accuracy parameter, which will be set for the poinst in
geo-file. By default: 1./10. of the minimal sphere diameter.

Returns
number of spheres which were exported.

Return type
int

yade.export.text(filename, mask=-1)
Save sphere coordinates into a text file; the format of the line is: x y z r. Non-spherical bodies are
silently skipped. Example added to examples/regular-sphere-pack/regular-sphere-pack.py

Parameters

• filename (string) – the name of the file, where sphere coordinates will be
exported.

• mask (int) – export only spheres with the corresponding mask

Returns
number of spheres which were written.

Return type
int

yade.export.text2vtk(inFileName, outFileName, comment=’comment’)
Converts text file (created by export.textExt function) into vtk file. See examples/test/paraview-
spheres-solid-section/export_text.py example

Parameters

• inFileName (str) – name of input text file

• outFileName (str) – name of output vtk file

• comment (str) – optional comment in vtk file

yade.export.text2vtkSection(inFileName, outFileName, point, normal=(1, 0, 0))
Converts section through spheres from text file (created by export.textExt function) into vtk file.
See examples/test/paraview-spheres-solid-section/export_text.py example

Parameters

• inFileName (str) – name of input text file

• outFileName (str) – name of output vtk file

• point (Vector3|(float,float,float)) – coordinates of a point lying on the
section plane

• normal (Vector3|(float,float,float)) – normal vector of the section plane

652 Chapter 2. Yade for users

http://www.geuz.org/gmsh/doc/texinfo/
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/paraview-spheres-solid-section/export_text.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/paraview-spheres-solid-section/export_text.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/paraview-spheres-solid-section/export_text.py

Yade Documentation, Release 3rd ed.

yade.export.textClumps(filename, format=’x_y_z_r_clumpId’, comment=’’, mask=-1)
Save clumps-members into a text file. Non-clumps members are bodies are silently skipped.

Parameters

• filename (string) – the name of the file, where sphere coordinates will be
exported.

• comment (string) – the text, which will be added as a comment at the top of
file. If you want to create several lines of text, please use ‘\n#’ for next lines.

• mask (int) – export only spheres with the corresponding mask export only
spheres with the corresponding mask

Returns
number of clumps, number of spheres which were written.

Return type
int

yade.export.textExt(filename, format=’x_y_z_r’, comment=’’, mask=-1, attrs=[])
Save sphere coordinates and other parameters into a text file in specific format. Non-spherical
bodies are silently skipped. Users can add here their own specific format, giving meaningful names.
The first file row will contain the format name. Be sure to add the same format specification in
ymport.textExt.

Parameters

• filename (string) – the name of the file, where sphere coordinates will be
exported.

• format (string) – the name of output format. Supported ‘x_y_z_r’(default),
‘x_y_z_r_matId’, ‘x_y_z_r_attrs’ (use proper comment)

• comment (string) – the text, which will be added as a comment at the top of
file. If you want to create several lines of text, please use ‘\n#’ for next lines.
With ‘x_y_z_r_attrs’ format, the last (or only) line should consist of column
headers of quantities passed as attrs (1 comment word for scalars, 3 comment
words for vectors and 9 comment words for matrices)

• mask (int) – export only spheres with the corresponding mask export only
spheres with the corresponding mask

• attrs ([str]) – attributes to be exported with ‘x_y_z_r_attrs’ format.
Each str in the list is evaluated for every body exported with body=b (i.e.
‘b.state.pos.norm()’ would stand for distance of body from coordinate system
origin)

Returns
number of spheres which were written.

Return type
int

yade.export.textPolyhedra(fileName, comment=’’, mask=-1, explanationComment=True, attrs=[])
Save polyhedra into a text file. Non-polyhedra bodies are silently skipped.

Parameters

• filename (string) – the name of the output file

• comment (string) – the text, which will be added as a comment at the top of
file. If you want to create several lines of text, please use ‘\n#’ for next lines.

• mask (int) – export only polyhedra with the corresponding mask

• explanationComment (str) – inclde explanation of format to the beginning of
file

2.4. Yade modules reference 653

Yade Documentation, Release 3rd ed.

Returns
number of polyhedra which were written.

Return type
int

2.4.4 yade.geom module

Creates geometry objects from facets.

yade.geom.facetBox(center, extents, orientation=Quaternion((1, 0, 0), 0), wallMask=63, **kw)
Create arbitrarily-aligned box composed of facets, with given center, extents and orientation. If
any of the box dimensions is zero, corresponding facets will not be created. The facets are oriented
outwards from the box.

Parameters

• center (Vector3) – center of the box

• extents (Vector3) – half lengths of the box sides

• orientation (Quaternion) – orientation of the box

• wallMask (bitmask) – determines which walls will be created, in the order -x
(1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the
default 63 means to create all walls

• **kw – (unused keyword arguments) passed to utils.facet

Returns
list of facets forming the box

yade.geom.facetBunker(center, dBunker, dOutput, hBunker, hOutput, hPipe=0.0,
orientation=Quaternion((1, 0, 0), 0), segmentsNumber=10, wallMask=4,
angleRange=None, closeGap=False, **kw)

Create arbitrarily-aligned bunker, composed of facets, with given center, radii, heights and orien-
tation. Return List of facets forming the bunker;

dBunker

| |
| |
| | hBunker
| |
| |
| |
|____________|
\ /
\ /
\ / hOutput
\ /
____/
| |
|____| hPipe
dOutput

Parameters

• center (Vector3) – center of the created bunker

• dBunker (float) – bunker diameter, top

• dOutput (float) – bunker output diameter

654 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• hBunker (float) – bunker height

• hOutput (float) – bunker output height

• hPipe (float) – bunker pipe height

• orientation (Quaternion) – orientation of the bunker; the reference orientation
has axis along the +x axis.

• segmentsNumber (int) – number of edges on the bunker surface (>=5)

• wallMask (bitmask) – determines which walls will be created, in the order up
(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((�min,Θmax)) – allows one to create only part of bunker by speci-
fying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetCone(center, radiusTop, radiusBottom, height, orientation=Quaternion((1, 0, 0), 0),
segmentsNumber=10, wallMask=7 , angleRange=None, closeGap=False,
radiusTopInner=-1, radiusBottomInner=-1, **kw)

Create arbitrarily-aligned cone composed of facets, with given center, radius, height and orientation.
Return List of facets forming the cone;

Parameters

• center (Vector3) – center of the created cylinder

• radiusTop (float) – cone top radius

• radiusBottom (float) – cone bottom radius

• radiusTopInner (float) – inner radius of cones top, -1 by default

• radiusBottomInner (float) – inner radius of cones bottom, -1 by default

• height (float) – cone height

• orientation (Quaternion) – orientation of the cone; the reference orientation
has axis along the +x axis.

• segmentsNumber (int) – number of edges on the cone surface (>=5)

• wallMask (bitmask) – determines which walls will be created, in the order up
(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((�min,Θmax)) – allows one to create only part of cone by specifying
range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetCylinder(center, radius, height, orientation=Quaternion((1, 0, 0), 0),
segmentsNumber=10, wallMask=7 , angleRange=None, closeGap=False,
radiusTopInner=-1, radiusBottomInner=-1, **kw)

Create arbitrarily-aligned cylinder composed of facets, with given center, radius, height and orien-
tation. Return List of facets forming the cylinder;

Parameters

• center (Vector3) – center of the created cylinder

2.4. Yade modules reference 655

Yade Documentation, Release 3rd ed.

• radius (float) – cylinder radius

• height (float) – cylinder height

• radiusTopInner (float) – inner radius of cylinders top, -1 by default

• radiusBottomInner (float) – inner radius of cylinders bottom, -1 by default

• orientation (Quaternion) – orientation of the cylinder; the reference orienta-
tion has axis along the +x axis.

• segmentsNumber (int) – number of edges on the cylinder surface (>=5)

• wallMask (bitmask) – determines which walls will be created, in the order up
(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((�min,Θmax)) – allows one to create only part of bunker by speci-
fying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetCylinderConeGenerator(center, radiusTop, height, orientation=Quaternion((1, 0,
0), 0), segmentsNumber=10, wallMask=7 ,
angleRange=None, closeGap=False, radiusBottom=-1,
radiusTopInner=-1, radiusBottomInner=-1, **kw)

Please, do not use this function directly! Use geom.facetCylinder and geom.facetCone instead.
This is the base function for generating cylinders and cones from facets.

Parameters

• radiusTop (float) – top radius

• radiusBottom (float) – bottom radius

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetHelix(center, radiusOuter, pitch, orientation=Quaternion((1, 0, 0), 0),
segmentsNumber=10, angleRange=None, radiusInner=0, **kw)

Create arbitrarily-aligned helix composed of facets, with given center, radius (outer and inner),
pitch and orientation. Return List of facets forming the helix;

Parameters

• center (Vector3) – center of the created cylinder

• radiusOuter (float) – outer radius

• radiusInner (float) – inner height (can be 0)

• orientation (Quaternion) – orientation of the helix; the reference orientation
has axis along the +x axis.

• segmentsNumber (int) – number of edges on the helix surface (>=3)

• angleRange ((�min,Θmax)) – range of angles; if None, (0,2*pi) is assumed.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetParallelepiped(center, extents, height, orientation=Quaternion((1, 0, 0), 0),
wallMask=63, **kw)

Create arbitrarily-aligned Parallelepiped composed of facets, with given center, extents, height and
orientation. If any of the parallelepiped dimensions is zero, corresponding facets will not be created.
The facets are oriented outwards from the parallelepiped.

Parameters

656 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• center (Vector3) – center of the parallelepiped

• extents (Vector3) – half lengths of the parallelepiped sides

• height (Real) – height of the parallelepiped (along axis z)

• orientation (Quaternion) – orientation of the parallelepiped

• wallMask (bitmask) – determines which walls will be created, in the order -x
(1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the
default 63 means to create all walls

• **kw – (unused keyword arguments) passed to utils.facet

Returns
list of facets forming the parallelepiped

yade.geom.facetPolygon(center, radiusOuter, orientation=Quaternion((1, 0, 0), 0),
segmentsNumber=10, angleRange=None, radiusInner=0, **kw)

Create arbitrarily-aligned polygon composed of facets, with given center, radius (outer and inner)
and orientation. Return List of facets forming the polygon;

Parameters

• center (Vector3) – center of the created cylinder

• radiusOuter (float) – outer radius

• radiusInner (float) – inner height (can be 0)

• orientation (Quaternion) – orientation of the polygon; the reference orienta-
tion has axis along the +x axis.

• segmentsNumber (int) – number of edges on the polygon surface (>=3)

• angleRange ((�min,Θmax)) – allows one to create only part of polygon by spec-
ifying range of angles; if None, (0,2*pi) is assumed.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetPolygonHelixGenerator(center, radiusOuter, pitch=0, orientation=Quaternion((1,
0, 0), 0), segmentsNumber=10, angleRange=None,
radiusInner=0, **kw)

Please, do not use this function directly! Use geom.facetPloygon and geom.facetHelix instead. This
is the base function for generating polygons and helixes from facets.

yade.geom.facetSphere(center, radius, thetaResolution=8, phiResolution=8,
returnElementMap=False, **kw)

Create arbitrarily-aligned sphere composed of facets, with given center, radius and orientation.
Return List of facets forming the sphere. Parameters inspired by ParaView sphere glyph

Parameters

• center (Vector3) – center of the created sphere

• radius (float) – sphere radius

• thetaResolution (int) – number of facets around “equator”

• phiResolution (int) – number of facets between “poles” + 1

• returnElementMap (bool) – returns also tuple of nodes ((x1,y1,z1),(x2,y2,z2),…)
and elements ((id01,id02,id03),(id11,id12,id13),…) if true, only facets otherwise

• **kw – (unused keyword arguments) passed to utils.facet;

2.4. Yade modules reference 657

Yade Documentation, Release 3rd ed.

2.4.5 yade.gridpfacet module

Helper functions for creating cylinders, grids and membranes. For more details on this type of elements
see [Effeindzourou2016], [Effeindzourou2015a], [Bourrier2013],.

For examples using GridConnections, see

• examples/grids/CohesiveGridConnectionSphere.py

• examples/grids/GridConnection_Spring.py

• examples/grids/Simple_Grid_Falling.py

• examples/grids/Simple_GridConnection_Falling.py

For examples using PFacets, see

• examples/pfacet/gts-pfacet.py

• examples/pfacet/mesh-pfacet.py

• examples/pfacet/pfacetcreators.py

yade.gridpfacet.chainedCylinder(begin=Vector3(0, 0, 0), end=Vector3(1, 0, 0), radius=0.2,
dynamic=None, fixed=False, wire=False, color=None,
highlight=False, material=-1, mask=1)

Create and connect a chainedCylinder with given parameters. The shape generated by repeted
calls of this function is the Minkowski sum of polyline and sphere.

Parameters

• radius (Real) – radius of sphere in the Minkowski sum.

• begin (Vector3) – first point positioning the line in the Minkowski sum

• last (Vector3) – last point positioning the line in the Minkowski sum

In order to build a correct chain, last point of element of rank N must correspond to first point of
element of rank N+1 in the same chain (with some tolerance, since bounding boxes will be used to
create connections.

Returns
Body object with the ChainedCylinder shape.

Note: ChainedCylinder is deprecated and will be removed in the future, use GridConnection
instead. See gridpfacet.cylinder and gridpfacet.cylinderConnection.

yade.gridpfacet.cylinder(begin=Vector3(0, 0, 0), end=Vector3(1, 0, 0), radius=0.2, nodesIds=[],
cylIds=[], dynamic=None, fixed=False, wire=False, color=None,
highlight=False, intMaterial=-1, extMaterial=-1, mask=1)

Create a cylinder with given parameters. The shape corresponds to the Minkowski sum of line-
segment and sphere, hence, the cylinder has rounded vertices. The cylinder (GridConnection) and
its corresponding nodes (yref:GridNodes<GridNode>) are automatically added to the simulation.
The lists with nodes and cylinder ids will be updated automatically.

Parameters

• begin (Vector3) – first point of the Minkowski sum in the global coordinate
system.

• end (Vector3) – last point of the Minkowski sum in the global coordinate system.

• radius (Real) – radius of sphere in the Minkowski sum.

• nodesIds (list) – list with ids of already existing GridNodes. New ids will be
added.

658 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/CohesiveGridConnectionSphere.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/GridConnection_Spring.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/Simple_Grid_Falling.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/Simple_GridConnection_Falling.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/gts-pfacet.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/mesh-pfacet.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/pfacetcreators.py

Yade Documentation, Release 3rd ed.

• cylIds (list) – list with ids of already existing GridConnections. New id will
be added.

• intMaterial – Body.material used to create the interaction physics between the
two GridNodes

• extMaterial – Body.material used to create the interaction physics between the
Cylinder (GridConnection) and other bodies (e.g., spheres interaction with the
cylinder)

See utils.sphere’s documentation for meaning of other parameters.

yade.gridpfacet.cylinderConnection(vertices, radius=0.2, nodesIds=[], cylIds=[], dynamic=None,
fixed=False, wire=False, color=None, highlight=False,
intMaterial=-1, extMaterial=-1, mask=1)

Create a chain of cylinders with given parameters. The cylinders (GridConnection) and its cor-
responding nodes (yref:GridNodes<GridNode>) are automatically added to the simulation. The
lists with nodes and cylinder ids will be updated automatically.

Parameters
vertices ([Vector3]) – coordinates of vertices to connect in the global coordinate
system.

See gridpfacet.cylinder documentation for meaning of other parameters.

yade.gridpfacet.gmshPFacet(meshfile=’file.mesh’, shift=Vector3(0, 0, 0), scale=1.0,
orientation=Quaternion((1, 0, 0), 0), radius=1.0, wire=True,
fixed=True, materialNodes=-1, material=-1, color=None)

Imports mesh geometry from .mesh file and automatically creates connected PFacet elements. For
an example see examples/pfacet/mesh-pfacet.py.

Parameters

• filename (string) – .gts file to read.

• shift ([float,float,float]) – [X,Y,Z] parameter shifts the mesh.

• scale (float) – factor scales the mesh.

• orientation (quaternion) – orientation of the imported geometry.

• radius (float) – radius used to create the PFacets.

• materialNodes – specify Body.material of GridNodes. This material is used to
make the internal connections.

• material – specify Body.material of PFacets. This material is used for interac-
tions with external bodies.

See documentation of utils.sphere for meaning of other parameters.

Returns
lists of GridNode ids nodesIds, GridConnection ids cylIds, and PFacet ids pfIds

mesh files can easily be created with GMSH.

Additional examples of mesh-files can be downloaded from http://www-roc.inria.fr/gamma/
download/download.php

yade.gridpfacet.gridConnection(id1, id2, radius, wire=False, color=None, highlight=False,
material=-1, mask=1, cellDist=None)

Create a GridConnection by connecting two GridNodes.

Parameters

• id1,id2 – the two GridNodes forming the cylinder.

• radius (float) – radius of the cylinder. Note that the radius needs to be the
same as the one for the GridNodes.

2.4. Yade modules reference 659

https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/mesh-pfacet.py
http://www.geuz.org/gmsh/
http://www-roc.inria.fr/gamma/download/download.php
http://www-roc.inria.fr/gamma/download/download.php

Yade Documentation, Release 3rd ed.

• cellDist (Vector3) – for periodic boundary conditions, see Interaction.cellDist.
Note: periodic boundary conditions for gridConnections are not yet imple-
mented!

See documentation of utils.sphere for meaning of other parameters.

Returns
Body object with the GridConnection shape.

Note: The material of the GridNodes will be used to set the constitutive behaviour of the internal
connection, i.e., the constitutive behaviour of the cylinder. The material of the GridConnection is
used for interactions with other (external) bodies.

yade.gridpfacet.gridNode(center, radius, dynamic=None, fixed=False, wire=False, color=None,
highlight=False, material=-1)

Create a GridNode which is needed to set up GridConnections.

See documentation of utils.sphere for meaning of parameters.

Returns
Body object with the gridNode shape.

yade.gridpfacet.gtsPFacet(meshfile, shift=Vector3(0, 0, 0), scale=1.0, radius=1, wire=True,
fixed=True, materialNodes=-1, material=-1, color=None)

Imports mesh geometry from .gts file and automatically creates connected PFacet3 elements. For
an example see examples/pfacet/gts-pfacet.py.

Parameters

• filename (string) – .gts file to read.

• shift ([float,float,float]) – [X,Y,Z] parameter shifts the mesh.

• scale (float) – factor scales the mesh.

• radius (float) – radius used to create the PFacets.

• materialNodes – specify Body.material of GridNodes. This material is used to
make the internal connections.

• material – specify Body.material of PFacets. This material is used for interac-
tions with external bodies.

See documentation of utils.sphere for meaning of other parameters.

Returns
lists of GridNode ids nodesIds, GridConnection ids cylIds, and PFacet ids pfIds

yade.gridpfacet.pfacet(id1, id2, id3, wire=True, color=None, highlight=False, material=-1,
mask=1, cellDist=None)

Create a PFacet element from 3 GridNodes which are already connected via 3 GridConnections:

Parameters

• id1,id2,id3 – already with GridConnections connected GridNodes

• wire (bool) – if True, top and bottom facet are shown as skeleton; otherwise
facets are filled.

• color (Vector3-or-None) – color of the PFacet; random color will be assigned
if None.

• cellDist (Vector3) – for periodic boundary conditions, see Interaction.cellDist.
Note: periodic boundary conditions are not yet implemented for PFacets!

See documentation of utils.sphere for meaning of other parameters.

660 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/gts-pfacet.py

Yade Documentation, Release 3rd ed.

Returns
Body object with the PFacet shape.

Note: GridNodes and GridConnections need to have the same radius. This is also the radius
used to create the PFacet

yade.gridpfacet.pfacetCreator1(vertices, radius, nodesIds=[], cylIds=[], pfIds=[], wire=False,
fixed=True, materialNodes=-1, material=-1, color=None)

Create a PFacet element from 3 vertices and automatically append to simulation. The function
uses the vertices to create GridNodes and automatically checks for existing nodes.

Parameters

• vertices ([Vector3,Vector3,Vector3]) – coordinates of vertices in the global
coordinate system.

• radius (float) – radius used to create the PFacets.

• nodesIds (list) – list with ids of already existing GridNodes. New ids will be
added.

• cylIds (list) – list with ids of already existing GridConnections. New ids will
be added.

• pfIds (list) – list with ids of already existing PFacets. New ids will be added.

• materialNodes – specify Body.material of GridNodes. This material is used to
make the internal connections.

• material – specify Body.material of PFacets. This material is used for interac-
tions with external bodies.

See documentation of utils.sphere for meaning of other parameters.

yade.gridpfacet.pfacetCreator2(id1, id2, vertex, radius, nodesIds=[], wire=True,
materialNodes=-1, material=-1, color=None, fixed=True)

Create a PFacet element from 2 already existing and connected GridNodes and one vertex. The
element is automatically appended to the simulation.

Parameters

• id1,id2 (int) – ids of already with GridConnection connected GridNodes.

• vertex (Vector3) – coordinates of the vertex in the global coordinate system.

See documentation of gridpfacet.pfacetCreator1 for meaning of other parameters.

yade.gridpfacet.pfacetCreator3(id1, id2, id3, cylIds=[], pfIds=[], wire=True, material=-1,
color=None, fixed=True, mask=-1)

Create a PFacet element from 3 already existing GridNodes which are not yet connected. The
element is automatically appended to the simulation.

Parameters
id1,id2,id3 (int) – id of the 3 GridNodes forming the PFacet.

See documentation of gridpfacet.pfacetCreator1 for meaning of other parameters.

yade.gridpfacet.pfacetCreator4(id1, id2, id3, pfIds=[], wire=True, material=-1, color=None,
fixed=True, mask=-1)

Create a PFacet element from 3 already existing GridConnections. The element is automatically
appended to the simulation.

Parameters
id1,id2,id3 (int) – id of the 3 GridConnections forming the PFacet.

See documentation of gridpfacet.pfacetCreator1 for meaning of other parameters.

2.4. Yade modules reference 661

Yade Documentation, Release 3rd ed.

2.4.6 yade.libVersions module

The yade.libVersions module tracks versions of all libraries it was compiled with. Example usage is
as follows:

from yade.libVersions import *
if(getVersion('cgal') > (4,9,0)):

…
else:

…

To obtain a list of all libraries use the function libVersions.printAllVersions.

All libraries listed in prerequisites are detected by this module.

Note: If we need a version of some library not listed in prerequisites, then it must also be added to
that list.

When adding a new version please have a look at these three files:

1. py/_libVersions.cpp: detection of versions from #include files by C++.

2. py/libVersions.py.in: python module which is constructed by cmake during compilation. All *.in
files are processed by cmake.

3. cMake/FindMissingVersions.cmake: forced detection of library with undetectable version.

Hint: The safest way to compare versions is to use builtin python tuple comparison e.g. if(cgalVer
> (4,9,0) and cgalVer < (5,1,1)):.

yade.libVersions.getAllVersions(rstFormat=False)

Returns
str - this function returns the result of printAllVersions(rstFormat) call inside a
string variable.

yade.libVersions.getAllVersionsCmake()
This function returns library versions as provided by cmake during compilation.

Returns
dictionary in following format: { "libName" : [(major, minor, patchlevel)
, "versionString"] }

As an example the dict below reflects what libraries this documentation was compiled with (here
are only those detected by CMAKE):

Yade [1]: from yade.libVersions import *

Yade [2]: getAllVersionsCmake()
Out[2]:
{'cmake': [(3, 28, 3), '3.28.3'],
'compiler': [(13, 2, 0), '/usr/bin/c++ 13.2.0'],
'boost': [(1, 83, 0), '108300'],
'freeglut': [(3, 0, 0), '3.0.0'],
'python': [(3, 12, 3), '3.12.3'],
'matplotlib': [(3, 6, 3), '3.6.3'],
'eigen': [(3, 4, 0), '3.4.0'],
'vtk': [(9, 1, 0), '9.1.0'],
'suitesparse': [(7, 6, 1), '7.6.1'],

(continues on next page)

662 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/installation.rst
https://gitlab.com/yade-dev/trunk/blob/master/py/_libVersions.cpp
https://gitlab.com/yade-dev/trunk/blob/master/py/libVersions.py.in
https://gitlab.com/yade-dev/trunk/blob/master/cMake/FindMissingVersions.cmake
https://cmake.org

Yade Documentation, Release 3rd ed.

(continued from previous page)

'mpi': [(3, 1, 0), '3.1'],
'numpy': [(1, 26, 4), '1.26.4'],
'ipython': [(8, 20, 0), '8.20.0'],
'sphinx': [(7, 2, 6), '7.2.6'],
'clp': [(1, 17, 9), '1.17.9'],
'coinutils': [(2, 11, 4), '2.11.4'],
'mpi4py': [(3, 1, 5), '3.1.5'],
'mpmath': [(1, 2, 1), '1.2.1'],
'tkinter': [(8, 6, 0), '8.6'],
'pygraphviz': [(1, 7, 0), '1.7'],
'Xlib': [(0, 33, 0), '(0,33)']}

Note: Please add here detection of other libraries when yade starts using them or if you discover
how to extract from cmake a version which I didn’t add here.

yade.libVersions.getArchitecture()

Returns
string containing processor architecture name, as reported by uname -m call or from
CMAKE_HOST_SYSTEM_PROCESSOR cmake variable.

yade.libVersions.getLinuxVersion()

Returns
string containing linux release and version, preferably the value of PRETTY_NAME from
file /etc/os-release.

yade.libVersions.getVersion(libName)
This function returns the tuple (major, minor, patchlevel) with library version number. The
yade --test in file py/tests/libVersions.py tests that this version is the same as detected by cmake
and C++. If only one of those could detect the library version, then this number is used.

Parameters
libName (string) – the name of the library

Returns
tuple in format (major, minor, patchlevel) if libName exists. Otherwise it re-
turns None.

Note: library openblas has no properly defined version in header files, this function will return
(0,0,0) for openblas. Parsing the version string would be unreliable. The mpi version detected
by cmake sometimes is different than version detected by C++, this needs further investigation.

yade.libVersions.printAllVersions(rstFormat=False)
This function prints a nicely formatted table with library versions.

Parameters
rstFormat (bool) – whether to print table using the reStructuredText formatting.
Defaults to False and prints using Gitlab markdown rules so that it is easy to paste
into gitlab discussions.

As an example the table below actually reflects with what libraries this documentation was com-
piled:

Yade [1]: printAllVersions()

```
(continues on next page)

2.4. Yade modules reference 663

https://gitlab.com/yade-dev/trunk/blob/master/py/tests/libVersions.py
https://gitlab.com/help/user/markdown


Yade Documentation, Release 3rd ed.

(continued from previous page)

Yade version : 2025-07-02.git-e66a3fc
Yade features : LOGGER USEFUL_ERRORS COMPLEX_MP VTK OPENMP GTS QT5 CGAL␣
↪→PFVFLOW PFVFLOW LINSOLV MPI TWOPHASEFLOW LS_DEM FEMLIKE GL2PS LBMFLOW THERMAL␣
↪→PARTIALSAT POTENTIAL_PARTICLES POTENTIAL_BLOCKS
Yade config dir: ~/.config/yade-ci
Yade precision : 53 bits, 15 decimal places, with mpmath, PrecisionDouble
Yade RealHP<…> : (15, 33, 45, 60, 120, 150, 300) decimal digits in C++, (15,␣
↪→33) decimal digits accessible from python
```

Libraries used :

library	cmake	C++
Xlib	(0,33)	
boost	108300	1.83.0
cgal		5.6
clp	1.17.9	1.17.9
cmake	3.28.3	
coinutils	2.11.4	2.11.4
compiler	/usr/bin/c++ 13.2.0	gcc 13.2.0
eigen	3.4.0	3.4.0
freeglut	3.0.0	
gl		20220530
ipython	8.20.0	
matplotlib	3.6.3	
metis		unknown_version
mpi	3.1	ompi:4.1.6
mpi4py	3.1.5	
mpmath	1.2.1	
numpy	1.26.4	
openblas		OpenBLAS 0.3.26
pygraphviz	1.7	
python	3.12.3	3.12.3
qglviewer		2.8.0
qt		5.15.13
sphinx	7.2.6	
sqlite		3.45.1
suitesparse	7.6.1	7.6.1
tkinter	8.6	
vtk	9.1.0	9.1.0

```
Linux version : Ubuntu 24.04.1 LTS
Architecture : amd64
Little endian : True
```

Note: For convenience at startup from yade.libVersions import printAllVersions is exe-
cuted, so that this function is readily accessible.

yade._libVersions.getAllVersionsCpp() → dict
This function returns library versions as discovered by C++ during compilation from all the
#include headers. This can be useful in debugging to detect some library .so conflicts.

Returns

664 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dictionary in folowing format: { "libName" : [(major, minor, patch) ,
"versionString"] }

As an example the dict below reflects what libraries this documentation was compiled with (here
are only those detected by C++):

Yade [1]: from yade.libVersions import *

Yade [2]: getAllVersionsCpp()
Out[2]:
{'compiler': [(13, 2, 0), 'gcc 13.2.0'],
'boost': [(1, 83, 0), '1.83.0'],
'qt': [(5, 15, 13), '5.15.13'],
'gl': [(2022, 5, 30), '20220530'],
'qglviewer': [(2, 8, 0), '2.8.0'],
'python': [(3, 12, 3), '3.12.3'],
'eigen': [(3, 4, 0), '3.4.0'],
'sqlite': [(3, 45, 1), '3.45.1'],
'vtk': [(9, 1, 0), '9.1.0'],
'cgal': [(5, 6, 0), '5.6'],
'suitesparse': [(7, 6, 1), '7.6.1'],
'openblas': [(0, 0, 0), ' OpenBLAS 0.3.26 '],
'metis': [(0, 0, 0), 'unknown_version'],
'mpi': [(4, 1, 6), 'ompi:4.1.6'],
'clp': [(1, 17, 9), '1.17.9'],
'coinutils': [(2, 11, 4), '2.11.4'],
'mpfr': [],
'mpc': []}

Note: Please add here C++ detection of other libraries when yade starts using them.

2.4.7 yade.linterpolation module

Module for rudimentary support of manipulation with piecewise-linear functions (which are usually
interpolations of higher-order functions, whence the module name). Interpolation is always given as two
lists of the same length, where the x-list must be increasing.

Periodicity is supported by supposing that the interpolation can wrap from the last x-value to the first
x-value (which should be 0 for meaningful results).

Non-periodic interpolation can be converted to periodic one by padding the interpolation with constant
head and tail using the sanitizeInterpolation function.

There is a c++ template function for interpolating on such sequences in
pkg/common/Engine/PartialEngine/LinearInterpolate.hpp (stateful, therefore fast for sequential
reads).

TODO: Interpolating from within python is not (yet) supported.

yade.linterpolation.integral(x, y)
Return integral of piecewise-linear function given by points x0,x1,… and y0,y1,…

yade.linterpolation.revIntegrateLinear(I , x0, y0, x1, y1)
Helper function, returns value of integral variable x for linear function f passing through
(x0,y0),(x1,y1) such that 1. x�[x0,x1] 2. �_x0^x f dx=I and raise exception if such number doesn’t
exist or the solution is not unique (possible?)

2.4. Yade modules reference 665

Yade Documentation, Release 3rd ed.

yade.linterpolation.sanitizeInterpolation(x, y, x0, x1)
Extends piecewise-linear function in such way that it spans at least the x0…x1 interval, by adding
constant padding at the beginning (using y0) and/or at the end (using y1) or not at all.

yade.linterpolation.xFractionalFromIntegral(integral, x, y)
Return x within range x0…xn such that �_x0^x f dx==integral. Raises error if the integral value
is not reached within the x-range.

yade.linterpolation.xFromIntegral(integralValue, x, y)
Return x such that �_x0^x f dx==integral. x wraps around at xn. For meaningful results, therefore,
x0 should == 0

2.4.8 yade.log module

The yade.log module serves as an interface to yade logging framework implemented on top of boost::log.
For full documentation see debugging section. Example usage in python is as follows:

import yade.log
yade.log.setLevel('PeriTriaxController',yade.log.TRACE)

Example usage in C++ is as follows:

LOG_WARN("Something: "<<something)

yade._log.defaultConfigFileName() → str

Returns
the default log config file, which is loaded at startup, if it exists.

yade._log.getAllLevels() → dict

Returns
A python dictionary with all known loggers in yade. Those without a debug level
set will have value -1 to indicate that Default filter log level is to be used for them.

yade._log.getDefaultLogLevel() → int

Returns
The current Default filter log level.

yade._log.getMaxLevel() → int

Returns
the MAX_LOG_LEVEL of the current yade build.

yade._log.getUsedLevels() → dict

Returns
A python dictionary with all used log levels in yade. Those without a debug level
(value -1) are omitted.

yade._log.readConfigFile((str)arg1) → None
Loads the given configuration file.

Parameters
fname (str) – the config file to be loaded.

yade._log.resetOutputStream() → None
Resets log output stream to default state: all logs are printed on std::clog channel, which usually
redirects to std::cerr.

666 Chapter 2. Yade for users

https://www.boost.org/doc/libs/release/libs/log/

Yade Documentation, Release 3rd ed.

yade._log.saveConfigFile((str)arg1) → None
Saves log config to specified file.

Parameters
fname (str) – the config file to be saved.

yade._log.setDefaultLogLevel((int)arg1) → None

Parameters
level (int) – Sets the Default filter log level, same as calling log.
setLevel("Default",level).

yade._log.setLevel((str)arg1, (int)arg2) → None
Set filter level (constants TRACE (6), DEBUG (5), INFO (4), WARN (3), ERROR (2), FATAL (1), NOFILTER
(0)) for given logger.

Parameters

• className (str) – The logger name for which the filter level is to be set. Use
name Default to change the default filter level.

• level (int) – The filter level to be set.

Warning: setting Default log level higher than MAX_LOG_LEVEL provided during compilation
will have no effect. Logs will not be printed because they are removed during compilation.

yade._log.setOutputStream((str)arg1, (bool)arg2) → None

Parameters

• streamName (str) – sets the output stream, special names cout, cerr, clog
use the std::cout, std::cerr, std::clog counterpart (std::clog the is the
default output stream). Every other name means that log will be written to a
file with name provided in the argument.

• reset (bool) – dictates whether all previously set output streams are to be
removed. When set to false: the new output stream is set additionally to the
current one.

yade._log.setUseColors((bool)arg1) → None
Turn on/off colors in log messages. By default is on. If logging to a file then it is better to be
turned off.

yade._log.testAllLevels() → None
This function prints test messages on all log levels. Can be used to see how filtering works and to
what streams the logs are written.

yade._log.testOnceLevels() → None
This function prints test messages on all log levels using LOG_ONCE_* macro family.

yade._log.testTimedLevels() → None
This function prints timed test messages on all log levels. In this test the log levels � [0…2] are
timed to print every 2 seconds, levels � [3,4] every 1 second and levels � [5,6] every 0.5 seconds. The
loop lasts for 2.1 seconds. Can be used to see how timed filtering works and to what streams the
logs are written.

yade._log.unsetLevel((str)arg1) → None

Parameters
className (str) – The logger name for which the filter level is to be unset, so that
a Default will be used instead. Unsetting the Default level will change it to max
level and print everything.

2.4. Yade modules reference 667

Yade Documentation, Release 3rd ed.

2.4.9 yade.math module

This python module exposes all C++ math functions for Real and Complex types to python. In fact it
sort of duplicates import math, import cmath or import mpmath. Also it facilitates migration of old
python scripts to high precision calculations.

This module has following purposes:

1. To reliably test all C++ math functions of arbitrary precision Real and Complex types against
mpmath.

2. To act as a “migration helper” for python scripts which call python mathematical functions that
do not work well with mpmath. As an example see math.linspace below and this merge request

3. To allow writing python math code in a way that mirrors C++ math code in Yade. As a bonus
it will be faster than mpmath because mpmath is a purely python library (which was one of the
main difficulties when writing lib/high-precision/ToFromPythonConverter.hpp)

4. To test Eigen NumTraits

5. To test CGAL NumTraits

If another C++ math function is needed it should be added to following files:

1. lib/high-precision/MathFunctions.hpp

2. py/high-precision/_math.cpp

3. py/tests/testMath.py

4. py/tests/testMathHelper.py

If another python math function does not work well with mpmath it should be added below, and original
calls to this function should call this function instead, e.g. numpy.linspace(…) is replaced with yade.
math.linspace(…).

The RealHP<n> higher precision math functions can be accessed in python by using the .HPn module
scope. For example:

import yade.math as mth
mth.HP2.sqrt(2) # produces square root of 2 using RealHP<2> precision
mth.sqrt(2) # without using HPn module scope it defaults to RealHP<1>

yade.math.Real1(arg)
This function is for compatibility of calls like: g = yade.math.toHP1("-9.81"). If yade is
compiled with default Real precision set as double, then python won’t accept string argu-
ments as numbers. However when using higher precisions only calls yade.math.toHP1("1.
234567890123456789012345678901234567890") do not cut to the first 15 decimal places. The
calls such as yade.math.toHP1(1.234567890123456789012345678901234567890) will use default
python � double conversion and will cut the number to its first 15 digits.

If you are debugging a high precision python script, and have difficulty finding places where such
cuts have happened you should use yade.math.toHP1(string) for declaring all python floating
point numbers which are physically important in the simulation. This function will throw exception
if bad conversion is about to take place.

Also see example high precision check checkGravityRungeKuttaCashKarp54.py.

yade.math.degrees(arg)

Returns
arg in radians converted to degrees, using yade.math.Real precision.

yade.math.degreesHP1(arg)

Returns
arg in radians converted to degrees, using yade.math.Real precision.

668 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/-/merge_requests/414
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ToFromPythonConverter.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathFunctions.hpp
https://gitlab.com/yade-dev/trunk/blob/master/py/high-precision/_math.cpp
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMathHelper.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/checkGravityRungeKuttaCashKarp54.py

Yade Documentation, Release 3rd ed.

yade.math.eig(a)
This function calls numpy.linalg.eig(…) or mpmath.eig(…), because numpy.linalg.eig function
does not work with mpmath.

yade.math.getRealHPCppDigits10()

Returns
tuple containing amount of decimal digits supported on C++ side by Eigen and
CGAL.

yade.math.getRealHPPythonDigits10()

Returns
tuple containing amount of decimal digits supported on python side by
yade.minieigenHP.

yade.math.linspace(a, b, num)
This function calls numpy.linspace(…) or mpmath.linspace(…), because numpy.linspace func-
tion does not work with mpmath.

yade.math.needsMpmathAtN(N)

Parameters
N – The int N value of RealHP<N> in question. Must be N >= 1.

Returns
True or False with information if using mpmath is necessary to avoid losing precision
when working with RealHP<N>.

yade.math.radians(arg)
The default python function import math ; math.radians(arg) only works on 15 digit double
precision. If you want to carry on calculations in higher precision it is advisable to use this function
yade.math.radiansHP1(arg) instead. It uses full yade Real precision numbers.

NOTE: in the future this function may replace radians(…) function which is called in yade in
many scripts, and which in fact is a call to native python math.radians. We only need to find
the best backward compatible approach for this. The function yade.math.radiansHP1(arg) will
remain as the function which uses native yade Real precision.

yade.math.radiansHP1(arg)
The default python function import math ; math.radians(arg) only works on 15 digit double
precision. If you want to carry on calculations in higher precision it is advisable to use this function
yade.math.radiansHP1(arg) instead. It uses full yade Real precision numbers.

NOTE: in the future this function may replace radians(…) function which is called in yade in
many scripts, and which in fact is a call to native python math.radians. We only need to find
the best backward compatible approach for this. The function yade.math.radiansHP1(arg) will
remain as the function which uses native yade Real precision.

yade.math.toHP1(arg)
This function is for compatibility of calls like: g = yade.math.toHP1("-9.81"). If yade is
compiled with default Real precision set as double, then python won’t accept string argu-
ments as numbers. However when using higher precisions only calls yade.math.toHP1("1.
234567890123456789012345678901234567890") do not cut to the first 15 decimal places. The
calls such as yade.math.toHP1(1.234567890123456789012345678901234567890) will use default
python � double conversion and will cut the number to its first 15 digits.

If you are debugging a high precision python script, and have difficulty finding places where such
cuts have happened you should use yade.math.toHP1(string) for declaring all python floating
point numbers which are physically important in the simulation. This function will throw exception
if bad conversion is about to take place.

Also see example high precision check checkGravityRungeKuttaCashKarp54.py.

2.4. Yade modules reference 669

https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/checkGravityRungeKuttaCashKarp54.py

Yade Documentation, Release 3rd ed.

yade.math.usesHP()

Returns
True if yade is using default Real precision higher than 15 digit (53 bits) double
type.

yade._math.CGAL_Is_finite((float)x) → bool
CGAL’s function Is_finite, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
bool indicating if the Real argument is finite.

yade._math.CGAL_Is_valid((float)x) → bool
CGAL’s function Is_valid, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
bool indicating if the Real argument is valid. Checks are performed against NaN
and Inf.

yade._math.CGAL_Kth_root((int)arg1, (float)x) → float
CGAL’s function Kth_root, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
Real the k-th root of argument.

yade._math.CGAL_Sgn((float)x) → int
CGAL’s function Sgn, as described in CGAL algebraic foundations exposed to python for testing
of CGAL numerical traits.

Returns
sign of the argument, can be -1, 0 or 1. Not very useful in python. In C++ it
is useful to obtain a sign of an expression with exact accuracy, CGAL starts using
MPFR internally for this when the approximate interval contains zero inside it.

yade._math.CGAL_Sqrt((float)x) → float
CGAL’s function Sqrt, as described in CGAL algebraic foundations exposed to python for testing
of CGAL numerical traits.

Returns
Real the square root of argument.

yade._math.CGAL_Square((float)x) → float
CGAL’s function Square, as described in CGAL algebraic foundations exposed to python for testing
of CGAL numerical traits.

Returns
Real the argument squared.

yade._math.CGAL_To_interval((float)x) → tuple
CGAL’s function To_interval, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
(double,double) tuple inside which the high-precision Real argument resides.

yade._math.CGAL_simpleTest() → float
Tests a simple CGAL calculation. Distance between plane and point, uses CGAL’s sqrt and pow.

Returns
3.0

670 Chapter 2. Yade for users

https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207

Yade Documentation, Release 3rd ed.

yade._math.Catalan([(int)Precision=53]) → float

Returns
Real The catalan constant, exposed to python for testing of eigen numerical traits.

yade._math.Euler([(int)Precision=53]) → float

Returns
Real The Euler–Mascheroni constant, exposed to python for testing of eigen nu-
merical traits.

class yade._math.HP1

AddCost = 1

CGAL_Is_finite((float)x) → bool :
CGAL’s function Is_finite, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
bool indicating if the Real argument is finite.

CGAL_Is_valid((float)x) → bool :
CGAL’s function Is_valid, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
bool indicating if the Real argument is valid. Checks are performed against NaN
and Inf.

CGAL_Kth_root((int)arg1, (float)x) → float :
CGAL’s function Kth_root, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
Real the k-th root of argument.

CGAL_Sgn((float)x) → int :
CGAL’s function Sgn, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
sign of the argument, can be -1, 0 or 1. Not very useful in python. In C++ it is
useful to obtain a sign of an expression with exact accuracy, CGAL starts using
MPFR internally for this when the approximate interval contains zero inside it.

CGAL_Sqrt((float)x) → float :
CGAL’s function Sqrt, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
Real the square root of argument.

CGAL_Square((float)x) → float :
CGAL’s function Square, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
Real the argument squared.

CGAL_To_interval((float)x) → tuple :
CGAL’s function To_interval, as described in CGAL algebraic foundations exposed to
python for testing of CGAL numerical traits.

2.4. Yade modules reference 671

https://en.wikipedia.org/wiki/Catalan%27s_constant
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207

Yade Documentation, Release 3rd ed.

Returns
(double,double) tuple inside which the high-precision Real argument resides.

CGAL_simpleTest() → float :
Tests a simple CGAL calculation. Distance between plane and point, uses CGAL’s sqrt and
pow.

Returns
3.0

Catalan([(int)Precision=53]) → float :

Returns
Real The catalan constant, exposed to python for testing of eigen numerical
traits.

Complex
alias of complex

ComplexAddCost = 2

ComplexMulCost = 6

ComplexReadCost = 2

Euler([(int)Precision=53]) → float :

Returns
Real The Euler–Mascheroni constant, exposed to python for testing of eigen
numerical traits.

IsComplex = 0

IsInteger = 0

IsSigned = 1

Log2([(int)Precision=53]) → float :

Returns
Real natural logarithm of 2, exposed to python for testing of eigen numerical
traits.

MulCost = 1

Pi([(int)Precision=53]) → float :

Returns
Real The � constant, exposed to python for testing of eigen numerical traits.

ReadCost = 1

Real
alias of float

RequireInitialization = 0

class Var
The Var class is used to test to/from python converters for arbitrary precision Real

property cpl
one Complex variable to test reading from and writing to it.

672 Chapter 2. Yade for users

https://en.wikipedia.org/wiki/Catalan%27s_constant
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.wikipedia.org/wiki/Pi
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp

Yade Documentation, Release 3rd ed.

property val
one Real variable for testing.

abs((complex)x) → float :

Returns
the Real absolute value of the Complex argument. Depending on compilation
options wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

abs((float)x) -> float :

return
the Real absolute value of the Real argument. Depending on compilation
options wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

acos((complex)x) → complex :

Returns
Complex the arc-cosine of the Complex argument in radians. Depending on compi-
lation options wraps ::boost::multiprecision::acos(…) or std::acos(…) func-
tion.

acos((float)x) -> float :

return
Real the arcus cosine of the argument. Depending on compilation options wraps
::boost::multiprecision::acos(…) or std::acos(…) function.

acosh((complex)x) → complex :

Returns
Complex the arc-hyperbolic cosine of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::acosh(…)
or std::acosh(…) function.

acosh((float)x) -> float :

return
Real the hyperbolic arcus cosine of the argument. Depending on compilation
options wraps ::boost::multiprecision::acosh(…) or std::acosh(…) func-
tion.

arg((complex)x) → float :

Returns
Real the arg (Phase angle of complex in radians) of the Complex
argument in radians. Depending on compilation options wraps
::boost::multiprecision::arg(…) or std::arg(…) function.

asin((complex)x) → complex :

Returns
Complex the arc-sine of the Complex argument in radians. Depending on compi-
lation options wraps ::boost::multiprecision::asin(…) or std::asin(…) func-
tion.

asin((float)x) -> float :

return
Real the arcus sine of the argument. Depending on compilation options wraps
::boost::multiprecision::asin(…) or std::asin(…) function.

2.4. Yade modules reference 673

https://en.cppreference.com/w/cpp/numeric/complex/abs
https://en.cppreference.com/w/cpp/numeric/math/abs
https://en.cppreference.com/w/cpp/numeric/complex/acos
https://en.cppreference.com/w/cpp/numeric/math/acos
https://en.cppreference.com/w/cpp/numeric/complex/acosh
https://en.cppreference.com/w/cpp/numeric/math/acosh
https://en.cppreference.com/w/cpp/numeric/complex/arg
https://en.cppreference.com/w/cpp/numeric/complex/asin
https://en.cppreference.com/w/cpp/numeric/math/asin

Yade Documentation, Release 3rd ed.

asinh((complex)x) → complex :

Returns
Complex the arc-hyperbolic sine of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::asinh(…)
or std::asinh(…) function.

asinh((float)x) -> float :

return
Real the hyperbolic arcus sine of the argument. Depending on compilation op-
tions wraps ::boost::multiprecision::asinh(…) or std::asinh(…) function.

atan((complex)x) → complex :

Returns
Complex the arc-tangent of the Complex argument in radians. Depending on
compilation options wraps ::boost::multiprecision::atan(…) or std::atan(…)
function.

atan((float)x) -> float :

return
Real the arcus tangent of the argument. Depending on compilation options
wraps ::boost::multiprecision::atan(…) or std::atan(…) function.

atan2((float)x, (float)y) → float :

Returns
Real the arc tangent of y/x using the signs of the arguments x and y to
determine the correct quadrant. Depending on compilation options wraps
::boost::multiprecision::atan2(…) or std::atan2(…) function.

atanh((complex)x) → complex :

Returns
Complex the arc-hyperbolic tangent of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::atanh(…)
or std::atanh(…) function.

atanh((float)x) -> float :

return
Real the hyperbolic arcus tangent of the argument. Depending on compilation
options wraps ::boost::multiprecision::atanh(…) or std::atanh(…) func-
tion.

cbrt((float)x) → float :

Returns
Real cubic root of the argument. Depending on compilation options wraps
::boost::multiprecision::cbrt(…) or std::cbrt(…) function.

ceil((float)x) → float :

Returns
Real Computes the smallest integer value not less than arg. Depending on compi-
lation options wraps ::boost::multiprecision::ceil(…) or std::ceil(…) func-
tion.

674 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/complex/asinh
https://en.cppreference.com/w/cpp/numeric/math/asinh
https://en.cppreference.com/w/cpp/numeric/complex/atan
https://en.cppreference.com/w/cpp/numeric/math/atan
https://en.cppreference.com/w/cpp/numeric/math/atan2
https://en.cppreference.com/w/cpp/numeric/complex/atanh
https://en.cppreference.com/w/cpp/numeric/math/atanh
https://en.cppreference.com/w/cpp/numeric/math/cbrt
https://en.cppreference.com/w/cpp/numeric/math/ceil

Yade Documentation, Release 3rd ed.

conj((complex)x) → complex :

Returns
the complex conjugation a Complex argument. Depending on compilation options
wraps ::boost::multiprecision::conj(…) or std::conj(…) function.

cos((complex)x) → complex :

Returns
Complex the cosine of the Complex argument in radians. Depending on compila-
tion options wraps ::boost::multiprecision::cos(…) or std::cos(…) function.

cos((float)x) -> float :

return
Real the cosine of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::cos(…) or std::cos(…) function.

cosh((complex)x) → complex :

Returns
Complex the hyperbolic cosine of the Complex argument in radians. Depending on
compilation options wraps ::boost::multiprecision::cosh(…) or std::cosh(…)
function.

cosh((float)x) -> float :

return
Real the hyperbolic cosine of the Real argument in radians. Depending on com-
pilation options wraps ::boost::multiprecision::cosh(…) or std::cosh(…)
function.

cylBesselJ((int)k, (float)x) → float :

Returns
Real the Bessel Functions of the First Kind of the order k and the Real ar-
gument. See: <https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/
math_toolkit/bessel/bessel_first.html>‘__

defprec = 53

dummy_precision() → float :

Returns
similar to the function epsilon, but assumes that last 10% of bits contain the
numerical error only. This is sometimes used by Eigen when calling isEqualFuzzy
to determine if values differ a lot or if they are vaguely close to each other.

epsilon([(int)Precision=53]) → float :

Returns
Real returns the difference between 1.0 and the next representable value of the
Real type. Wraps std::numeric_limits<Real>::epsilon() function.

epsilon((float)x) -> float :

return
Real returns the difference between 1.0 and the next representable value of the
Real type. Wraps std::numeric_limits<Real>::epsilon() function.

2.4. Yade modules reference 675

https://en.cppreference.com/w/cpp/numeric/complex/conj
https://en.cppreference.com/w/cpp/numeric/complex/cos
https://en.cppreference.com/w/cpp/numeric/math/cos
https://en.cppreference.com/w/cpp/numeric/complex/cosh
https://en.cppreference.com/w/cpp/numeric/math/cosh
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon

Yade Documentation, Release 3rd ed.

erf((float)x) → float :

Returns
Real Computes the error function of argument. Depending on compilation op-
tions wraps ::boost::multiprecision::erf(…) or std::erf(…) function.

erfc((float)x) → float :

Returns
Real Computes the complementary error function of argument,
that is 1.0-erf(arg). Depending on compilation options wraps
::boost::multiprecision::erfc(…) or std::erfc(…) function.

exp((complex)x) → complex :

Returns
the base e exponential of a Complex argument. Depending on compilation options
wraps ::boost::multiprecision::exp(…) or std::exp(…) function.

exp((float)x) -> float :

return
the base e exponential of a Real argument. Depending on compilation options
wraps ::boost::multiprecision::exp(…) or std::exp(…) function.

exp2((float)x) → float :

Returns
the base 2 exponential of a Real argument. Depending on compilation options
wraps ::boost::multiprecision::exp2(…) or std::exp2(…) function.

expm1((float)x) → float :

Returns
the base e exponential of a Real argument minus 1.0. Depending on compilation
options wraps ::boost::multiprecision::expm1(…) or std::expm1(…) function.

fabs((float)x) → float :

Returns
the Real absolute value of the argument. Depending on compilation options
wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

factorial((int)x) → float :

Returns
Real the factorial of the Real argument. See: <https://www.boost.org/doc/libs/
1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html>‘__

floor((float)x) → float :

Returns
Real Computes the largest integer value not greater than arg. Depending on com-
pilation options wraps ::boost::multiprecision::floor(…) or std::floor(…)
function.

fma((float)x, (float)y, (float)z) → float :

Returns
Real - computes (x*y) + z as if to infinite precision and rounded only
once to fit the result type. Depending on compilation options wraps
::boost::multiprecision::fma(…) or std::fma(…) function.

676 Chapter 2. Yade for users

https://en.wikipedia.org/wiki/Error_function
https://en.cppreference.com/w/cpp/numeric/math/erf
https://en.wikipedia.org/wiki/Error_function#Complementary_error_function
https://en.cppreference.com/w/cpp/numeric/math/erfc
https://en.cppreference.com/w/cpp/numeric/complex/exp
https://en.cppreference.com/w/cpp/numeric/math/exp
https://en.cppreference.com/w/cpp/numeric/math/exp2
https://en.cppreference.com/w/cpp/numeric/math/expm1
https://en.cppreference.com/w/cpp/numeric/math/fabs
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html
https://en.cppreference.com/w/cpp/numeric/math/floor
https://en.cppreference.com/w/cpp/numeric/math/fma

Yade Documentation, Release 3rd ed.

fmod((float)x, (float)y) → float :

Returns
Real the floating-point remainder of the division operation x/y of
the arguments x and y. Depending on compilation options wraps
::boost::multiprecision::fmod(…) or std::fmod(…) function.

frexp((float)x) → tuple :

Returns
tuple of (Real,int), decomposes given floating point Real argument into a nor-
malized fraction and an integral power of two. Depending on compilation options
wraps ::boost::multiprecision::frexp(…) or std::frexp(…) function.

fromBits((str)bits[, (int)exp=0[, (int)sign=1]]) → float :

Parameters

• bits – str - a string containing ‘0’, ‘1’ characters.

• exp – int - the binary exponent which shifts the bits.

• sign – int - the sign, should be -1 or +1, but it is not checked. It multiplies
the result when construction from bits is finished.

Returns
RealHP<N> constructed from string containing ‘0’, ‘1’ bits. This is for debugging
purposes, rather slow.

getDecomposedReal((float)x) → dict :

Returns
dict - the dictionary with the debug information how the DecomposedReal class
sees this type. This is for debugging purposes, rather slow. Includes result from
fpclassify function call, a binary representation and other useful info. See also
fromBits.

getDemangledName() → str :

Returns
string - the demangled C++ typnename of RealHP<N>.

getDemangledNameComplex() → str :

Returns
string - the demangled C++ typnename of ComplexHP<N>.

getFloatDistanceULP((float)arg1, (float)arg2) → float :

Returns
an integer value stored in RealHP<N>, the ULP distance calculated by
boost::math::float_distance, also see Floating-point Comparison and Prof. Ka-
han paper about this topic.

Warning: The returned value is the directed distance between two arguments, this
means that it can be negative.

getRawBits((float)x) → str :

Returns
string - the raw bits in memory representing this type. Be careful: it only
checks the system endianness and either prints bytes in reverse order or not.
Does not make any attempts to further interpret the bits of: sign, exponent
or significand (on a typical x86 processor they are printed in that order), and

2.4. Yade modules reference 677

https://en.cppreference.com/w/cpp/numeric/math/fmod
https://en.cppreference.com/w/cpp/numeric/math/frexp
https://en.cppreference.com/w/cpp/numeric/math/fpclassify
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/next_float/float_distance.html
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/float_comparison.html
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf

Yade Documentation, Release 3rd ed.

different processors might store them differently. It is not useful for types which
internally use a pointer because for them this function prints not the floating
point number but a pointer. This is for debugging purposes.

hasInfinityNan = True

highest([(int)Precision=53]) → float :

Returns
Real returns the largest finite value of the Real type. Wraps std::numeric_-
limits<Real>::max() function.

hypot((float)x, (float)y) → float :

Returns
Real the square root of the sum of the squares of x and y, without undue over-
flow or underflow at intermediate stages of the computation. Depending on com-
pilation options wraps ::boost::multiprecision::hypot(…) or std::hypot(…)
function.

ilogb((float)x) → float :

Returns
Real extracts the value of the unbiased exponent from the floating-point argument
arg, and returns it as a signed integer value. Depending on compilation options
wraps ::boost::multiprecision::ilogb(…) or std::ilogb(…) function.

imag((complex)x) → float :

Returns
the imag part of a Complex argument. Depending on compilation options wraps
::boost::multiprecision::imag(…) or std::imag(…) function.

isApprox((float)a, (float)b, (float)eps) → bool :

Returns
bool, True if a is approximately equal b with provided eps, see also here

isApproxOrLessThan((float)a, (float)b, (float)eps) → bool :

Returns
bool, True if a is approximately less than or equal b with provided eps, see also
here

isEqualFuzzy((float)arg1, (float)arg2, (float)arg3) → bool :

Returns
bool, True if the absolute difference between two numbers is smaller than
std::numeric_limits<Real>::epsilon()

isMuchSmallerThan((float)a, (float)b, (float)eps) → bool :

Returns
bool, True if a is less than b with provided eps, see also here

isfinite((float)x) → bool :

Returns
bool indicating if the Real argument is Inf. Depending on compilation options
wraps ::boost::multiprecision::isfinite(…) or std::isfinite(…) function.

isinf((float)x) → bool :

Returns
bool indicating if the Real argument is Inf. Depending on compilation options
wraps ::boost::multiprecision::isinf(…) or std::isinf(…) function.

678 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/types/numeric_limits/max
https://en.cppreference.com/w/cpp/types/numeric_limits/max
https://en.cppreference.com/w/cpp/numeric/math/hypot
https://en.cppreference.com/w/cpp/numeric/math/ilogb
https://en.cppreference.com/w/cpp/numeric/complex/imag2
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://en.cppreference.com/w/cpp/numeric/math/isfinite
https://en.cppreference.com/w/cpp/numeric/math/isinf

Yade Documentation, Release 3rd ed.

isnan((float)x) → bool :

Returns
bool indicating if the Real argument is NaN. Depending on compilation options
wraps ::boost::multiprecision::isnan(…) or std::isnan(…) function.

laguerre((int)n, (int)m, (float)x) → float :

Returns
Real the Laguerre polynomial of the orders n, m and the Real argu-
ment. See: <https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/
math_toolkit/sf_poly/laguerre.html>‘__

ldexp((float)x, (int)y) → float :

Returns
Multiplies a floating point value x by the number 2 raised to the exp power.
Depending on compilation options wraps ::boost::multiprecision::ldexp(…)
or std::ldexp(…) function.

lgamma((float)x) → float :

Returns
Real Computes the natural logarithm of the absolute value of the
gamma function of arg. Depending on compilation options wraps
::boost::multiprecision::lgamma(…) or std::lgamma(…) function.

log((complex)x) → complex :

Returns
the Complex natural (base e) logarithm of a complex value z with a branch
cut along the negative real axis. Depending on compilation options wraps
::boost::multiprecision::log(…) or std::log(…) function.

log((float)x) -> float :

return
the Real natural (base e) logarithm of a real value. Depending on compilation
options wraps ::boost::multiprecision::log(…) or std::log(…) function.

log10((complex)x) → complex :

Returns
the Complex (base 10) logarithm of a complex value z with a branch cut
along the negative real axis. Depending on compilation options wraps
::boost::multiprecision::log10(…) or std::log10(…) function.

log10((float)x) -> float :

return
the Real decimal (base 10) logarithm of a real value. Depending on compi-
lation options wraps ::boost::multiprecision::log10(…) or std::log10(…)
function.

log1p((float)x) → float :

Returns
the Real natural (base e) logarithm of 1+argument. Depending on compilation
options wraps ::boost::multiprecision::log1p(…) or std::log1p(…) function.

2.4. Yade modules reference 679

https://en.cppreference.com/w/cpp/numeric/math/isnan
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html
https://en.cppreference.com/w/cpp/numeric/math/ldexp
https://en.wikipedia.org/wiki/Gamma_function
https://en.cppreference.com/w/cpp/numeric/math/lgamma
https://en.cppreference.com/w/cpp/numeric/complex/log
https://en.cppreference.com/w/cpp/numeric/math/log
https://en.cppreference.com/w/cpp/numeric/complex/log10
https://en.cppreference.com/w/cpp/numeric/math/log10
https://en.cppreference.com/w/cpp/numeric/math/log1p

Yade Documentation, Release 3rd ed.

log2((float)x) → float :

Returns
the Real binary (base 2) logarithm of a real value. Depending on compilation
options wraps ::boost::multiprecision::log2(…) or std::log2(…) function.

logb((float)x) → float :

Returns
Extracts the value of the unbiased radix-independent exponent from the floating-
point argument arg, and returns it as a floating-point value. Depending on compi-
lation options wraps ::boost::multiprecision::logb(…) or std::logb(…) func-
tion.

lowest([(int)Precision=53]) → float :

Returns
Real returns the lowest (negative) finite value of the Real type. Wraps
std::numeric_limits<Real>::lowest() function.

max((float)x, (float)y) → float :

Returns
Real larger of the two arguments. Depending on compilation options wraps
::boost::multiprecision::max(…) or std::max(…) function.

max_exp2 = 1024

min((float)x, (float)y) → float :

Returns
Real smaller of the two arguments. Depending on compilation options wraps
::boost::multiprecision::min(…) or std::min(…) function.

modf((float)x) → tuple :

Returns
tuple of (Real,Real), decomposes given floating point Real into integral and
fractional parts, each having the same type and sign as x. Depending on compi-
lation options wraps ::boost::multiprecision::modf(…) or std::modf(…) func-
tion.

polar((float)x, (float)y) → complex :

Returns
Complex the polar (Complex from polar components) of the Real rho (length),
Real theta (angle) arguments in radians. Depending on compilation options
wraps ::boost::multiprecision::polar(…) or std::polar(…) function.

pow((complex)x, (complex)pow) → complex :

Returns
the Complex complex arg1 raised to the Complex power arg2. Depending on
compilation options wraps ::boost::multiprecision::pow(…) or std::pow(…)
function.

pow((float)x, (float)y) -> float :

return
Real the value of base raised to the power exp. Depending on compilation
options wraps ::boost::multiprecision::pow(…) or std::pow(…) function.

680 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/log2
https://en.cppreference.com/w/cpp/numeric/math/logb
https://en.cppreference.com/w/cpp/types/numeric_limits/lowest
https://en.cppreference.com/w/cpp/numeric/math/max
https://en.cppreference.com/w/cpp/numeric/math/min
https://en.cppreference.com/w/cpp/numeric/math/modf
https://en.cppreference.com/w/cpp/numeric/complex/polar
https://en.cppreference.com/w/cpp/numeric/complex/pow
https://en.cppreference.com/w/cpp/numeric/math/pow

Yade Documentation, Release 3rd ed.

proj((complex)x) → complex :

Returns
Complex the proj (projection of the complex number onto the Riemann sphere)
of the Complex argument in radians. Depending on compilation options wraps
::boost::multiprecision::proj(…) or std::proj(…) function.

random() → float :

Returns
Real a symmetric random number in interval (-1,1). Used by Eigen.

random((float)a, (float)b) -> float :

return
Real a random number in interval (a,b). Used by Eigen.

real((complex)x) → float :

Returns
the real part of a Complex argument. Depending on compilation options wraps
::boost::multiprecision::real(…) or std::real(…) function.

remainder((float)x, (float)y) → float :

Returns
Real the IEEE remainder of the floating point division operation x/y. Depend-
ing on compilation options wraps ::boost::multiprecision::remainder(…) or
std::remainder(…) function.

remquo((float)x, (float)y) → tuple :

Returns
tuple of (Real,long), the floating-point remainder of the division operation
x/y as the std::remainder() function does. Additionally, the sign and at least
the three of the last bits of x/y are returned, sufficient to determine the oc-
tant of the result within a period. Depending on compilation options wraps
::boost::multiprecision::remquo(…) or std::remquo(…) function.

rint((float)x) → float :

Returns
Rounds the floating-point argument arg to an integer value (in floating-point
format), using the current rounding mode. Depending on compilation options
wraps ::boost::multiprecision::rint(…) or std::rint(…) function.

round((float)x) → float :

Returns
Real the nearest integer value to arg (in floating-point format), rounding
halfway cases away from zero, regardless of the current rounding mode.. De-
pending on compilation options wraps ::boost::multiprecision::round(…)
or std::round(…) function.

roundTrip((float)x) → float :

Returns
Real returns the argument x. Can be used to convert type to native RealHP<N>
accuracy.

sgn((float)x) → int :

Returns
int the sign of the argument: -1, 0 or 1.

2.4. Yade modules reference 681

https://en.cppreference.com/w/cpp/numeric/complex/proj
https://en.cppreference.com/w/cpp/numeric/complex/real2
https://en.cppreference.com/w/cpp/numeric/math/remainder
https://en.cppreference.com/w/cpp/numeric/math/remquo
https://en.cppreference.com/w/cpp/numeric/fenv/FE_round
https://en.cppreference.com/w/cpp/numeric/math/rint
https://en.cppreference.com/w/cpp/numeric/math/round

Yade Documentation, Release 3rd ed.

sign((float)x) → int :

Returns
int the sign of the argument: -1, 0 or 1.

sin((complex)x) → complex :

Returns
Complex the sine of the Complex argument in radians. Depending on compilation
options wraps ::boost::multiprecision::sin(…) or std::sin(…) function.

sin((float)x) -> float :

return
Real the sine of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::sin(…) or std::sin(…) function.

sinh((complex)x) → complex :

Returns
Complex the hyperbolic sine of the Complex argument in radians. Depending on
compilation options wraps ::boost::multiprecision::sinh(…) or std::sinh(…)
function.

sinh((float)x) -> float :

return
Real the hyperbolic sine of the Real argument in radians. Depending on com-
pilation options wraps ::boost::multiprecision::sinh(…) or std::sinh(…)
function.

smallest_positive() → float :

Returns
Real the smallest number greater than zero. Wraps std::numeric_lim-
its<Real>::min()

sphericalHarmonic((int)l, (int)m, (float)theta, (float)phi) → complex :

Returns
Real the spherical harmonic polynomial of the orders l (unsigned
int), m (signed int) and the Real arguments theta and phi. See:
<https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/
sf_poly/sph_harm.html>‘__

sqrt((complex)x) → complex :

Returns
the Complex square root of Complex argument. Depending on compilation options
wraps ::boost::multiprecision::sqrt(…) or std::sqrt(…) function.

sqrt((float)x) -> float :

return
Real square root of the argument. Depending on compilation options wraps
::boost::multiprecision::sqrt(…) or std::sqrt(…) function.

squaredNorm((complex)x) → float :

Returns
Real the norm (squared magnitude) of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::norm(…) or
std::norm(…) function.

682 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/complex/sin
https://en.cppreference.com/w/cpp/numeric/math/sin
https://en.cppreference.com/w/cpp/numeric/complex/sinh
https://en.cppreference.com/w/cpp/numeric/math/sinh
https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html
https://en.cppreference.com/w/cpp/numeric/complex/sqrt
https://en.cppreference.com/w/cpp/numeric/math/sqrt
https://en.cppreference.com/w/cpp/numeric/complex/norm

Yade Documentation, Release 3rd ed.

tan((complex)x) → complex :

Returns
Complex the tangent of the Complex argument in radians. Depending on compila-
tion options wraps ::boost::multiprecision::tan(…) or std::tan(…) function.

tan((float)x) -> float :

return
Real the tangent of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::tan(…) or std::tan(…) function.

tanh((complex)x) → complex :

Returns
Complex the hyperbolic tangent of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::tanh(…) or
std::tanh(…) function.

tanh((float)x) -> float :

return
Real the hyperbolic tangent of the Real argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::tanh(…) or
std::tanh(…) function.

testArray() → None :
This function tests call to std::vector::data(…) function in order to extract the array.

testCgalNumTraits = True

testConstants() → None :
This function tests lib/high-precision/Constants.hpp, the yade::math::ConstantsHP<N>, for-
mer yade::Mathr constants.

tgamma((float)x) → float :

Returns
Real Computes the gamma function of arg. Depending on compilation options
wraps ::boost::multiprecision::tgamma(…) or std::tgamma(…) function.

toDouble((float)x) → float :

Returns
float converts Real type to double and returns a native python float.

toHP1((float)x) → float :

Returns
RealHP<1> converted from argument RealHP<1> as a result of static_-
cast<RealHP<1>>(arg).

toHP2((float)x) → Real :

Returns
RealHP<2> converted from argument RealHP<1> as a result of static_-
cast<RealHP<2>>(arg).

toInt((float)x) → int :

Returns
int converts Real type to int and returns a native python int.

2.4. Yade modules reference 683

https://en.cppreference.com/w/cpp/numeric/complex/tan
https://en.cppreference.com/w/cpp/numeric/math/tan
https://en.cppreference.com/w/cpp/numeric/complex/tanh
https://en.cppreference.com/w/cpp/numeric/math/tanh
https://en.wikipedia.org/wiki/Gamma_function
https://en.cppreference.com/w/cpp/numeric/math/tgamma

Yade Documentation, Release 3rd ed.

toLong((float)x) → int :

Returns
int converts Real type to long int and returns a native python int.

toLongDouble((float)x) → float :

Returns
float converts Real type to long double and returns a native python float.

trunc((float)x) → float :

Returns
Real the nearest integer not greater in magnitude than arg. Depending on com-
pilation options wraps ::boost::multiprecision::trunc(…) or std::trunc(…)
function.

class yade._math.HP2

AddCost = 2

CGAL_Is_finite((Real)x) → bool :
CGAL’s function Is_finite, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
bool indicating if the Real argument is finite.

CGAL_Is_valid((Real)x) → bool :
CGAL’s function Is_valid, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
bool indicating if the Real argument is valid. Checks are performed against NaN
and Inf.

CGAL_Kth_root((int)arg1, (Real)x) → Real :
CGAL’s function Kth_root, as described in CGAL algebraic foundations exposed to python
for testing of CGAL numerical traits.

Returns
Real the k-th root of argument.

CGAL_Sgn((Real)x) → int :
CGAL’s function Sgn, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
sign of the argument, can be -1, 0 or 1. Not very useful in python. In C++ it is
useful to obtain a sign of an expression with exact accuracy, CGAL starts using
MPFR internally for this when the approximate interval contains zero inside it.

CGAL_Sqrt((Real)x) → Real :
CGAL’s function Sqrt, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
Real the square root of argument.

CGAL_Square((Real)x) → Real :
CGAL’s function Square, as described in CGAL algebraic foundations exposed to python for
testing of CGAL numerical traits.

Returns
Real the argument squared.

684 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/trunc
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207

Yade Documentation, Release 3rd ed.

CGAL_To_interval((Real)x) → tuple :
CGAL’s function To_interval, as described in CGAL algebraic foundations exposed to
python for testing of CGAL numerical traits.

Returns
(double,double) tuple inside which the high-precision Real argument resides.

CGAL_simpleTest() → Real :
Tests a simple CGAL calculation. Distance between plane and point, uses CGAL’s sqrt and
pow.

Returns
3.0

Catalan([(int)Precision=113]) → Real :

Returns
Real The catalan constant, exposed to python for testing of eigen numerical
traits.

class Complex
The Complex type.

__init__((object)arg1) → None
__init__((object)arg1, (object)obj) -> object

__init__((object)arg1, (complex)z) -> object

__init__((object)arg1, (float)d) -> object

__init__((object)arg1, (int)i) -> object

__init__((object)arg1, (str)str) -> object

__init__((object)arg1, (object)re, (object)im) -> object

__init__((object)arg1, (float)a, (float)b) -> object

__init__((object)arg1, (int)i, (int)j) -> object

__init__((object)arg1, (str)str1, (str)str2) -> object

property imag

levelComplexHPMethod((Complex)arg1) → int

property levelHP

property real

ComplexAddCost = 4

ComplexMulCost = 12

ComplexReadCost = 2

Euler([(int)Precision=113]) → Real :

Returns
Real The Euler–Mascheroni constant, exposed to python for testing of eigen
numerical traits.

IsComplex = 0

IsInteger = 0

IsSigned = 1

2.4. Yade modules reference 685

https://doc.cgal.org/latest/Algebraic_foundations/index.html
https://doc.cgal.org/latest/Algebraic_foundations/group__PkgAlgebraicFoundationsRef.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/ff600a80018d21c03626c720cda08967b043c1c8/py/tests/testMath.py#L207
https://en.wikipedia.org/wiki/Catalan%27s_constant
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp

Yade Documentation, Release 3rd ed.

Log2([(int)Precision=113]) → Real :

Returns
Real natural logarithm of 2, exposed to python for testing of eigen numerical
traits.

MulCost = 2

Pi([(int)Precision=113]) → Real :

Returns
Real The � constant, exposed to python for testing of eigen numerical traits.

ReadCost = 1

class Real
The Real type.

__init__((object)arg1) → None
__init__((object)arg1, (object)obj) -> object

__init__((object)arg1, (float)d) -> object

__init__((object)arg1, (int)i) -> object

__init__((object)arg1, (str)str) -> object

property imag

property levelHP

levelRealHPMethod((Real)arg1) → int

property real

sqrt((Real)arg1) → Real

RequireInitialization = 1

class Var
The Var class is used to test to/from python converters for arbitrary precision Real

property cpl
one Complex variable to test reading from and writing to it.

property val
one Real variable for testing.

abs((Complex)x) → Real :

Returns
the Real absolute value of the Complex argument. Depending on compilation
options wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

abs((Real)x) -> Real :

return
the Real absolute value of the Real argument. Depending on compilation
options wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

acos((Complex)x) → Complex :

Returns
Complex the arc-cosine of the Complex argument in radians. Depending on compi-
lation options wraps ::boost::multiprecision::acos(…) or std::acos(…) func-
tion.

686 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.wikipedia.org/wiki/Pi
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.cppreference.com/w/cpp/numeric/complex/abs
https://en.cppreference.com/w/cpp/numeric/math/abs
https://en.cppreference.com/w/cpp/numeric/complex/acos

Yade Documentation, Release 3rd ed.

acos((Real)x) -> Real :

return
Real the arcus cosine of the argument. Depending on compilation options wraps
::boost::multiprecision::acos(…) or std::acos(…) function.

acosh((Complex)x) → Complex :

Returns
Complex the arc-hyperbolic cosine of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::acosh(…)
or std::acosh(…) function.

acosh((Real)x) -> Real :

return
Real the hyperbolic arcus cosine of the argument. Depending on compilation
options wraps ::boost::multiprecision::acosh(…) or std::acosh(…) func-
tion.

arg((Complex)x) → Real :

Returns
Real the arg (Phase angle of complex in radians) of the Complex
argument in radians. Depending on compilation options wraps
::boost::multiprecision::arg(…) or std::arg(…) function.

asin((Complex)x) → Complex :

Returns
Complex the arc-sine of the Complex argument in radians. Depending on compi-
lation options wraps ::boost::multiprecision::asin(…) or std::asin(…) func-
tion.

asin((Real)x) -> Real :

return
Real the arcus sine of the argument. Depending on compilation options wraps
::boost::multiprecision::asin(…) or std::asin(…) function.

asinh((Complex)x) → Complex :

Returns
Complex the arc-hyperbolic sine of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::asinh(…)
or std::asinh(…) function.

asinh((Real)x) -> Real :

return
Real the hyperbolic arcus sine of the argument. Depending on compilation op-
tions wraps ::boost::multiprecision::asinh(…) or std::asinh(…) function.

atan((Complex)x) → Complex :

Returns
Complex the arc-tangent of the Complex argument in radians. Depending on
compilation options wraps ::boost::multiprecision::atan(…) or std::atan(…)
function.

atan((Real)x) -> Real :

2.4. Yade modules reference 687

https://en.cppreference.com/w/cpp/numeric/math/acos
https://en.cppreference.com/w/cpp/numeric/complex/acosh
https://en.cppreference.com/w/cpp/numeric/math/acosh
https://en.cppreference.com/w/cpp/numeric/complex/arg
https://en.cppreference.com/w/cpp/numeric/complex/asin
https://en.cppreference.com/w/cpp/numeric/math/asin
https://en.cppreference.com/w/cpp/numeric/complex/asinh
https://en.cppreference.com/w/cpp/numeric/math/asinh
https://en.cppreference.com/w/cpp/numeric/complex/atan

Yade Documentation, Release 3rd ed.

return
Real the arcus tangent of the argument. Depending on compilation options
wraps ::boost::multiprecision::atan(…) or std::atan(…) function.

atan2((Real)x, (Real)y) → Real :

Returns
Real the arc tangent of y/x using the signs of the arguments x and y to
determine the correct quadrant. Depending on compilation options wraps
::boost::multiprecision::atan2(…) or std::atan2(…) function.

atanh((Complex)x) → Complex :

Returns
Complex the arc-hyperbolic tangent of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::atanh(…)
or std::atanh(…) function.

atanh((Real)x) -> Real :

return
Real the hyperbolic arcus tangent of the argument. Depending on compilation
options wraps ::boost::multiprecision::atanh(…) or std::atanh(…) func-
tion.

cbrt((Real)x) → Real :

Returns
Real cubic root of the argument. Depending on compilation options wraps
::boost::multiprecision::cbrt(…) or std::cbrt(…) function.

ceil((Real)x) → Real :

Returns
Real Computes the smallest integer value not less than arg. Depending on compi-
lation options wraps ::boost::multiprecision::ceil(…) or std::ceil(…) func-
tion.

conj((Complex)x) → Complex :

Returns
the complex conjugation a Complex argument. Depending on compilation options
wraps ::boost::multiprecision::conj(…) or std::conj(…) function.

cos((Complex)x) → Complex :

Returns
Complex the cosine of the Complex argument in radians. Depending on compila-
tion options wraps ::boost::multiprecision::cos(…) or std::cos(…) function.

cos((Real)x) -> Real :

return
Real the cosine of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::cos(…) or std::cos(…) function.

cosh((Complex)x) → Complex :

Returns
Complex the hyperbolic cosine of the Complex argument in radians. Depending on
compilation options wraps ::boost::multiprecision::cosh(…) or std::cosh(…)
function.

688 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/atan
https://en.cppreference.com/w/cpp/numeric/math/atan2
https://en.cppreference.com/w/cpp/numeric/complex/atanh
https://en.cppreference.com/w/cpp/numeric/math/atanh
https://en.cppreference.com/w/cpp/numeric/math/cbrt
https://en.cppreference.com/w/cpp/numeric/math/ceil
https://en.cppreference.com/w/cpp/numeric/complex/conj
https://en.cppreference.com/w/cpp/numeric/complex/cos
https://en.cppreference.com/w/cpp/numeric/math/cos
https://en.cppreference.com/w/cpp/numeric/complex/cosh

Yade Documentation, Release 3rd ed.

cosh((Real)x) -> Real :

return
Real the hyperbolic cosine of the Real argument in radians. Depending on com-
pilation options wraps ::boost::multiprecision::cosh(…) or std::cosh(…)
function.

cylBesselJ((int)k, (Real)x) → Real :

Returns
Real the Bessel Functions of the First Kind of the order k and the Real ar-
gument. See: <https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/
math_toolkit/bessel/bessel_first.html>‘__

defprec = 113

dummy_precision() → Real :

Returns
similar to the function epsilon, but assumes that last 10% of bits contain the
numerical error only. This is sometimes used by Eigen when calling isEqualFuzzy
to determine if values differ a lot or if they are vaguely close to each other.

epsilon([(int)Precision=113]) → Real :

Returns
Real returns the difference between 1.0 and the next representable value of the
Real type. Wraps std::numeric_limits<Real>::epsilon() function.

epsilon((Real)x) -> Real :

return
Real returns the difference between 1.0 and the next representable value of the
Real type. Wraps std::numeric_limits<Real>::epsilon() function.

erf((Real)x) → Real :

Returns
Real Computes the error function of argument. Depending on compilation op-
tions wraps ::boost::multiprecision::erf(…) or std::erf(…) function.

erfc((Real)x) → Real :

Returns
Real Computes the complementary error function of argument,
that is 1.0-erf(arg). Depending on compilation options wraps
::boost::multiprecision::erfc(…) or std::erfc(…) function.

exp((Complex)x) → Complex :

Returns
the base e exponential of a Complex argument. Depending on compilation options
wraps ::boost::multiprecision::exp(…) or std::exp(…) function.

exp((Real)x) -> Real :

return
the base e exponential of a Real argument. Depending on compilation options
wraps ::boost::multiprecision::exp(…) or std::exp(…) function.

2.4. Yade modules reference 689

https://en.cppreference.com/w/cpp/numeric/math/cosh
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://en.wikipedia.org/wiki/Error_function
https://en.cppreference.com/w/cpp/numeric/math/erf
https://en.wikipedia.org/wiki/Error_function#Complementary_error_function
https://en.cppreference.com/w/cpp/numeric/math/erfc
https://en.cppreference.com/w/cpp/numeric/complex/exp
https://en.cppreference.com/w/cpp/numeric/math/exp

Yade Documentation, Release 3rd ed.

exp2((Real)x) → Real :

Returns
the base 2 exponential of a Real argument. Depending on compilation options
wraps ::boost::multiprecision::exp2(…) or std::exp2(…) function.

expm1((Real)x) → Real :

Returns
the base e exponential of a Real argument minus 1.0. Depending on compilation
options wraps ::boost::multiprecision::expm1(…) or std::expm1(…) function.

fabs((Real)x) → Real :

Returns
the Real absolute value of the argument. Depending on compilation options
wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

factorial((int)x) → Real :

Returns
Real the factorial of the Real argument. See: <https://www.boost.org/doc/libs/
1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html>‘__

floor((Real)x) → Real :

Returns
Real Computes the largest integer value not greater than arg. Depending on com-
pilation options wraps ::boost::multiprecision::floor(…) or std::floor(…)
function.

fma((Real)x, (Real)y, (Real)z) → Real :

Returns
Real - computes (x*y) + z as if to infinite precision and rounded only
once to fit the result type. Depending on compilation options wraps
::boost::multiprecision::fma(…) or std::fma(…) function.

fmod((Real)x, (Real)y) → Real :

Returns
Real the floating-point remainder of the division operation x/y of
the arguments x and y. Depending on compilation options wraps
::boost::multiprecision::fmod(…) or std::fmod(…) function.

frexp((Real)x) → tuple :

Returns
tuple of (Real,int), decomposes given floating point Real argument into a nor-
malized fraction and an integral power of two. Depending on compilation options
wraps ::boost::multiprecision::frexp(…) or std::frexp(…) function.

fromBits((str)bits[, (int)exp=0[, (int)sign=1]]) → Real :

Parameters

• bits – str - a string containing ‘0’, ‘1’ characters.

• exp – int - the binary exponent which shifts the bits.

• sign – int - the sign, should be -1 or +1, but it is not checked. It multiplies
the result when construction from bits is finished.

Returns
RealHP<N> constructed from string containing ‘0’, ‘1’ bits. This is for debugging
purposes, rather slow.

690 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/exp2
https://en.cppreference.com/w/cpp/numeric/math/expm1
https://en.cppreference.com/w/cpp/numeric/math/fabs
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html
https://en.cppreference.com/w/cpp/numeric/math/floor
https://en.cppreference.com/w/cpp/numeric/math/fma
https://en.cppreference.com/w/cpp/numeric/math/fmod
https://en.cppreference.com/w/cpp/numeric/math/frexp

Yade Documentation, Release 3rd ed.

getDecomposedReal((Real)x) → dict :

Returns
dict - the dictionary with the debug information how the DecomposedReal class
sees this type. This is for debugging purposes, rather slow. Includes result from
fpclassify function call, a binary representation and other useful info. See also
fromBits.

getDemangledName() → str :

Returns
string - the demangled C++ typnename of RealHP<N>.

getDemangledNameComplex() → str :

Returns
string - the demangled C++ typnename of ComplexHP<N>.

getFloatDistanceULP((Real)arg1, (Real)arg2) → Real :

Returns
an integer value stored in RealHP<N>, the ULP distance calculated by
boost::math::float_distance, also see Floating-point Comparison and Prof. Ka-
han paper about this topic.

Warning: The returned value is the directed distance between two arguments, this
means that it can be negative.

getRawBits((Real)x) → str :

Returns
string - the raw bits in memory representing this type. Be careful: it only
checks the system endianness and either prints bytes in reverse order or not.
Does not make any attempts to further interpret the bits of: sign, exponent
or significand (on a typical x86 processor they are printed in that order), and
different processors might store them differently. It is not useful for types which
internally use a pointer because for them this function prints not the floating
point number but a pointer. This is for debugging purposes.

hasInfinityNan = True

highest([(int)Precision=113]) → Real :

Returns
Real returns the largest finite value of the Real type. Wraps std::numeric_-
limits<Real>::max() function.

hypot((Real)x, (Real)y) → Real :

Returns
Real the square root of the sum of the squares of x and y, without undue over-
flow or underflow at intermediate stages of the computation. Depending on com-
pilation options wraps ::boost::multiprecision::hypot(…) or std::hypot(…)
function.

ilogb((Real)x) → Real :

Returns
Real extracts the value of the unbiased exponent from the floating-point argument
arg, and returns it as a signed integer value. Depending on compilation options
wraps ::boost::multiprecision::ilogb(…) or std::ilogb(…) function.

2.4. Yade modules reference 691

https://en.cppreference.com/w/cpp/numeric/math/fpclassify
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/next_float/float_distance.html
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/float_comparison.html
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://en.cppreference.com/w/cpp/types/numeric_limits/max
https://en.cppreference.com/w/cpp/types/numeric_limits/max
https://en.cppreference.com/w/cpp/numeric/math/hypot
https://en.cppreference.com/w/cpp/numeric/math/ilogb

Yade Documentation, Release 3rd ed.

imag((Complex)x) → Real :

Returns
the imag part of a Complex argument. Depending on compilation options wraps
::boost::multiprecision::imag(…) or std::imag(…) function.

isApprox((Real)a, (Real)b, (Real)eps) → bool :

Returns
bool, True if a is approximately equal b with provided eps, see also here

isApproxOrLessThan((Real)a, (Real)b, (Real)eps) → bool :

Returns
bool, True if a is approximately less than or equal b with provided eps, see also
here

isEqualFuzzy((Real)arg1, (Real)arg2, (Real)arg3) → bool :

Returns
bool, True if the absolute difference between two numbers is smaller than
std::numeric_limits<Real>::epsilon()

isMuchSmallerThan((Real)a, (Real)b, (Real)eps) → bool :

Returns
bool, True if a is less than b with provided eps, see also here

isfinite((Real)x) → bool :

Returns
bool indicating if the Real argument is Inf. Depending on compilation options
wraps ::boost::multiprecision::isfinite(…) or std::isfinite(…) function.

isinf((Real)x) → bool :

Returns
bool indicating if the Real argument is Inf. Depending on compilation options
wraps ::boost::multiprecision::isinf(…) or std::isinf(…) function.

isnan((Real)x) → bool :

Returns
bool indicating if the Real argument is NaN. Depending on compilation options
wraps ::boost::multiprecision::isnan(…) or std::isnan(…) function.

laguerre((int)n, (int)m, (Real)x) → Real :

Returns
Real the Laguerre polynomial of the orders n, m and the Real argu-
ment. See: <https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/
math_toolkit/sf_poly/laguerre.html>‘__

ldexp((Real)x, (int)y) → Real :

Returns
Multiplies a floating point value x by the number 2 raised to the exp power.
Depending on compilation options wraps ::boost::multiprecision::ldexp(…)
or std::ldexp(…) function.

lgamma((Real)x) → Real :

Returns
Real Computes the natural logarithm of the absolute value of the
gamma function of arg. Depending on compilation options wraps
::boost::multiprecision::lgamma(…) or std::lgamma(…) function.

692 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/complex/imag2
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://en.cppreference.com/w/cpp/numeric/math/isfinite
https://en.cppreference.com/w/cpp/numeric/math/isinf
https://en.cppreference.com/w/cpp/numeric/math/isnan
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html
https://en.cppreference.com/w/cpp/numeric/math/ldexp
https://en.wikipedia.org/wiki/Gamma_function
https://en.cppreference.com/w/cpp/numeric/math/lgamma

Yade Documentation, Release 3rd ed.

log((Complex)x) → Complex :

Returns
the Complex natural (base e) logarithm of a complex value z with a branch
cut along the negative real axis. Depending on compilation options wraps
::boost::multiprecision::log(…) or std::log(…) function.

log((Real)x) -> Real :

return
the Real natural (base e) logarithm of a real value. Depending on compilation
options wraps ::boost::multiprecision::log(…) or std::log(…) function.

log10((Complex)x) → Complex :

Returns
the Complex (base 10) logarithm of a complex value z with a branch cut
along the negative real axis. Depending on compilation options wraps
::boost::multiprecision::log10(…) or std::log10(…) function.

log10((Real)x) -> Real :

return
the Real decimal (base 10) logarithm of a real value. Depending on compi-
lation options wraps ::boost::multiprecision::log10(…) or std::log10(…)
function.

log1p((Real)x) → Real :

Returns
the Real natural (base e) logarithm of 1+argument. Depending on compilation
options wraps ::boost::multiprecision::log1p(…) or std::log1p(…) function.

log2((Real)x) → Real :

Returns
the Real binary (base 2) logarithm of a real value. Depending on compilation
options wraps ::boost::multiprecision::log2(…) or std::log2(…) function.

logb((Real)x) → Real :

Returns
Extracts the value of the unbiased radix-independent exponent from the floating-
point argument arg, and returns it as a floating-point value. Depending on compi-
lation options wraps ::boost::multiprecision::logb(…) or std::logb(…) func-
tion.

lowest([(int)Precision=113]) → Real :

Returns
Real returns the lowest (negative) finite value of the Real type. Wraps
std::numeric_limits<Real>::lowest() function.

max((Real)x, (Real)y) → Real :

Returns
Real larger of the two arguments. Depending on compilation options wraps
::boost::multiprecision::max(…) or std::max(…) function.

max_exp2 = 16384

2.4. Yade modules reference 693

https://en.cppreference.com/w/cpp/numeric/complex/log
https://en.cppreference.com/w/cpp/numeric/math/log
https://en.cppreference.com/w/cpp/numeric/complex/log10
https://en.cppreference.com/w/cpp/numeric/math/log10
https://en.cppreference.com/w/cpp/numeric/math/log1p
https://en.cppreference.com/w/cpp/numeric/math/log2
https://en.cppreference.com/w/cpp/numeric/math/logb
https://en.cppreference.com/w/cpp/types/numeric_limits/lowest
https://en.cppreference.com/w/cpp/numeric/math/max

Yade Documentation, Release 3rd ed.

min((Real)x, (Real)y) → Real :

Returns
Real smaller of the two arguments. Depending on compilation options wraps
::boost::multiprecision::min(…) or std::min(…) function.

modf((Real)x) → tuple :

Returns
tuple of (Real,Real), decomposes given floating point Real into integral and
fractional parts, each having the same type and sign as x. Depending on compi-
lation options wraps ::boost::multiprecision::modf(…) or std::modf(…) func-
tion.

polar((Real)x, (Real)y) → Complex :

Returns
Complex the polar (Complex from polar components) of the Real rho (length),
Real theta (angle) arguments in radians. Depending on compilation options
wraps ::boost::multiprecision::polar(…) or std::polar(…) function.

pow((Complex)x, (Complex)pow) → Complex :

Returns
the Complex complex arg1 raised to the Complex power arg2. Depending on
compilation options wraps ::boost::multiprecision::pow(…) or std::pow(…)
function.

pow((Real)x, (Real)y) -> Real :

return
Real the value of base raised to the power exp. Depending on compilation
options wraps ::boost::multiprecision::pow(…) or std::pow(…) function.

proj((Complex)x) → Complex :

Returns
Complex the proj (projection of the complex number onto the Riemann sphere)
of the Complex argument in radians. Depending on compilation options wraps
::boost::multiprecision::proj(…) or std::proj(…) function.

random() → Real :

Returns
Real a symmetric random number in interval (-1,1). Used by Eigen.

random((Real)a, (Real)b) -> Real :

return
Real a random number in interval (a,b). Used by Eigen.

real((Complex)x) → Real :

Returns
the real part of a Complex argument. Depending on compilation options wraps
::boost::multiprecision::real(…) or std::real(…) function.

remainder((Real)x, (Real)y) → Real :

Returns
Real the IEEE remainder of the floating point division operation x/y. Depend-
ing on compilation options wraps ::boost::multiprecision::remainder(…) or
std::remainder(…) function.

694 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/min
https://en.cppreference.com/w/cpp/numeric/math/modf
https://en.cppreference.com/w/cpp/numeric/complex/polar
https://en.cppreference.com/w/cpp/numeric/complex/pow
https://en.cppreference.com/w/cpp/numeric/math/pow
https://en.cppreference.com/w/cpp/numeric/complex/proj
https://en.cppreference.com/w/cpp/numeric/complex/real2
https://en.cppreference.com/w/cpp/numeric/math/remainder

Yade Documentation, Release 3rd ed.

remquo((Real)x, (Real)y) → tuple :

Returns
tuple of (Real,long), the floating-point remainder of the division operation
x/y as the std::remainder() function does. Additionally, the sign and at least
the three of the last bits of x/y are returned, sufficient to determine the oc-
tant of the result within a period. Depending on compilation options wraps
::boost::multiprecision::remquo(…) or std::remquo(…) function.

rint((Real)x) → Real :

Returns
Rounds the floating-point argument arg to an integer value (in floating-point
format), using the current rounding mode. Depending on compilation options
wraps ::boost::multiprecision::rint(…) or std::rint(…) function.

round((Real)x) → Real :

Returns
Real the nearest integer value to arg (in floating-point format), rounding
halfway cases away from zero, regardless of the current rounding mode.. De-
pending on compilation options wraps ::boost::multiprecision::round(…)
or std::round(…) function.

roundTrip((Real)x) → Real :

Returns
Real returns the argument x. Can be used to convert type to native RealHP<N>
accuracy.

sgn((Real)x) → int :

Returns
int the sign of the argument: -1, 0 or 1.

sign((Real)x) → int :

Returns
int the sign of the argument: -1, 0 or 1.

sin((Complex)x) → Complex :

Returns
Complex the sine of the Complex argument in radians. Depending on compilation
options wraps ::boost::multiprecision::sin(…) or std::sin(…) function.

sin((Real)x) -> Real :

return
Real the sine of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::sin(…) or std::sin(…) function.

sinh((Complex)x) → Complex :

Returns
Complex the hyperbolic sine of the Complex argument in radians. Depending on
compilation options wraps ::boost::multiprecision::sinh(…) or std::sinh(…)
function.

sinh((Real)x) -> Real :

return
Real the hyperbolic sine of the Real argument in radians. Depending on com-
pilation options wraps ::boost::multiprecision::sinh(…) or std::sinh(…)
function.

2.4. Yade modules reference 695

https://en.cppreference.com/w/cpp/numeric/math/remquo
https://en.cppreference.com/w/cpp/numeric/fenv/FE_round
https://en.cppreference.com/w/cpp/numeric/math/rint
https://en.cppreference.com/w/cpp/numeric/math/round
https://en.cppreference.com/w/cpp/numeric/complex/sin
https://en.cppreference.com/w/cpp/numeric/math/sin
https://en.cppreference.com/w/cpp/numeric/complex/sinh
https://en.cppreference.com/w/cpp/numeric/math/sinh

Yade Documentation, Release 3rd ed.

smallest_positive() → Real :

Returns
Real the smallest number greater than zero. Wraps std::numeric_lim-
its<Real>::min()

sphericalHarmonic((int)l, (int)m, (Real)theta, (Real)phi) → Complex :

Returns
Real the spherical harmonic polynomial of the orders l (unsigned
int), m (signed int) and the Real arguments theta and phi. See:
<https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/
sf_poly/sph_harm.html>‘__

sqrt((Complex)x) → Complex :

Returns
the Complex square root of Complex argument. Depending on compilation options
wraps ::boost::multiprecision::sqrt(…) or std::sqrt(…) function.

sqrt((Real)x) -> Real :

return
Real square root of the argument. Depending on compilation options wraps
::boost::multiprecision::sqrt(…) or std::sqrt(…) function.

squaredNorm((Complex)x) → Real :

Returns
Real the norm (squared magnitude) of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::norm(…) or
std::norm(…) function.

tan((Complex)x) → Complex :

Returns
Complex the tangent of the Complex argument in radians. Depending on compila-
tion options wraps ::boost::multiprecision::tan(…) or std::tan(…) function.

tan((Real)x) -> Real :

return
Real the tangent of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::tan(…) or std::tan(…) function.

tanh((Complex)x) → Complex :

Returns
Complex the hyperbolic tangent of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::tanh(…) or
std::tanh(…) function.

tanh((Real)x) -> Real :

return
Real the hyperbolic tangent of the Real argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::tanh(…) or
std::tanh(…) function.

testArray() → None :
This function tests call to std::vector::data(…) function in order to extract the array.

696 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html
https://en.cppreference.com/w/cpp/numeric/complex/sqrt
https://en.cppreference.com/w/cpp/numeric/math/sqrt
https://en.cppreference.com/w/cpp/numeric/complex/norm
https://en.cppreference.com/w/cpp/numeric/complex/tan
https://en.cppreference.com/w/cpp/numeric/math/tan
https://en.cppreference.com/w/cpp/numeric/complex/tanh
https://en.cppreference.com/w/cpp/numeric/math/tanh

Yade Documentation, Release 3rd ed.

testCgalNumTraits = True

testConstants() → None :
This function tests lib/high-precision/Constants.hpp, the yade::math::ConstantsHP<N>, for-
mer yade::Mathr constants.

tgamma((Real)x) → Real :

Returns
Real Computes the gamma function of arg. Depending on compilation options
wraps ::boost::multiprecision::tgamma(…) or std::tgamma(…) function.

toDouble((Real)x) → float :

Returns
float converts Real type to double and returns a native python float.

toHP1((Real)x) → float :

Returns
RealHP<1> converted from argument RealHP<2> as a result of static_-
cast<RealHP<1>>(arg).

toHP2((Real)x) → Real :

Returns
RealHP<2> converted from argument RealHP<2> as a result of static_-
cast<RealHP<2>>(arg).

toInt((Real)x) → int :

Returns
int converts Real type to int and returns a native python int.

toLong((Real)x) → int :

Returns
int converts Real type to long int and returns a native python int.

toLongDouble((Real)x) → float :

Returns
float converts Real type to long double and returns a native python float.

trunc((Real)x) → Real :

Returns
Real the nearest integer not greater in magnitude than arg. Depending on com-
pilation options wraps ::boost::multiprecision::trunc(…) or std::trunc(…)
function.

yade._math.Log2([(int)Precision=53]) → float

Returns
Real natural logarithm of 2, exposed to python for testing of eigen numerical traits.

yade._math.Pi([(int)Precision=53]) → float

Returns
Real The � constant, exposed to python for testing of eigen numerical traits.

class yade._math.RealHPConfig
RealHPConfig class provides information about RealHP<N> type.

Variables

2.4. Yade modules reference 697

https://en.wikipedia.org/wiki/Gamma_function
https://en.cppreference.com/w/cpp/numeric/math/tgamma
https://en.cppreference.com/w/cpp/numeric/math/trunc
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://en.wikipedia.org/wiki/Pi
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp

Yade Documentation, Release 3rd ed.

• extraStringDigits10 – this static variable allows to control how many extra
digits to use when converting to decimal strings. Assign a different value to it to
affect the string conversion done in C++ � python conversions as well as in all
other conversions. Be careful, because values smaller than 3 can fail the round
trip conversion test.

• isFloat128Broken – provides runtime information if Yade was compiled with
g++ version < 9.2.1 and thus boost::multiprecision::float128 cannot work.

• isEnabledRealHP – provides runtime information RealHP<N> is available for N
higher than 1.

• workaroundSlowBoostBinFloat – boost::multiprecision::cpp_bin_float
has some problem that importing it in python is very slow when these functions
are exported: erf, erfc, lgamma, tgamma. In such case the python import yade.
math can take more than minute. The workaround is to make them unavailable
in python for higher N values. See invocation of IfConstexprForSlowFunctions
in _math.cpp. This variable contains the highest N in which these functions are
available. It equals to highest N when boost::multiprecision::cpp_bin_-
float is not used.

extraStringDigits10 = 4

getDigits10((int)N) → int :
This is a yade.math.RealHPConfig diagnostic function.

Parameters
N – int - the value of N in RealHP<N>.

Returns
the int representing std::numeric_limits<RealHP<N>>::digits10

getDigits2((int)N) → int :
This is a yade.math.RealHPConfig diagnostic function.

Parameters
N – int - the value of N in RealHP<N>.

Returns
the int representing std::numeric_limits<RealHP<N>>::digits, which corre-
sponds to the number of significand bits used by this type.

getSupportedByEigenCgal() → tuple :

Returns
the tuple containing N from RealHP<N> precisions supported by Eigen and CGAL

getSupportedByMinieigen() → tuple :

Returns
the tuple containing N from RealHP<N> precisions supported by minieigenHP

isEnabledRealHP = True

isFloat128Broken = False

isFloat128Present = True

workaroundSlowBoostBinFloat = 2

class yade._math.Var
The Var class is used to test to/from python converters for arbitrary precision Real

property cpl
one Complex variable to test reading from and writing to it.

698 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/ToFromPythonConverter.hpp#L37
https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/RealIO.hpp#L34
https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/RealIO.hpp#L34
https://gitlab.com/yade-dev/trunk/blob/61fc7f208027344e27dc832052b3f8c911a5909e/py/high-precision/_math.cpp#L672

Yade Documentation, Release 3rd ed.

property val
one Real variable for testing.

yade._math.abs((complex)x) → float

return
the Real absolute value of the Complex argument. Depending on compilation
options wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

abs((float)x) → float :

return
the Real absolute value of the Real argument. Depending on compilation options
wraps ::boost::multiprecision::abs(…) or std::abs(…) function.

yade._math.acos((complex)x) → complex

return
Complex the arc-cosine of the Complex argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::acos(…) or
std::acos(…) function.

acos((float)x) → float :

return
Real the arcus cosine of the argument. Depending on compilation options wraps
::boost::multiprecision::acos(…) or std::acos(…) function.

yade._math.acosh((complex)x) → complex

return
Complex the arc-hyperbolic cosine of the Complex argu-
ment in radians. Depending on compilation options wraps
::boost::multiprecision::acosh(…) or std::acosh(…) function.

acosh((float)x) → float :

return
Real the hyperbolic arcus cosine of the argument. Depending on compilation
options wraps ::boost::multiprecision::acosh(…) or std::acosh(…) function.

yade._math.arg((complex)x) → float

Returns
Real the arg (Phase angle of complex in radians) of the Complex argument in radians.
Depending on compilation options wraps ::boost::multiprecision::arg(…) or
std::arg(…) function.

yade._math.asin((complex)x) → complex

return
Complex the arc-sine of the Complex argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::asin(…) or
std::asin(…) function.

asin((float)x) → float :

return
Real the arcus sine of the argument. Depending on compilation options wraps
::boost::multiprecision::asin(…) or std::asin(…) function.

2.4. Yade modules reference 699

https://en.cppreference.com/w/cpp/numeric/complex/abs
https://en.cppreference.com/w/cpp/numeric/math/abs
https://en.cppreference.com/w/cpp/numeric/complex/acos
https://en.cppreference.com/w/cpp/numeric/math/acos
https://en.cppreference.com/w/cpp/numeric/complex/acosh
https://en.cppreference.com/w/cpp/numeric/math/acosh
https://en.cppreference.com/w/cpp/numeric/complex/arg
https://en.cppreference.com/w/cpp/numeric/complex/asin
https://en.cppreference.com/w/cpp/numeric/math/asin

Yade Documentation, Release 3rd ed.

yade._math.asinh((complex)x) → complex

return
Complex the arc-hyperbolic sine of the Complex argu-
ment in radians. Depending on compilation options wraps
::boost::multiprecision::asinh(…) or std::asinh(…) function.

asinh((float)x) → float :

return
Real the hyperbolic arcus sine of the argument. Depending on compilation op-
tions wraps ::boost::multiprecision::asinh(…) or std::asinh(…) function.

yade._math.atan((complex)x) → complex

return
Complex the arc-tangent of the Complex argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::atan(…) or
std::atan(…) function.

atan((float)x) → float :

return
Real the arcus tangent of the argument. Depending on compilation options wraps
::boost::multiprecision::atan(…) or std::atan(…) function.

yade._math.atan2((float)x, (float)y) → float

Returns
Real the arc tangent of y/x using the signs of the arguments x and y to
determine the correct quadrant. Depending on compilation options wraps
::boost::multiprecision::atan2(…) or std::atan2(…) function.

yade._math.atanh((complex)x) → complex

return
Complex the arc-hyperbolic tangent of the Complex argu-
ment in radians. Depending on compilation options wraps
::boost::multiprecision::atanh(…) or std::atanh(…) function.

atanh((float)x) → float :

return
Real the hyperbolic arcus tangent of the argument. Depending on compilation
options wraps ::boost::multiprecision::atanh(…) or std::atanh(…) function.

yade._math.cbrt((float)x) → float

Returns
Real cubic root of the argument. Depending on compilation options wraps
::boost::multiprecision::cbrt(…) or std::cbrt(…) function.

yade._math.ceil((float)x) → float

Returns
Real Computes the smallest integer value not less than arg. Depending on compila-
tion options wraps ::boost::multiprecision::ceil(…) or std::ceil(…) function.

yade._math.conj((complex)x) → complex

Returns
the complex conjugation a Complex argument. Depending on compilation options
wraps ::boost::multiprecision::conj(…) or std::conj(…) function.

700 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/complex/asinh
https://en.cppreference.com/w/cpp/numeric/math/asinh
https://en.cppreference.com/w/cpp/numeric/complex/atan
https://en.cppreference.com/w/cpp/numeric/math/atan
https://en.cppreference.com/w/cpp/numeric/math/atan2
https://en.cppreference.com/w/cpp/numeric/complex/atanh
https://en.cppreference.com/w/cpp/numeric/math/atanh
https://en.cppreference.com/w/cpp/numeric/math/cbrt
https://en.cppreference.com/w/cpp/numeric/math/ceil
https://en.cppreference.com/w/cpp/numeric/complex/conj

Yade Documentation, Release 3rd ed.

yade._math.cos((complex)x) → complex

return
Complex the cosine of the Complex argument in radians. Depending on com-
pilation options wraps ::boost::multiprecision::cos(…) or std::cos(…)
function.

cos((float)x) → float :

return
Real the cosine of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::cos(…) or std::cos(…) function.

yade._math.cosh((complex)x) → complex

return
Complex the hyperbolic cosine of the Complex argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::cosh(…) or
std::cosh(…) function.

cosh((float)x) → float :

return
Real the hyperbolic cosine of the Real argument in radians. Depending on compi-
lation options wraps ::boost::multiprecision::cosh(…) or std::cosh(…) func-
tion.

yade._math.cylBesselJ((int)k, (float)x) → float

Returns
Real the Bessel Functions of the First Kind of the order k and the Real
argument. See: <https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/
math_toolkit/bessel/bessel_first.html>‘__

yade._math.dummy_precision() → float

Returns
similar to the function epsilon, but assumes that last 10% of bits contain the
numerical error only. This is sometimes used by Eigen when calling isEqualFuzzy
to determine if values differ a lot or if they are vaguely close to each other.

yade._math.epsilon([(int)Precision=53]) → float

return
Real returns the difference between 1.0 and the next representable value of
the Real type. Wraps std::numeric_limits<Real>::epsilon() function.

epsilon((float)x) → float :

return
Real returns the difference between 1.0 and the next representable value of the
Real type. Wraps std::numeric_limits<Real>::epsilon() function.

yade._math.erf((float)x) → float

Returns
Real Computes the error function of argument. Depending on compilation options
wraps ::boost::multiprecision::erf(…) or std::erf(…) function.

2.4. Yade modules reference 701

https://en.cppreference.com/w/cpp/numeric/complex/cos
https://en.cppreference.com/w/cpp/numeric/math/cos
https://en.cppreference.com/w/cpp/numeric/complex/cosh
https://en.cppreference.com/w/cpp/numeric/math/cosh
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://en.wikipedia.org/wiki/Error_function
https://en.cppreference.com/w/cpp/numeric/math/erf

Yade Documentation, Release 3rd ed.

yade._math.erfc((float)x) → float

Returns
Real Computes the complementary error function of argument,
that is 1.0-erf(arg). Depending on compilation options wraps
::boost::multiprecision::erfc(…) or std::erfc(…) function.

yade._math.exp((complex)x) → complex

return
the base e exponential of a Complex argument. Depending on compilation
options wraps ::boost::multiprecision::exp(…) or std::exp(…) function.

exp((float)x) → float :

return
the base e exponential of a Real argument. Depending on compilation options
wraps ::boost::multiprecision::exp(…) or std::exp(…) function.

yade._math.exp2((float)x) → float

Returns
the base 2 exponential of a Real argument. Depending on compilation options wraps
::boost::multiprecision::exp2(…) or std::exp2(…) function.

yade._math.expm1((float)x) → float

Returns
the base e exponential of a Real argument minus 1.0. Depending on compilation
options wraps ::boost::multiprecision::expm1(…) or std::expm1(…) function.

yade._math.fabs((float)x) → float

Returns
the Real absolute value of the argument. Depending on compilation options wraps
::boost::multiprecision::abs(…) or std::abs(…) function.

yade._math.factorial((int)x) → float

Returns
Real the factorial of the Real argument. See: <https://www.boost.org/doc/libs/
1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html>‘__

yade._math.floor((float)x) → float

Returns
Real Computes the largest integer value not greater than arg. Depending on compila-
tion options wraps ::boost::multiprecision::floor(…) or std::floor(…) function.

yade._math.fma((float)x, (float)y, (float)z) → float

Returns
Real - computes (x*y) + z as if to infinite precision and rounded only
once to fit the result type. Depending on compilation options wraps
::boost::multiprecision::fma(…) or std::fma(…) function.

yade._math.fmod((float)x, (float)y) → float

Returns
Real the floating-point remainder of the division operation x/y of
the arguments x and y. Depending on compilation options wraps
::boost::multiprecision::fmod(…) or std::fmod(…) function.

702 Chapter 2. Yade for users

https://en.wikipedia.org/wiki/Error_function#Complementary_error_function
https://en.cppreference.com/w/cpp/numeric/math/erfc
https://en.cppreference.com/w/cpp/numeric/complex/exp
https://en.cppreference.com/w/cpp/numeric/math/exp
https://en.cppreference.com/w/cpp/numeric/math/exp2
https://en.cppreference.com/w/cpp/numeric/math/expm1
https://en.cppreference.com/w/cpp/numeric/math/fabs
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/factorials/sf_factorial.html
https://en.cppreference.com/w/cpp/numeric/math/floor
https://en.cppreference.com/w/cpp/numeric/math/fma
https://en.cppreference.com/w/cpp/numeric/math/fmod

Yade Documentation, Release 3rd ed.

yade._math.frexp((float)x) → tuple

Returns
tuple of (Real,int), decomposes given floating point Real argument into a normal-
ized fraction and an integral power of two. Depending on compilation options wraps
::boost::multiprecision::frexp(…) or std::frexp(…) function.

yade._math.fromBits((str)bits[, (int)exp=0[, (int)sign=1]]) → float

Parameters

• bits – str - a string containing ‘0’, ‘1’ characters.

• exp – int - the binary exponent which shifts the bits.

• sign – int - the sign, should be -1 or +1, but it is not checked. It multiplies the
result when construction from bits is finished.

Returns
RealHP<N> constructed from string containing ‘0’, ‘1’ bits. This is for debugging
purposes, rather slow.

yade._math.getDecomposedReal((float)x) → dict

Returns
dict - the dictionary with the debug information how the DecomposedReal class sees
this type. This is for debugging purposes, rather slow. Includes result from fpclassify
function call, a binary representation and other useful info. See also fromBits.

yade._math.getDemangledName() → str

Returns
string - the demangled C++ typnename of RealHP<N>.

yade._math.getDemangledNameComplex() → str

Returns
string - the demangled C++ typnename of ComplexHP<N>.

yade._math.getEigenFlags() → dict

Returns
A python dictionary listing flags for all types, see: https://eigen.tuxfamily.org/dox/
group__flags.html

yade._math.getEigenStorageOrders() → dict

Returns
A python dictionary listing options for all types, see: https://eigen.tuxfamily.org/
dox/group__TopicStorageOrders.html

yade._math.getFloatDistanceULP((float)arg1, (float)arg2) → float

Returns
an integer value stored in RealHP<N>, the ULP distance calculated by
boost::math::float_distance, also see Floating-point Comparison and Prof. Kahan
paper about this topic.

The returned value is the directed distance between two arguments, this means that it can be
negative.

yade._math.getRawBits((float)x) → str

Returns
string - the raw bits in memory representing this type. Be careful: it only checks
the system endianness and either prints bytes in reverse order or not. Does not
make any attempts to further interpret the bits of: sign, exponent or significand

2.4. Yade modules reference 703

https://en.cppreference.com/w/cpp/numeric/math/frexp
https://en.cppreference.com/w/cpp/numeric/math/fpclassify
https://eigen.tuxfamily.org/dox/group__flags.html
https://eigen.tuxfamily.org/dox/group__flags.html
https://eigen.tuxfamily.org/dox/group__TopicStorageOrders.html
https://eigen.tuxfamily.org/dox/group__TopicStorageOrders.html
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/next_float/float_distance.html
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/float_comparison.html
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf

Yade Documentation, Release 3rd ed.

(on a typical x86 processor they are printed in that order), and different processors
might store them differently. It is not useful for types which internally use a pointer
because for them this function prints not the floating point number but a pointer.
This is for debugging purposes.

yade._math.getRealHPErrors((list)testLevelsHP[, (int)testCount=10[, (float)minX=-10.0[,
(float)maxX=10.0[, (bool)useRandomArgs=False[,
(int)printEveryNth=1000[, (bool)collectArgs=False[,
(bool)extraChecks=False]]]]]]]) → dict

Tests mathematical functions against the highest precision in argument testLevelsHP and returns
the largest ULP distance found with getFloatDistanceULP. A testCount randomized tries with
function arguments in range minX ... maxX are performed on the RealHP<N> types where N is
from the list provided in testLevelsHP argument.

Parameters

• testLevelsHP – a list of int values consisting of high precision levels N (in
RealHP<N>) for which the tests should be done. Must consist at least of two ele-
ments so that there is a higher precision type available against which to perform
the tests.

• testCount – int - specifies how many randomized tests of each function to
perform.

• minX – Real - start of the range in which the random arguments are generated.

• maxX – Real - end of that range.

• useRandomArgs – If False (default) then minX ... maxX is divided into
testCount equidistant points. If True then each call is a random number. This
applies only to the first argument of a function, if a function takes more than one
argument, then remaining arguments are random - 2D scans are not performed.

• printEveryNth – will print using LOG_INFO the progress information every Nth
step in the testCount loop. To see it e.g. start using yade -f6, also see logger
documentation.

• collectArgs – if True then in returned results will be a longer list of arguments
that produce incorrect results.

• extraChecks – will perform extra checks while executing this funcion. Useful
only for debugging of getRealHPErrors.

Returns
A python dictionary with the largest ULP distance to the correct function value.
For each function name there is a dictionary consisting of: how many binary digits
(bits) are in the tested RealHP<N> type, the worst arguments for this function, and
the ULP distance to the reference value.

The returned ULP error is an absolute value, as opposed to getFloatDistanceULP which is signed.

yade._math.highest([(int)Precision=53]) → float

Returns
Real returns the largest finite value of the Real type. Wraps std::numeric_lim-
its<Real>::max() function.

yade._math.hypot((float)x, (float)y) → float

Returns
Real the square root of the sum of the squares of x and y, without undue overflow
or underflow at intermediate stages of the computation. Depending on compilation
options wraps ::boost::multiprecision::hypot(…) or std::hypot(…) function.

704 Chapter 2. Yade for users

https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/float_comparison.html
https://en.cppreference.com/w/cpp/types/numeric_limits/max
https://en.cppreference.com/w/cpp/types/numeric_limits/max
https://en.cppreference.com/w/cpp/numeric/math/hypot

Yade Documentation, Release 3rd ed.

yade._math.ilogb((float)x) → float

Returns
Real extracts the value of the unbiased exponent from the floating-point argument
arg, and returns it as a signed integer value. Depending on compilation options
wraps ::boost::multiprecision::ilogb(…) or std::ilogb(…) function.

yade._math.imag((complex)x) → float

Returns
the imag part of a Complex argument. Depending on compilation options wraps
::boost::multiprecision::imag(…) or std::imag(…) function.

yade._math.isApprox((float)a, (float)b, (float)eps) → bool

Returns
bool, True if a is approximately equal b with provided eps, see also here

yade._math.isApproxOrLessThan((float)a, (float)b, (float)eps) → bool

Returns
bool, True if a is approximately less than or equal b with provided eps, see also here

yade._math.isEqualFuzzy((float)arg1, (float)arg2, (float)arg3) → bool

Returns
bool, True if the absolute difference between two numbers is smaller than
std::numeric_limits<Real>::epsilon()

yade._math.isMuchSmallerThan((float)a, (float)b, (float)eps) → bool

Returns
bool, True if a is less than b with provided eps, see also here

yade._math.isThisSystemLittleEndian() → bool

Returns
True if this system uses little endian architecture, False otherwise.

yade._math.isfinite((float)x) → bool

Returns
bool indicating if the Real argument is Inf. Depending on compilation options wraps
::boost::multiprecision::isfinite(…) or std::isfinite(…) function.

yade._math.isinf((float)x) → bool

Returns
bool indicating if the Real argument is Inf. Depending on compilation options wraps
::boost::multiprecision::isinf(…) or std::isinf(…) function.

yade._math.isnan((float)x) → bool

Returns
bool indicating if the Real argument is NaN. Depending on compilation options
wraps ::boost::multiprecision::isnan(…) or std::isnan(…) function.

yade._math.laguerre((int)n, (int)m, (float)x) → float

Returns
Real the Laguerre polynomial of the orders n, m and the Real argu-
ment. See: <https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/
math_toolkit/sf_poly/laguerre.html>‘__

2.4. Yade modules reference 705

https://en.cppreference.com/w/cpp/numeric/math/ilogb
https://en.cppreference.com/w/cpp/numeric/complex/imag2
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
https://en.cppreference.com/w/cpp/numeric/math/isfinite
https://en.cppreference.com/w/cpp/numeric/math/isinf
https://en.cppreference.com/w/cpp/numeric/math/isnan
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html

Yade Documentation, Release 3rd ed.

yade._math.ldexp((float)x, (int)y) → float

Returns
Multiplies a floating point value x by the number 2 raised to the exp power. De-
pending on compilation options wraps ::boost::multiprecision::ldexp(…) or
std::ldexp(…) function.

yade._math.lgamma((float)x) → float

Returns
Real Computes the natural logarithm of the absolute value of the
gamma function of arg. Depending on compilation options wraps
::boost::multiprecision::lgamma(…) or std::lgamma(…) function.

yade._math.log((complex)x) → complex

return
the Complex natural (base e) logarithm of a complex value z with a branch
cut along the negative real axis. Depending on compilation options wraps
::boost::multiprecision::log(…) or std::log(…) function.

log((float)x) → float :

return
the Real natural (base e) logarithm of a real value. Depending on compilation
options wraps ::boost::multiprecision::log(…) or std::log(…) function.

yade._math.log10((complex)x) → complex

return
the Complex (base 10) logarithm of a complex value z with a branch cut
along the negative real axis. Depending on compilation options wraps
::boost::multiprecision::log10(…) or std::log10(…) function.

log10((float)x) → float :

return
the Real decimal (base 10) logarithm of a real value. Depending on compilation
options wraps ::boost::multiprecision::log10(…) or std::log10(…) function.

yade._math.log1p((float)x) → float

Returns
the Real natural (base e) logarithm of 1+argument. Depending on compilation
options wraps ::boost::multiprecision::log1p(…) or std::log1p(…) function.

yade._math.log2((float)x) → float

Returns
the Real binary (base 2) logarithm of a real value. Depending on compilation options
wraps ::boost::multiprecision::log2(…) or std::log2(…) function.

yade._math.logb((float)x) → float

Returns
Extracts the value of the unbiased radix-independent exponent from the floating-
point argument arg, and returns it as a floating-point value. Depending on compila-
tion options wraps ::boost::multiprecision::logb(…) or std::logb(…) function.

yade._math.lowest([(int)Precision=53]) → float

Returns
Real returns the lowest (negative) finite value of the Real type. Wraps
std::numeric_limits<Real>::lowest() function.

706 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/ldexp
https://en.wikipedia.org/wiki/Gamma_function
https://en.cppreference.com/w/cpp/numeric/math/lgamma
https://en.cppreference.com/w/cpp/numeric/complex/log
https://en.cppreference.com/w/cpp/numeric/math/log
https://en.cppreference.com/w/cpp/numeric/complex/log10
https://en.cppreference.com/w/cpp/numeric/math/log10
https://en.cppreference.com/w/cpp/numeric/math/log1p
https://en.cppreference.com/w/cpp/numeric/math/log2
https://en.cppreference.com/w/cpp/numeric/math/logb
https://en.cppreference.com/w/cpp/types/numeric_limits/lowest

Yade Documentation, Release 3rd ed.

yade._math.max((float)x, (float)y) → float

Returns
Real larger of the two arguments. Depending on compilation options wraps
::boost::multiprecision::max(…) or std::max(…) function.

yade._math.min((float)x, (float)y) → float

Returns
Real smaller of the two arguments. Depending on compilation options wraps
::boost::multiprecision::min(…) or std::min(…) function.

yade._math.modf((float)x) → tuple

Returns
tuple of (Real,Real), decomposes given floating point Real into integral and frac-
tional parts, each having the same type and sign as x. Depending on compilation
options wraps ::boost::multiprecision::modf(…) or std::modf(…) function.

yade._math.polar((float)x, (float)y) → complex

Returns
Complex the polar (Complex from polar components) of the Real rho (length),
Real theta (angle) arguments in radians. Depending on compilation options wraps
::boost::multiprecision::polar(…) or std::polar(…) function.

yade._math.pow((complex)x, (complex)pow) → complex

return
the Complex complex arg1 raised to the Complex power arg2. Depend-
ing on compilation options wraps ::boost::multiprecision::pow(…) or
std::pow(…) function.

pow((float)x, (float)y) → float :

return
Real the value of base raised to the power exp. Depending on compilation options
wraps ::boost::multiprecision::pow(…) or std::pow(…) function.

yade._math.proj((complex)x) → complex

Returns
Complex the proj (projection of the complex number onto the Riemann sphere)
of the Complex argument in radians. Depending on compilation options wraps
::boost::multiprecision::proj(…) or std::proj(…) function.

yade._math.random() → float

return
Real a symmetric random number in interval (-1,1). Used by Eigen.

random((float)a, (float)b) → float :

return
Real a random number in interval (a,b). Used by Eigen.

yade._math.real((complex)x) → float

Returns
the real part of a Complex argument. Depending on compilation options wraps
::boost::multiprecision::real(…) or std::real(…) function.

2.4. Yade modules reference 707

https://en.cppreference.com/w/cpp/numeric/math/max
https://en.cppreference.com/w/cpp/numeric/math/min
https://en.cppreference.com/w/cpp/numeric/math/modf
https://en.cppreference.com/w/cpp/numeric/complex/polar
https://en.cppreference.com/w/cpp/numeric/complex/pow
https://en.cppreference.com/w/cpp/numeric/math/pow
https://en.cppreference.com/w/cpp/numeric/complex/proj
https://en.cppreference.com/w/cpp/numeric/complex/real2

Yade Documentation, Release 3rd ed.

yade._math.remainder((float)x, (float)y) → float

Returns
Real the IEEE remainder of the floating point division operation x/y. Depend-
ing on compilation options wraps ::boost::multiprecision::remainder(…) or
std::remainder(…) function.

yade._math.remquo((float)x, (float)y) → tuple

Returns
tuple of (Real,long), the floating-point remainder of the division operation x/
y as the std::remainder() function does. Additionally, the sign and at least
the three of the last bits of x/y are returned, sufficient to determine the oc-
tant of the result within a period. Depending on compilation options wraps
::boost::multiprecision::remquo(…) or std::remquo(…) function.

yade._math.rint((float)x) → float

Returns
Rounds the floating-point argument arg to an integer value (in floating-point for-
mat), using the current rounding mode. Depending on compilation options wraps
::boost::multiprecision::rint(…) or std::rint(…) function.

yade._math.round((float)x) → float

Returns
Real the nearest integer value to arg (in floating-point format), rounding halfway
cases away from zero, regardless of the current rounding mode.. Depending on
compilation options wraps ::boost::multiprecision::round(…) or std::round(…)
function.

yade._math.roundTrip((float)x) → float

Returns
Real returns the argument x. Can be used to convert type to native RealHP<N>
accuracy.

yade._math.sgn((float)x) → int

Returns
int the sign of the argument: -1, 0 or 1.

yade._math.sign((float)x) → int

Returns
int the sign of the argument: -1, 0 or 1.

yade._math.sin((complex)x) → complex

return
Complex the sine of the Complex argument in radians. Depending on com-
pilation options wraps ::boost::multiprecision::sin(…) or std::sin(…)
function.

sin((float)x) → float :

return
Real the sine of the Real argument in radians. Depending on compilation options
wraps ::boost::multiprecision::sin(…) or std::sin(…) function.

yade._math.sinh((complex)x) → complex

708 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/math/remainder
https://en.cppreference.com/w/cpp/numeric/math/remquo
https://en.cppreference.com/w/cpp/numeric/fenv/FE_round
https://en.cppreference.com/w/cpp/numeric/math/rint
https://en.cppreference.com/w/cpp/numeric/math/round
https://en.cppreference.com/w/cpp/numeric/complex/sin
https://en.cppreference.com/w/cpp/numeric/math/sin

Yade Documentation, Release 3rd ed.

return
Complex the hyperbolic sine of the Complex argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::sinh(…) or
std::sinh(…) function.

sinh((float)x) → float :

return
Real the hyperbolic sine of the Real argument in radians. Depending on compi-
lation options wraps ::boost::multiprecision::sinh(…) or std::sinh(…) func-
tion.

yade._math.smallest_positive() → float

Returns
Real the smallest number greater than zero. Wraps std::numeric_lim-
its<Real>::min()

yade._math.sphericalHarmonic((int)l, (int)m, (float)theta, (float)phi) → complex

Returns
Real the spherical harmonic polynomial of the orders l (unsigned int), m (signed int)
and the Real arguments theta and phi. See: <https://www.boost.org/doc/libs/1_
77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html>‘__

yade._math.sqrt((complex)x) → complex

return
the Complex square root of Complex argument. Depending on compilation
options wraps ::boost::multiprecision::sqrt(…) or std::sqrt(…) func-
tion.

sqrt((float)x) → float :

return
Real square root of the argument. Depending on compilation options wraps
::boost::multiprecision::sqrt(…) or std::sqrt(…) function.

yade._math.squaredNorm((complex)x) → float

Returns
Real the norm (squared magnitude) of the Complex argument in radians. De-
pending on compilation options wraps ::boost::multiprecision::norm(…) or
std::norm(…) function.

yade._math.tan((complex)x) → complex

return
Complex the tangent of the Complex argument in radians. Depend-
ing on compilation options wraps ::boost::multiprecision::tan(…) or
std::tan(…) function.

tan((float)x) → float :

return
Real the tangent of the Real argument in radians. Depending on compilation
options wraps ::boost::multiprecision::tan(…) or std::tan(…) function.

yade._math.tanh((complex)x) → complex

2.4. Yade modules reference 709

https://en.cppreference.com/w/cpp/numeric/complex/sinh
https://en.cppreference.com/w/cpp/numeric/math/sinh
https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html
https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_poly/sph_harm.html
https://en.cppreference.com/w/cpp/numeric/complex/sqrt
https://en.cppreference.com/w/cpp/numeric/math/sqrt
https://en.cppreference.com/w/cpp/numeric/complex/norm
https://en.cppreference.com/w/cpp/numeric/complex/tan
https://en.cppreference.com/w/cpp/numeric/math/tan

Yade Documentation, Release 3rd ed.

return
Complex the hyperbolic tangent of the Complex argu-
ment in radians. Depending on compilation options wraps
::boost::multiprecision::tanh(…) or std::tanh(…) function.

tanh((float)x) → float :

return
Real the hyperbolic tangent of the Real argument in radians. Depending on
compilation options wraps ::boost::multiprecision::tanh(…) or std::tanh(…)
function.

yade._math.testArray() → None
This function tests call to std::vector::data(…) function in order to extract the array.

yade._math.testConstants() → None
This function tests lib/high-precision/Constants.hpp, the yade::math::ConstantsHP<N>, former
yade::Mathr constants.

yade._math.testLoopRealHP() → None
This function tests lib/high-precision/Constants.hpp, but the C++ side: all precisions, even those
inaccessible from python

yade._math.tgamma((float)x) → float

Returns
Real Computes the gamma function of arg. Depending on compilation options wraps
::boost::multiprecision::tgamma(…) or std::tgamma(…) function.

yade._math.toDouble((float)x) → float

Returns
float converts Real type to double and returns a native python float.

yade._math.toHP1((float)x) → float

Returns
RealHP<1> converted from argument RealHP<1> as a result of static_-
cast<RealHP<1>>(arg).

yade._math.toHP2((float)x) → Real

Returns
RealHP<2> converted from argument RealHP<1> as a result of static_-
cast<RealHP<2>>(arg).

yade._math.toInt((float)x) → int

Returns
int converts Real type to int and returns a native python int.

yade._math.toLong((float)x) → int

Returns
int converts Real type to long int and returns a native python int.

yade._math.toLongDouble((float)x) → float

Returns
float converts Real type to long double and returns a native python float.

710 Chapter 2. Yade for users

https://en.cppreference.com/w/cpp/numeric/complex/tanh
https://en.cppreference.com/w/cpp/numeric/math/tanh
https://en.wikipedia.org/wiki/Gamma_function
https://en.cppreference.com/w/cpp/numeric/math/tgamma

Yade Documentation, Release 3rd ed.

yade._math.trunc((float)x) → float

Returns
Real the nearest integer not greater in magnitude than arg. Depending on compi-
lation options wraps ::boost::multiprecision::trunc(…) or std::trunc(…) func-
tion.

2.4.10 yade.minieigenHP module

When yade uses high-precision number as Real type the usual (old):

from minieigen import *

has to be replaced with:

from yade.minieigenHP import *

This command ensures backward compatibility between both. It is then guaranteed that python uses
the same number of decimal places as yade is using everywhere else.

Please note that used precision can be very arbitrary, because cpp_bin_float or mpfr take it as a
compile-time argument. Hence such yade.minieigenHP cannot be separately precompiled as a package.
Though it could be precompiled for some special types such as boost::multiprecision::float128.

The RealHP<n> higher precision vectors and matrices can be accessed in python by using the .HPnmodule
scope. For example:

import yade.minieigenHP as mne
mne.HP2.Vector3(1,2,3) # produces Vector3 using RealHP<2> precision
mne.Vector3(1,2,3) # without using HPn module scope it defaults to RealHP<1>

miniEigen is wrapper for a small part of the Eigen library. Refer to its documentation for details. All
classes in this module support pickling.

class yade._minieigenHP.AlignedBox2
Axis-aligned box object in 2d, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox2)other) -> None

__init__((object)arg1, (Vector2)min, (Vector2)max) -> None

center((AlignedBox2)arg1) → Vector2

clamp((AlignedBox2)arg1, (AlignedBox2)arg2) → None

contains((AlignedBox2)arg1, (Vector2)arg2) → bool
contains((AlignedBox2)arg1, (AlignedBox2)arg2) -> bool

empty((AlignedBox2)arg1) → bool

extend((AlignedBox2)arg1, (Vector2)arg2) → None
extend((AlignedBox2)arg1, (AlignedBox2)arg2) -> None

intersection((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property max

merged((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property min

2.4. Yade modules reference 711

https://en.cppreference.com/w/cpp/numeric/math/trunc
http://eigen.tuxfamily.org

Yade Documentation, Release 3rd ed.

sizes((AlignedBox2)arg1) → Vector2

volume((AlignedBox2)arg1) → float

class yade._minieigenHP.AlignedBox3
Axis-aligned box object, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox3)other) -> None

__init__((object)arg1, (Vector3)min, (Vector3)max) -> None

center((AlignedBox3)arg1) → Vector3

clamp((AlignedBox3)arg1, (AlignedBox3)arg2) → None

contains((AlignedBox3)arg1, (Vector3)arg2) → bool
contains((AlignedBox3)arg1, (AlignedBox3)arg2) -> bool

empty((AlignedBox3)arg1) → bool

extend((AlignedBox3)arg1, (Vector3)arg2) → None
extend((AlignedBox3)arg1, (AlignedBox3)arg2) -> None

intersection((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property max

merged((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property min

sizes((AlignedBox3)arg1) → Vector3

volume((AlignedBox3)arg1) → float

class yade._minieigenHP.HP1

class AlignedBox2
Axis-aligned box object in 2d, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox2)other) -> None

__init__((object)arg1, (Vector2)min, (Vector2)max) -> None

center((AlignedBox2)arg1) → Vector2

clamp((AlignedBox2)arg1, (AlignedBox2)arg2) → None

contains((AlignedBox2)arg1, (Vector2)arg2) → bool
contains((AlignedBox2)arg1, (AlignedBox2)arg2) -> bool

empty((AlignedBox2)arg1) → bool

extend((AlignedBox2)arg1, (Vector2)arg2) → None
extend((AlignedBox2)arg1, (AlignedBox2)arg2) -> None

intersection((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property max

merged((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property min

712 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

sizes((AlignedBox2)arg1) → Vector2

volume((AlignedBox2)arg1) → float

class AlignedBox3
Axis-aligned box object, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox3)other) -> None

__init__((object)arg1, (Vector3)min, (Vector3)max) -> None

center((AlignedBox3)arg1) → Vector3

clamp((AlignedBox3)arg1, (AlignedBox3)arg2) → None

contains((AlignedBox3)arg1, (Vector3)arg2) → bool
contains((AlignedBox3)arg1, (AlignedBox3)arg2) -> bool

empty((AlignedBox3)arg1) → bool

extend((AlignedBox3)arg1, (Vector3)arg2) → None
extend((AlignedBox3)arg1, (AlignedBox3)arg2) -> None

intersection((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property max

merged((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property min

sizes((AlignedBox3)arg1) → Vector3

volume((AlignedBox3)arg1) → float

Complex
alias of complex

class Matrix3
3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Quaternion)q) -> None

__init__((object)arg1, (Matrix3)other) -> None

__init__((object)arg1, (Vector3)diag) -> object

__init__((object)arg1, (float)m00, (float)m01, (float)m02, (float)m10, (float)m11,
(float)m12, (float)m20, (float)m21, (float)m22) -> object

2.4. Yade modules reference 713

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) ->
object

col((Matrix3)arg1, (int)col) → Vector3 :
Return column as vector.

cols((Matrix3)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix3)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix3)arg1) → float :
Return matrix determinant.

diagonal((Matrix3)arg1) → Vector3 :
Return diagonal as vector.

inverse((Matrix3)arg1) → Matrix3 :
Return inverted matrix.

isApprox((Matrix3)arg1, (Matrix3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix3)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((Matrix3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix3)arg1) → float :
Maximum value over all elements.

mean((Matrix3)arg1) → float :
Mean value over all elements.

minCoeff((Matrix3)arg1) → float :
Minimum value over all elements.

norm((Matrix3)arg1) → float :
Euclidean norm.

normalize((Matrix3)arg1) → None :
Normalize this object in-place.

normalized((Matrix3)arg1) → Matrix3 :
Return normalized copy of this object

polarDecomposition((Matrix3)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix3)arg1) → float :
Product of all elements.

pruned((Matrix3)arg1[, (float)absTol=1e-06]) → Matrix3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

714 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

row((Matrix3)arg1, (int)row) → Vector3 :
Return row as vector.

rows((Matrix3)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix3)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix3)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix3)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3)arg1) → float :
Sum of all elements.

svd((Matrix3)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix3)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix3)arg1) → Matrix3 :
Return transposed matrix.

class Matrix3c
/TODO/

Identity = Matrix3c(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3c(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Matrix3c)other) -> None

__init__((object)arg1, (Vector3c)diag) -> object

__init__((object)arg1, (complex)m00, (complex)m01, (complex)m02, (complex)m10,
(complex)m11, (complex)m12, (complex)m20, (complex)m21, (complex)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False])
-> object

col((Matrix3c)arg1, (int)col) → Vector3c :
Return column as vector.

cols((Matrix3c)arg1) → int :
Number of columns.

determinant((Matrix3c)arg1) → complex :
Return matrix determinant.

2.4. Yade modules reference 715

Yade Documentation, Release 3rd ed.

diagonal((Matrix3c)arg1) → Vector3c :
Return diagonal as vector.

inverse((Matrix3c)arg1) → Matrix3c :
Return inverted matrix.

isApprox((Matrix3c)arg1, (Matrix3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Matrix3c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix3c)arg1) → complex :
Mean value over all elements.

norm((Matrix3c)arg1) → float :
Euclidean norm.

normalize((Matrix3c)arg1) → None :
Normalize this object in-place.

normalized((Matrix3c)arg1) → Matrix3c :
Return normalized copy of this object

prod((Matrix3c)arg1) → complex :
Product of all elements.

pruned((Matrix3c)arg1[, (float)absTol=1e-06]) → Matrix3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3c)arg1, (int)row) → Vector3c :
Return row as vector.

rows((Matrix3c)arg1) → int :
Number of rows.

squaredNorm((Matrix3c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3c)arg1) → complex :
Sum of all elements.

trace((Matrix3c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix3c)arg1) → Matrix3c :
Return transposed matrix.

class Matrix6
6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix6((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1))

Ones = Matrix6((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

716 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Random() → Matrix6 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6)other) -> None

__init__((object)arg1, (Vector6)diag) -> object

__init__((object)arg1, (Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) -> object

__init__((object)arg1, (Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4,
(Vector6)l5 [, (bool)cols=False]) -> object

col((Matrix6)arg1, (int)col) → Vector6 :
Return column as vector.

cols((Matrix6)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix6)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix6)arg1) → float :
Return matrix determinant.

diagonal((Matrix6)arg1) → Vector6 :
Return diagonal as vector.

inverse((Matrix6)arg1) → Matrix6 :
Return inverted matrix.

isApprox((Matrix6)arg1, (Matrix6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix6)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

ll((Matrix6)arg1) → Matrix3 :
Return lower-left 3x3 block

lr((Matrix6)arg1) → Matrix3 :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix6)arg1) → float :
Maximum value over all elements.

mean((Matrix6)arg1) → float :
Mean value over all elements.

minCoeff((Matrix6)arg1) → float :
Minimum value over all elements.

norm((Matrix6)arg1) → float :
Euclidean norm.

2.4. Yade modules reference 717

Yade Documentation, Release 3rd ed.

normalize((Matrix6)arg1) → None :
Normalize this object in-place.

normalized((Matrix6)arg1) → Matrix6 :
Return normalized copy of this object

polarDecomposition((Matrix6)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix6)arg1) → float :
Product of all elements.

pruned((Matrix6)arg1[, (float)absTol=1e-06]) → Matrix6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6)arg1, (int)row) → Vector6 :
Return row as vector.

rows((Matrix6)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix6)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix6)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix6)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6)arg1) → float :
Sum of all elements.

svd((Matrix6)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix6)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix6)arg1) → Matrix6 :
Return transposed matrix.

ul((Matrix6)arg1) → Matrix3 :
Return upper-left 3x3 block

ur((Matrix6)arg1) → Matrix3 :
Return upper-right 3x3 block

class Matrix6c
/TODO/

Identity = Matrix6c((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1))

Ones = Matrix6c((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6c :
Return an object where all elements are randomly set to values between 0 and 1.

718 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Zero = Matrix6c((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6c)other) -> None

__init__((object)arg1, (Vector6c)diag) -> object

__init__((object)arg1, (Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) -> ob-
ject

__init__((object)arg1, (Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vec-
tor6c)l4, (Vector6c)l5 [, (bool)cols=False]) -> object

col((Matrix6c)arg1, (int)col) → Vector6c :
Return column as vector.

cols((Matrix6c)arg1) → int :
Number of columns.

determinant((Matrix6c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix6c)arg1) → Vector6c :
Return diagonal as vector.

inverse((Matrix6c)arg1) → Matrix6c :
Return inverted matrix.

isApprox((Matrix6c)arg1, (Matrix6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

ll((Matrix6c)arg1) → Matrix3c :
Return lower-left 3x3 block

lr((Matrix6c)arg1) → Matrix3c :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix6c)arg1) → complex :
Mean value over all elements.

norm((Matrix6c)arg1) → float :
Euclidean norm.

normalize((Matrix6c)arg1) → None :
Normalize this object in-place.

normalized((Matrix6c)arg1) → Matrix6c :
Return normalized copy of this object

prod((Matrix6c)arg1) → complex :
Product of all elements.

pruned((Matrix6c)arg1[, (float)absTol=1e-06]) → Matrix6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6c)arg1, (int)row) → Vector6c :
Return row as vector.

rows((Matrix6c)arg1) → int :
Number of rows.

2.4. Yade modules reference 719

Yade Documentation, Release 3rd ed.

squaredNorm((Matrix6c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6c)arg1) → complex :
Sum of all elements.

trace((Matrix6c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix6c)arg1) → Matrix6c :
Return transposed matrix.

ul((Matrix6c)arg1) → Matrix3c :
Return upper-left 3x3 block

ur((Matrix6c)arg1) → Matrix3c :
Return upper-right 3x3 block

class MatrixX
XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

static Identity((int)arg1, (int)rank) → MatrixX :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixX :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixX :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixX :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixX)other) -> None

__init__((object)arg1, (VectorX)diag) -> object

__init__((object)arg1 [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (Vec-
torX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (Vec-
torX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (Vec-
torX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixX)arg1, (int)col) → VectorX :
Return column as vector.

cols((MatrixX)arg1) → int :
Number of columns.

computeUnitaryPositive((MatrixX)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((MatrixX)arg1) → float :
Return matrix determinant.

diagonal((MatrixX)arg1) → VectorX :
Return diagonal as vector.

720 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

inverse((MatrixX)arg1) → MatrixX :
Return inverted matrix.

isApprox((MatrixX)arg1, (MatrixX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((MatrixX)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((MatrixX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((MatrixX)arg1) → float :
Maximum value over all elements.

mean((MatrixX)arg1) → float :
Mean value over all elements.

minCoeff((MatrixX)arg1) → float :
Minimum value over all elements.

norm((MatrixX)arg1) → float :
Euclidean norm.

normalize((MatrixX)arg1) → None :
Normalize this object in-place.

normalized((MatrixX)arg1) → MatrixX :
Return normalized copy of this object

polarDecomposition((MatrixX)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((MatrixX)arg1) → float :
Product of all elements.

pruned((MatrixX)arg1[, (float)absTol=1e-06]) → MatrixX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixX)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixX)arg1, (int)row) → VectorX :
Return row as vector.

rows((MatrixX)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((MatrixX)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((MatrixX)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((MatrixX)arg1) → float :
Square of the Euclidean norm.

sum((MatrixX)arg1) → float :
Sum of all elements.

2.4. Yade modules reference 721

Yade Documentation, Release 3rd ed.

svd((MatrixX)arg1) → tuple :
Alias for jacobiSVD.

trace((MatrixX)arg1) → float :
Return sum of diagonal elements.

transpose((MatrixX)arg1) → MatrixX :
Return transposed matrix.

class MatrixXc
/TODO/

static Identity((int)arg1, (int)rank) → MatrixXc :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixXc :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixXc :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixXc :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixXc)other) -> None

__init__((object)arg1, (VectorXc)diag) -> object

__init__((object)arg1 [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (Vec-
torXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (Vec-
torXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (Vec-
torXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixXc)arg1, (int)col) → VectorXc :
Return column as vector.

cols((MatrixXc)arg1) → int :
Number of columns.

determinant((MatrixXc)arg1) → complex :
Return matrix determinant.

diagonal((MatrixXc)arg1) → VectorXc :
Return diagonal as vector.

inverse((MatrixXc)arg1) → MatrixXc :
Return inverted matrix.

isApprox((MatrixXc)arg1, (MatrixXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((MatrixXc)arg1) → float :
Maximum absolute value over all elements.

mean((MatrixXc)arg1) → complex :
Mean value over all elements.

norm((MatrixXc)arg1) → float :
Euclidean norm.

722 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

normalize((MatrixXc)arg1) → None :
Normalize this object in-place.

normalized((MatrixXc)arg1) → MatrixXc :
Return normalized copy of this object

prod((MatrixXc)arg1) → complex :
Product of all elements.

pruned((MatrixXc)arg1[, (float)absTol=1e-06]) → MatrixXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixXc)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixXc)arg1, (int)row) → VectorXc :
Return row as vector.

rows((MatrixXc)arg1) → int :
Number of rows.

squaredNorm((MatrixXc)arg1) → float :
Square of the Euclidean norm.

sum((MatrixXc)arg1) → complex :
Sum of all elements.

trace((MatrixXc)arg1) → complex :
Return sum of diagonal elements.

transpose((MatrixXc)arg1) → MatrixXc :
Return transposed matrix.

class Quaternion
Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q,
q*v (rotating v by q), q==q, q!=q.

Static attributes: Identity.

Note: Quaternion is represented as axis-angle when printed (e.g. Identity is
Quaternion((1,0,0),0), and can also be constructed from the axis-angle representation.
This is however different from the data stored inside, which can be accessed by indices
[0] (x), [1] (y), [2] (z), [3] (w). To obtain axis-angle programatically, use Quaternion.
toAxisAngle which returns the tuple.

Identity = Quaternion((1,0,0),0)

Rotate((Quaternion)arg1, (Vector3)v) → Vector3

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)axis, (object)angle) -> object

__init__((object)arg1, (Vector3)axis, (float)angle) -> object

__init__((object)arg1, (object)angle, (Vector3)axis) -> object

__init__((object)arg1, (float)angle, (Vector3)axis) -> object

__init__((object)arg1, (tuple)axis, (str)angle) -> object

__init__((object)arg1, (tuple)tuple) -> object

2.4. Yade modules reference 723

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (Vector3)u, (Vector3)v) -> object

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object
__init__((object)arg1, (float)w, (float)x, (float)y, (float)z) -> None :

Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((object)arg1, (Matrix3)rotMatrix) -> None

__init__((object)arg1, (Quaternion)other) -> None

angularDistance((Quaternion)arg1, (Quaternion)arg2) → float

conjugate((Quaternion)arg1) → Quaternion

inverse((Quaternion)arg1) → Quaternion

norm((Quaternion)arg1) → float

normalize((Quaternion)arg1) → None

normalized((Quaternion)arg1) → Quaternion

setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) → None

slerp((Quaternion)arg1, (float)t, (Quaternion)other) → Quaternion

toAngleAxis((Quaternion)arg1) → tuple

toAxisAngle((Quaternion)arg1) → tuple

toRotationMatrix((Quaternion)arg1) → Matrix3

toRotationVector((Quaternion)arg1) → Vector3

Real
alias of float

class Vector2
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2(1,0)

Ones = Vector2(1,1)

static Random() → Vector2 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2

UnitX = Vector2(1,0)

UnitY = Vector2(0,1)

Zero = Vector2(0,0)

724 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (Vector2)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (float)x, (float)y) -> None

asDiagonal((Vector2)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2)arg1) → int :
Number of columns.

dot((Vector2)arg1, (Vector2)other) → float :
Dot product with other.

isApprox((Vector2)arg1, (Vector2)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector2)arg1) → float :
Maximum value over all elements.

mean((Vector2)arg1) → float :
Mean value over all elements.

minCoeff((Vector2)arg1) → float :
Minimum value over all elements.

norm((Vector2)arg1) → float :
Euclidean norm.

normalize((Vector2)arg1) → None :
Normalize this object in-place.

normalized((Vector2)arg1) → Vector2 :
Return normalized copy of this object

outer((Vector2)arg1, (Vector2)other) → object :
Outer product with other.

prod((Vector2)arg1) → float :
Product of all elements.

pruned((Vector2)arg1[, (float)absTol=1e-06]) → Vector2 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2)arg1) → int :
Number of rows.

squaredNorm((Vector2)arg1) → float :
Square of the Euclidean norm.

sum((Vector2)arg1) → float :
Sum of all elements.

class Vector2c
/TODO/

Identity = Vector2c(1,0)

2.4. Yade modules reference 725

Yade Documentation, Release 3rd ed.

Ones = Vector2c(1,1)

static Random() → Vector2c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2c

UnitX = Vector2c(1,0)

UnitY = Vector2c(0,1)

Zero = Vector2c(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2c)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (complex)x, (complex)y) -> None

asDiagonal((Vector2c)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2c)arg1) → int :
Number of columns.

dot((Vector2c)arg1, (Vector2c)other) → complex :
Dot product with other.

isApprox((Vector2c)arg1, (Vector2c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector2c)arg1) → complex :
Mean value over all elements.

norm((Vector2c)arg1) → float :
Euclidean norm.

normalize((Vector2c)arg1) → None :
Normalize this object in-place.

normalized((Vector2c)arg1) → Vector2c :
Return normalized copy of this object

outer((Vector2c)arg1, (Vector2c)other) → object :
Outer product with other.

prod((Vector2c)arg1) → complex :
Product of all elements.

pruned((Vector2c)arg1[, (float)absTol=1e-06]) → Vector2c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2c)arg1) → int :
Number of rows.

squaredNorm((Vector2c)arg1) → float :
Square of the Euclidean norm.

sum((Vector2c)arg1) → complex :
Sum of all elements.

726 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class Vector2i
2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)

Ones = Vector2i(1,1)

static Random() → Vector2i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2i

UnitX = Vector2i(1,0)

UnitY = Vector2i(0,1)

Zero = Vector2i(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2i)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (int)x, (int)y) -> None

asDiagonal((Vector2i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2i)arg1) → int :
Number of columns.

dot((Vector2i)arg1, (Vector2i)other) → int :
Dot product with other.

isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector2i)arg1) → int :
Maximum value over all elements.

mean((Vector2i)arg1) → int :
Mean value over all elements.

minCoeff((Vector2i)arg1) → int :
Minimum value over all elements.

outer((Vector2i)arg1, (Vector2i)other) → object :
Outer product with other.

prod((Vector2i)arg1) → int :
Product of all elements.

rows((Vector2i)arg1) → int :
Number of rows.

2.4. Yade modules reference 727

Yade Documentation, Release 3rd ed.

sum((Vector2i)arg1) → int :
Sum of all elements.

class Vector3
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, …) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3(1,0,0)

Ones = Vector3(1,1,1)

static Random() → Vector3 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3

UnitX = Vector3(1,0,0)

UnitY = Vector3(0,1,0)

UnitZ = Vector3(0,0,1)

Zero = Vector3(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (float)x=0.0 [, (float)y=0.0 [, (float)z=0.0]]]) -> None

asDiagonal((Vector3)arg1) → Matrix3 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3)arg1) → int :
Number of columns.

cross((Vector3)arg1, (Vector3)arg2) → Vector3

dot((Vector3)arg1, (Vector3)other) → float :
Dot product with other.

isApprox((Vector3)arg1, (Vector3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector3)arg1) → float :
Maximum value over all elements.

mean((Vector3)arg1) → float :
Mean value over all elements.

minCoeff((Vector3)arg1) → float :
Minimum value over all elements.

norm((Vector3)arg1) → float :
Euclidean norm.

728 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

normalize((Vector3)arg1) → None :
Normalize this object in-place.

normalized((Vector3)arg1) → Vector3 :
Return normalized copy of this object

outer((Vector3)arg1, (Vector3)other) → Matrix3 :
Outer product with other.

prod((Vector3)arg1) → float :
Product of all elements.

pruned((Vector3)arg1[, (float)absTol=1e-06]) → Vector3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3)arg1) → int :
Number of rows.

squaredNorm((Vector3)arg1) → float :
Square of the Euclidean norm.

sum((Vector3)arg1) → float :
Sum of all elements.

xy((Vector3)arg1) → Vector2

xz((Vector3)arg1) → Vector2

yx((Vector3)arg1) → Vector2

yz((Vector3)arg1) → Vector2

zx((Vector3)arg1) → Vector2

zy((Vector3)arg1) → Vector2

class Vector3c
/TODO/

Identity = Vector3c(1,0,0)

Ones = Vector3c(1,1,1)

static Random() → Vector3c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3c

UnitX = Vector3c(1,0,0)

UnitY = Vector3c(0,1,0)

UnitZ = Vector3c(0,0,1)

Zero = Vector3c(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3c)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (complex)x=0j [, (complex)y=0j [, (complex)z=0j]]]) -> None

asDiagonal((Vector3c)arg1) → Matrix3c :
Return diagonal matrix with this vector on the diagonal.

2.4. Yade modules reference 729

Yade Documentation, Release 3rd ed.

cols((Vector3c)arg1) → int :
Number of columns.

cross((Vector3c)arg1, (Vector3c)arg2) → Vector3c

dot((Vector3c)arg1, (Vector3c)other) → complex :
Dot product with other.

isApprox((Vector3c)arg1, (Vector3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector3c)arg1) → complex :
Mean value over all elements.

norm((Vector3c)arg1) → float :
Euclidean norm.

normalize((Vector3c)arg1) → None :
Normalize this object in-place.

normalized((Vector3c)arg1) → Vector3c :
Return normalized copy of this object

outer((Vector3c)arg1, (Vector3c)other) → Matrix3c :
Outer product with other.

prod((Vector3c)arg1) → complex :
Product of all elements.

pruned((Vector3c)arg1[, (float)absTol=1e-06]) → Vector3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3c)arg1) → int :
Number of rows.

squaredNorm((Vector3c)arg1) → float :
Square of the Euclidean norm.

sum((Vector3c)arg1) → complex :
Sum of all elements.

xy((Vector3c)arg1) → Vector2c

xz((Vector3c)arg1) → Vector2c

yx((Vector3c)arg1) → Vector2c

yz((Vector3c)arg1) → Vector2c

zx((Vector3c)arg1) → Vector2c

zy((Vector3c)arg1) → Vector2c

class Vector3i
3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

730 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Vector3i(1,0,0)

Ones = Vector3i(1,1,1)

static Random() → Vector3i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3i

UnitX = Vector3i(1,0,0)

UnitY = Vector3i(0,1,0)

UnitZ = Vector3i(0,0,1)

Zero = Vector3i(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3i)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (int)x=0 [, (int)y=0 [, (int)z=0]]]) -> None

asDiagonal((Vector3i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3i)arg1) → int :
Number of columns.

cross((Vector3i)arg1, (Vector3i)arg2) → Vector3i

dot((Vector3i)arg1, (Vector3i)other) → int :
Dot product with other.

isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector3i)arg1) → int :
Maximum value over all elements.

mean((Vector3i)arg1) → int :
Mean value over all elements.

minCoeff((Vector3i)arg1) → int :
Minimum value over all elements.

outer((Vector3i)arg1, (Vector3i)other) → object :
Outer product with other.

prod((Vector3i)arg1) → int :
Product of all elements.

rows((Vector3i)arg1) → int :
Number of rows.

sum((Vector3i)arg1) → int :
Sum of all elements.

xy((Vector3i)arg1) → Vector2i

2.4. Yade modules reference 731

Yade Documentation, Release 3rd ed.

xz((Vector3i)arg1) → Vector2i

yx((Vector3i)arg1) → Vector2i

yz((Vector3i)arg1) → Vector2i

zx((Vector3i)arg1) → Vector2i

zy((Vector3i)arg1) → Vector2i

class Vector4
4-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 4 floats.

Static attributes: Zero, Ones.

Identity = Vector4(1,0,0, 0)

Ones = Vector4(1,1,1, 1)

static Random() → Vector4 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector4

Zero = Vector4(0,0,0, 0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector4)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3) -> None

asDiagonal((Vector4)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector4)arg1) → int :
Number of columns.

dot((Vector4)arg1, (Vector4)other) → float :
Dot product with other.

isApprox((Vector4)arg1, (Vector4)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector4)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector4)arg1) → float :
Maximum value over all elements.

mean((Vector4)arg1) → float :
Mean value over all elements.

minCoeff((Vector4)arg1) → float :
Minimum value over all elements.

norm((Vector4)arg1) → float :
Euclidean norm.

732 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

normalize((Vector4)arg1) → None :
Normalize this object in-place.

normalized((Vector4)arg1) → Vector4 :
Return normalized copy of this object

outer((Vector4)arg1, (Vector4)other) → object :
Outer product with other.

prod((Vector4)arg1) → float :
Product of all elements.

pruned((Vector4)arg1[, (float)absTol=1e-06]) → Vector4 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector4)arg1) → int :
Number of rows.

squaredNorm((Vector4)arg1) → float :
Square of the Euclidean norm.

sum((Vector4)arg1) → float :
Sum of all elements.

class Vector6
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6(1,0,0, 0,0,0)

Ones = Vector6(1,1,1, 1,1,1)

static Random() → Vector6 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6

Zero = Vector6(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6)other) -> None

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3, (float)v4, (float)v5) ->
object

__init__((object)arg1, (Vector3)head, (Vector3)tail) -> object

asDiagonal((Vector6)arg1) → Matrix6 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6)arg1) → int :
Number of columns.

dot((Vector6)arg1, (Vector6)other) → float :
Dot product with other.

head((Vector6)arg1) → Vector3

2.4. Yade modules reference 733

Yade Documentation, Release 3rd ed.

isApprox((Vector6)arg1, (Vector6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector6)arg1) → float :
Maximum value over all elements.

mean((Vector6)arg1) → float :
Mean value over all elements.

minCoeff((Vector6)arg1) → float :
Minimum value over all elements.

norm((Vector6)arg1) → float :
Euclidean norm.

normalize((Vector6)arg1) → None :
Normalize this object in-place.

normalized((Vector6)arg1) → Vector6 :
Return normalized copy of this object

outer((Vector6)arg1, (Vector6)other) → Matrix6 :
Outer product with other.

prod((Vector6)arg1) → float :
Product of all elements.

pruned((Vector6)arg1[, (float)absTol=1e-06]) → Vector6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6)arg1) → int :
Number of rows.

squaredNorm((Vector6)arg1) → float :
Square of the Euclidean norm.

sum((Vector6)arg1) → float :
Sum of all elements.

tail((Vector6)arg1) → Vector3

class Vector6c
/TODO/

Identity = Vector6c(1,0,0, 0,0,0)

Ones = Vector6c(1,1,1, 1,1,1)

static Random() → Vector6c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6c

Zero = Vector6c(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6c)other) -> None

__init__((object)arg1, (complex)v0, (complex)v1, (complex)v2, (complex)v3, (com-
plex)v4, (complex)v5) -> object

__init__((object)arg1, (Vector3c)head, (Vector3c)tail) -> object

734 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

asDiagonal((Vector6c)arg1) → Matrix6c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6c)arg1) → int :
Number of columns.

dot((Vector6c)arg1, (Vector6c)other) → complex :
Dot product with other.

head((Vector6c)arg1) → Vector3c

isApprox((Vector6c)arg1, (Vector6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector6c)arg1) → complex :
Mean value over all elements.

norm((Vector6c)arg1) → float :
Euclidean norm.

normalize((Vector6c)arg1) → None :
Normalize this object in-place.

normalized((Vector6c)arg1) → Vector6c :
Return normalized copy of this object

outer((Vector6c)arg1, (Vector6c)other) → Matrix6c :
Outer product with other.

prod((Vector6c)arg1) → complex :
Product of all elements.

pruned((Vector6c)arg1[, (float)absTol=1e-06]) → Vector6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6c)arg1) → int :
Number of rows.

squaredNorm((Vector6c)arg1) → float :
Square of the Euclidean norm.

sum((Vector6c)arg1) → complex :
Sum of all elements.

tail((Vector6c)arg1) → Vector3c

class Vector6i
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 ints.

Static attributes: Zero, Ones.

Identity = Vector6i(1,0,0, 0,0,0)

Ones = Vector6i(1,1,1, 1,1,1)

2.4. Yade modules reference 735

Yade Documentation, Release 3rd ed.

static Random() → Vector6i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6i

Zero = Vector6i(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6i)other) -> None

__init__((object)arg1, (int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) -> object

__init__((object)arg1, (Vector3i)head, (Vector3i)tail) -> object

asDiagonal((Vector6i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6i)arg1) → int :
Number of columns.

dot((Vector6i)arg1, (Vector6i)other) → int :
Dot product with other.

head((Vector6i)arg1) → Vector3i

isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector6i)arg1) → int :
Maximum value over all elements.

mean((Vector6i)arg1) → int :
Mean value over all elements.

minCoeff((Vector6i)arg1) → int :
Minimum value over all elements.

outer((Vector6i)arg1, (Vector6i)other) → object :
Outer product with other.

prod((Vector6i)arg1) → int :
Product of all elements.

rows((Vector6i)arg1) → int :
Number of rows.

sum((Vector6i)arg1) → int :
Sum of all elements.

tail((Vector6i)arg1) → Vector3i

class VectorX
Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of X floats.

static Ones((int)arg1) → VectorX

736 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Random((int)len) → VectorX :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorX

static Zero((int)arg1) → VectorX

__init__((object)arg1) → None
__init__((object)arg1, (VectorX)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorX)arg1) → MatrixX :
Return diagonal matrix with this vector on the diagonal.

cols((VectorX)arg1) → int :
Number of columns.

dot((VectorX)arg1, (VectorX)other) → float :
Dot product with other.

isApprox((VectorX)arg1, (VectorX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((VectorX)arg1) → float :
Maximum value over all elements.

mean((VectorX)arg1) → float :
Mean value over all elements.

minCoeff((VectorX)arg1) → float :
Minimum value over all elements.

norm((VectorX)arg1) → float :
Euclidean norm.

normalize((VectorX)arg1) → None :
Normalize this object in-place.

normalized((VectorX)arg1) → VectorX :
Return normalized copy of this object

outer((VectorX)arg1, (VectorX)other) → MatrixX :
Outer product with other.

prod((VectorX)arg1) → float :
Product of all elements.

pruned((VectorX)arg1[, (float)absTol=1e-06]) → VectorX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorX)arg1, (int)arg2) → None

rows((VectorX)arg1) → int :
Number of rows.

squaredNorm((VectorX)arg1) → float :
Square of the Euclidean norm.

sum((VectorX)arg1) → float :
Sum of all elements.

2.4. Yade modules reference 737

Yade Documentation, Release 3rd ed.

class VectorXc
/TODO/

static Ones((int)arg1) → VectorXc

static Random((int)len) → VectorXc :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorXc

static Zero((int)arg1) → VectorXc

__init__((object)arg1) → None
__init__((object)arg1, (VectorXc)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorXc)arg1) → MatrixXc :
Return diagonal matrix with this vector on the diagonal.

cols((VectorXc)arg1) → int :
Number of columns.

dot((VectorXc)arg1, (VectorXc)other) → complex :
Dot product with other.

isApprox((VectorXc)arg1, (VectorXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorXc)arg1) → float :
Maximum absolute value over all elements.

mean((VectorXc)arg1) → complex :
Mean value over all elements.

norm((VectorXc)arg1) → float :
Euclidean norm.

normalize((VectorXc)arg1) → None :
Normalize this object in-place.

normalized((VectorXc)arg1) → VectorXc :
Return normalized copy of this object

outer((VectorXc)arg1, (VectorXc)other) → MatrixXc :
Outer product with other.

prod((VectorXc)arg1) → complex :
Product of all elements.

pruned((VectorXc)arg1[, (float)absTol=1e-06]) → VectorXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorXc)arg1, (int)arg2) → None

rows((VectorXc)arg1) → int :
Number of rows.

squaredNorm((VectorXc)arg1) → float :
Square of the Euclidean norm.

sum((VectorXc)arg1) → complex :
Sum of all elements.

738 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

vectorize = False

class yade._minieigenHP.HP2

class AlignedBox2
Axis-aligned box object in 2d, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox2)other) -> None

__init__((object)arg1, (Vector2)min, (Vector2)max) -> None

center((AlignedBox2)arg1) → Vector2

clamp((AlignedBox2)arg1, (AlignedBox2)arg2) → None

contains((AlignedBox2)arg1, (Vector2)arg2) → bool
contains((AlignedBox2)arg1, (AlignedBox2)arg2) -> bool

empty((AlignedBox2)arg1) → bool

extend((AlignedBox2)arg1, (Vector2)arg2) → None
extend((AlignedBox2)arg1, (AlignedBox2)arg2) -> None

intersection((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property max

merged((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property min

sizes((AlignedBox2)arg1) → Vector2

volume((AlignedBox2)arg1) → Real

class AlignedBox3
Axis-aligned box object, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox3)other) -> None

__init__((object)arg1, (Vector3)min, (Vector3)max) -> None

center((AlignedBox3)arg1) → Vector3

clamp((AlignedBox3)arg1, (AlignedBox3)arg2) → None

contains((AlignedBox3)arg1, (Vector3)arg2) → bool
contains((AlignedBox3)arg1, (AlignedBox3)arg2) -> bool

empty((AlignedBox3)arg1) → bool

extend((AlignedBox3)arg1, (Vector3)arg2) → None
extend((AlignedBox3)arg1, (AlignedBox3)arg2) -> None

intersection((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property max

merged((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property min

sizes((AlignedBox3)arg1) → Vector3

2.4. Yade modules reference 739

Yade Documentation, Release 3rd ed.

volume((AlignedBox3)arg1) → Real

class Complex
The Complex type.

__init__((object)arg1) → None
__init__((object)arg1, (object)obj) -> object

__init__((object)arg1, (complex)z) -> object

__init__((object)arg1, (float)d) -> object

__init__((object)arg1, (int)i) -> object

__init__((object)arg1, (str)str) -> object

__init__((object)arg1, (object)re, (object)im) -> object

__init__((object)arg1, (float)a, (float)b) -> object

__init__((object)arg1, (int)i, (int)j) -> object

__init__((object)arg1, (str)str1, (str)str2) -> object

property imag

levelComplexHPMethod((Complex)arg1) → int

property levelHP

property real

class Matrix3
3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3("1","0","0", "0","1","0", "0","0","1")

Ones = Matrix3("1","1","1", "1","1","1", "1","1","1")

static Random() → Matrix3 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3("0","0","0", "0","0","0", "0","0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Quaternion)q) -> None

__init__((object)arg1, (Matrix3)other) -> None

__init__((object)arg1, (Vector3)diag) -> object

__init__((object)arg1, (Real)m00, (Real)m01, (Real)m02, (Real)m10, (Real)m11,
(Real)m12, (Real)m20, (Real)m21, (Real)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) ->
object

col((Matrix3)arg1, (int)col) → Vector3 :
Return column as vector.

740 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

cols((Matrix3)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix3)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix3)arg1) → Real :
Return matrix determinant.

diagonal((Matrix3)arg1) → Vector3 :
Return diagonal as vector.

inverse((Matrix3)arg1) → Matrix3 :
Return inverted matrix.

isApprox((Matrix3)arg1, (Matrix3)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

jacobiSVD((Matrix3)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((Matrix3)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Matrix3)arg1) → Real :
Maximum value over all elements.

mean((Matrix3)arg1) → Real :
Mean value over all elements.

minCoeff((Matrix3)arg1) → Real :
Minimum value over all elements.

norm((Matrix3)arg1) → Real :
Euclidean norm.

normalize((Matrix3)arg1) → None :
Normalize this object in-place.

normalized((Matrix3)arg1) → Matrix3 :
Return normalized copy of this object

polarDecomposition((Matrix3)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix3)arg1) → Real :
Product of all elements.

pruned((Matrix3)arg1[, (float)absTol=1e-06]) → Matrix3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3)arg1, (int)row) → Vector3 :
Return row as vector.

rows((Matrix3)arg1) → int :
Number of rows.

2.4. Yade modules reference 741

Yade Documentation, Release 3rd ed.

selfAdjointEigenDecomposition((Matrix3)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix3)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix3)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix3)arg1) → Real :
Sum of all elements.

svd((Matrix3)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix3)arg1) → Real :
Return sum of diagonal elements.

transpose((Matrix3)arg1) → Matrix3 :
Return transposed matrix.

class Matrix3c
/TODO/

Identity = Matrix3c(Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("1","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("1","0"))

Ones = Matrix3c(Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0"))

static Random() → Matrix3c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix3c)other) -> None

__init__((object)arg1, (Vector3c)diag) -> object

__init__((object)arg1, (Complex)m00, (Complex)m01, (Complex)m02, (Complex)m10,
(Complex)m11, (Complex)m12, (Complex)m20, (Complex)m21, (Complex)m22) -> ob-
ject

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False])
-> object

col((Matrix3c)arg1, (int)col) → Vector3c :
Return column as vector.

cols((Matrix3c)arg1) → int :
Number of columns.

742 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

determinant((Matrix3c)arg1) → Complex :
Return matrix determinant.

diagonal((Matrix3c)arg1) → Vector3c :
Return diagonal as vector.

inverse((Matrix3c)arg1) → Matrix3c :
Return inverted matrix.

isApprox((Matrix3c)arg1, (Matrix3c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Matrix3c)arg1) → Real :
Maximum absolute value over all elements.

mean((Matrix3c)arg1) → Complex :
Mean value over all elements.

norm((Matrix3c)arg1) → Real :
Euclidean norm.

normalize((Matrix3c)arg1) → None :
Normalize this object in-place.

normalized((Matrix3c)arg1) → Matrix3c :
Return normalized copy of this object

prod((Matrix3c)arg1) → Complex :
Product of all elements.

pruned((Matrix3c)arg1[, (float)absTol=1e-06]) → Matrix3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3c)arg1, (int)row) → Vector3c :
Return row as vector.

rows((Matrix3c)arg1) → int :
Number of rows.

squaredNorm((Matrix3c)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix3c)arg1) → Complex :
Sum of all elements.

trace((Matrix3c)arg1) → Complex :
Return sum of diagonal elements.

transpose((Matrix3c)arg1) → Matrix3c :
Return transposed matrix.

class Matrix6
6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

2.4. Yade modules reference 743

Yade Documentation, Release 3rd ed.

Identity = Matrix6(("1","0","0","0","0","0"), ("0","1","0","0","0","0"),
("0","0","1","0","0","0"), ("0","0","0","1","0","0"),
("0","0","0","0","1","0"), ("0","0","0","0","0","1"))

Ones = Matrix6(("1","1","1","1","1","1"), ("1","1","1","1","1","1"),
("1","1","1","1","1","1"), ("1","1","1","1","1","1"),
("1","1","1","1","1","1"), ("1","1","1","1","1","1"))

static Random() → Matrix6 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6(("0","0","0","0","0","0"), ("0","0","0","0","0","0"),
("0","0","0","0","0","0"), ("0","0","0","0","0","0"),
("0","0","0","0","0","0"), ("0","0","0","0","0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6)other) -> None

__init__((object)arg1, (Vector6)diag) -> object

__init__((object)arg1, (Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) -> object

__init__((object)arg1, (Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4,
(Vector6)l5 [, (bool)cols=False]) -> object

col((Matrix6)arg1, (int)col) → Vector6 :
Return column as vector.

cols((Matrix6)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix6)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix6)arg1) → Real :
Return matrix determinant.

diagonal((Matrix6)arg1) → Vector6 :
Return diagonal as vector.

inverse((Matrix6)arg1) → Matrix6 :
Return inverted matrix.

isApprox((Matrix6)arg1, (Matrix6)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

jacobiSVD((Matrix6)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

ll((Matrix6)arg1) → Matrix3 :
Return lower-left 3x3 block

lr((Matrix6)arg1) → Matrix3 :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Matrix6)arg1) → Real :
Maximum value over all elements.

744 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mean((Matrix6)arg1) → Real :
Mean value over all elements.

minCoeff((Matrix6)arg1) → Real :
Minimum value over all elements.

norm((Matrix6)arg1) → Real :
Euclidean norm.

normalize((Matrix6)arg1) → None :
Normalize this object in-place.

normalized((Matrix6)arg1) → Matrix6 :
Return normalized copy of this object

polarDecomposition((Matrix6)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix6)arg1) → Real :
Product of all elements.

pruned((Matrix6)arg1[, (float)absTol=1e-06]) → Matrix6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6)arg1, (int)row) → Vector6 :
Return row as vector.

rows((Matrix6)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix6)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix6)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix6)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix6)arg1) → Real :
Sum of all elements.

svd((Matrix6)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix6)arg1) → Real :
Return sum of diagonal elements.

transpose((Matrix6)arg1) → Matrix6 :
Return transposed matrix.

ul((Matrix6)arg1) → Matrix3 :
Return upper-left 3x3 block

ur((Matrix6)arg1) → Matrix3 :
Return upper-right 3x3 block

class Matrix6c
/TODO/

2.4. Yade modules reference 745

Yade Documentation, Release 3rd ed.

Identity = Matrix6c((Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("1","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("1","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("1","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("1","0")))

Ones = Matrix6c((Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")))

static Random() → Matrix6c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6c((Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6c)other) -> None

__init__((object)arg1, (Vector6c)diag) -> object

__init__((object)arg1, (Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) -> ob-
ject

__init__((object)arg1, (Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vec-
tor6c)l4, (Vector6c)l5 [, (bool)cols=False]) -> object

col((Matrix6c)arg1, (int)col) → Vector6c :
Return column as vector.

cols((Matrix6c)arg1) → int :
Number of columns.

determinant((Matrix6c)arg1) → Complex :
Return matrix determinant.

746 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

diagonal((Matrix6c)arg1) → Vector6c :
Return diagonal as vector.

inverse((Matrix6c)arg1) → Matrix6c :
Return inverted matrix.

isApprox((Matrix6c)arg1, (Matrix6c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

ll((Matrix6c)arg1) → Matrix3c :
Return lower-left 3x3 block

lr((Matrix6c)arg1) → Matrix3c :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6c)arg1) → Real :
Maximum absolute value over all elements.

mean((Matrix6c)arg1) → Complex :
Mean value over all elements.

norm((Matrix6c)arg1) → Real :
Euclidean norm.

normalize((Matrix6c)arg1) → None :
Normalize this object in-place.

normalized((Matrix6c)arg1) → Matrix6c :
Return normalized copy of this object

prod((Matrix6c)arg1) → Complex :
Product of all elements.

pruned((Matrix6c)arg1[, (float)absTol=1e-06]) → Matrix6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6c)arg1, (int)row) → Vector6c :
Return row as vector.

rows((Matrix6c)arg1) → int :
Number of rows.

squaredNorm((Matrix6c)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix6c)arg1) → Complex :
Sum of all elements.

trace((Matrix6c)arg1) → Complex :
Return sum of diagonal elements.

transpose((Matrix6c)arg1) → Matrix6c :
Return transposed matrix.

ul((Matrix6c)arg1) → Matrix3c :
Return upper-left 3x3 block

ur((Matrix6c)arg1) → Matrix3c :
Return upper-right 3x3 block

2.4. Yade modules reference 747

Yade Documentation, Release 3rd ed.

class MatrixX
XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

static Identity((int)arg1, (int)rank) → MatrixX :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixX :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixX :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixX :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixX)other) -> None

__init__((object)arg1, (VectorX)diag) -> object

__init__((object)arg1 [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (Vec-
torX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (Vec-
torX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (Vec-
torX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixX)arg1, (int)col) → VectorX :
Return column as vector.

cols((MatrixX)arg1) → int :
Number of columns.

computeUnitaryPositive((MatrixX)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((MatrixX)arg1) → Real :
Return matrix determinant.

diagonal((MatrixX)arg1) → VectorX :
Return diagonal as vector.

inverse((MatrixX)arg1) → MatrixX :
Return inverted matrix.

isApprox((MatrixX)arg1, (MatrixX)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

jacobiSVD((MatrixX)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((MatrixX)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((MatrixX)arg1) → Real :
Maximum value over all elements.

748 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mean((MatrixX)arg1) → Real :
Mean value over all elements.

minCoeff((MatrixX)arg1) → Real :
Minimum value over all elements.

norm((MatrixX)arg1) → Real :
Euclidean norm.

normalize((MatrixX)arg1) → None :
Normalize this object in-place.

normalized((MatrixX)arg1) → MatrixX :
Return normalized copy of this object

polarDecomposition((MatrixX)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((MatrixX)arg1) → Real :
Product of all elements.

pruned((MatrixX)arg1[, (float)absTol=1e-06]) → MatrixX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixX)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixX)arg1, (int)row) → VectorX :
Return row as vector.

rows((MatrixX)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((MatrixX)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((MatrixX)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((MatrixX)arg1) → Real :
Square of the Euclidean norm.

sum((MatrixX)arg1) → Real :
Sum of all elements.

svd((MatrixX)arg1) → tuple :
Alias for jacobiSVD.

trace((MatrixX)arg1) → Real :
Return sum of diagonal elements.

transpose((MatrixX)arg1) → MatrixX :
Return transposed matrix.

class MatrixXc
/TODO/

static Identity((int)arg1, (int)rank) → MatrixXc :
Create identity matrix with given rank (square).

2.4. Yade modules reference 749

Yade Documentation, Release 3rd ed.

static Ones((int)rows, (int)cols) → MatrixXc :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixXc :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixXc :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixXc)other) -> None

__init__((object)arg1, (VectorXc)diag) -> object

__init__((object)arg1 [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (Vec-
torXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (Vec-
torXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (Vec-
torXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixXc)arg1, (int)col) → VectorXc :
Return column as vector.

cols((MatrixXc)arg1) → int :
Number of columns.

determinant((MatrixXc)arg1) → Complex :
Return matrix determinant.

diagonal((MatrixXc)arg1) → VectorXc :
Return diagonal as vector.

inverse((MatrixXc)arg1) → MatrixXc :
Return inverted matrix.

isApprox((MatrixXc)arg1, (MatrixXc)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((MatrixXc)arg1) → Real :
Maximum absolute value over all elements.

mean((MatrixXc)arg1) → Complex :
Mean value over all elements.

norm((MatrixXc)arg1) → Real :
Euclidean norm.

normalize((MatrixXc)arg1) → None :
Normalize this object in-place.

normalized((MatrixXc)arg1) → MatrixXc :
Return normalized copy of this object

prod((MatrixXc)arg1) → Complex :
Product of all elements.

pruned((MatrixXc)arg1[, (float)absTol=1e-06]) → MatrixXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

750 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

resize((MatrixXc)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixXc)arg1, (int)row) → VectorXc :
Return row as vector.

rows((MatrixXc)arg1) → int :
Number of rows.

squaredNorm((MatrixXc)arg1) → Real :
Square of the Euclidean norm.

sum((MatrixXc)arg1) → Complex :
Sum of all elements.

trace((MatrixXc)arg1) → Complex :
Return sum of diagonal elements.

transpose((MatrixXc)arg1) → MatrixXc :
Return transposed matrix.

class Quaternion
Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q,
q*v (rotating v by q), q==q, q!=q.

Static attributes: Identity.

Note: Quaternion is represented as axis-angle when printed (e.g. Identity is
Quaternion((1,0,0),0), and can also be constructed from the axis-angle representation.
This is however different from the data stored inside, which can be accessed by indices
[0] (x), [1] (y), [2] (z), [3] (w). To obtain axis-angle programatically, use Quaternion.
toAxisAngle which returns the tuple.

Identity = Quaternion(("1","0","0"),"0")

Rotate((Quaternion)arg1, (Vector3)v) → Vector3

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)axis, (object)angle) -> object

__init__((object)arg1, (Vector3)axis, (Real)angle) -> object

__init__((object)arg1, (object)angle, (Vector3)axis) -> object

__init__((object)arg1, (Real)angle, (Vector3)axis) -> object

__init__((object)arg1, (tuple)axis, (str)angle) -> object

__init__((object)arg1, (tuple)tuple) -> object

__init__((object)arg1, (Vector3)u, (Vector3)v) -> object

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object
__init__((object)arg1, (Real)w, (Real)x, (Real)y, (Real)z) -> None :

Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((object)arg1, (Matrix3)rotMatrix) -> None

__init__((object)arg1, (Quaternion)other) -> None

2.4. Yade modules reference 751

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (float)w, (float)x, (float)y, (float)z) -> None :
Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

angularDistance((Quaternion)arg1, (Quaternion)arg2) → Real

conjugate((Quaternion)arg1) → Quaternion

inverse((Quaternion)arg1) → Quaternion

norm((Quaternion)arg1) → Real

normalize((Quaternion)arg1) → None

normalized((Quaternion)arg1) → Quaternion

setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) → None

slerp((Quaternion)arg1, (Real)t, (Quaternion)other) → Quaternion

toAngleAxis((Quaternion)arg1) → tuple

toAxisAngle((Quaternion)arg1) → tuple

toRotationMatrix((Quaternion)arg1) → Matrix3

toRotationVector((Quaternion)arg1) → Vector3

class Real
The Real type.

__init__((object)arg1) → None
__init__((object)arg1, (object)obj) -> object

__init__((object)arg1, (float)d) -> object

__init__((object)arg1, (int)i) -> object

__init__((object)arg1, (str)str) -> object

property imag

property levelHP

levelRealHPMethod((Real)arg1) → int

property real

sqrt((Real)arg1) → Real

class Vector2
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2("1","0")

Ones = Vector2("1","1")

752 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Random() → Vector2 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2

UnitX = Vector2("1","0")

UnitY = Vector2("0","1")

Zero = Vector2("0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector2)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (Real)x, (Real)y) -> None

asDiagonal((Vector2)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2)arg1) → int :
Number of columns.

dot((Vector2)arg1, (Vector2)other) → Real :
Dot product with other.

isApprox((Vector2)arg1, (Vector2)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector2)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector2)arg1) → Real :
Maximum value over all elements.

mean((Vector2)arg1) → Real :
Mean value over all elements.

minCoeff((Vector2)arg1) → Real :
Minimum value over all elements.

norm((Vector2)arg1) → Real :
Euclidean norm.

normalize((Vector2)arg1) → None :
Normalize this object in-place.

normalized((Vector2)arg1) → Vector2 :
Return normalized copy of this object

outer((Vector2)arg1, (Vector2)other) → object :
Outer product with other.

prod((Vector2)arg1) → Real :
Product of all elements.

pruned((Vector2)arg1[, (float)absTol=1e-06]) → Vector2 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2)arg1) → int :
Number of rows.

2.4. Yade modules reference 753

Yade Documentation, Release 3rd ed.

squaredNorm((Vector2)arg1) → Real :
Square of the Euclidean norm.

sum((Vector2)arg1) → Real :
Sum of all elements.

class Vector2c
/TODO/

Identity = Vector2c(Complex("1","0"),Complex("0","0"))

Ones = Vector2c(Complex("1","0"),Complex("1","0"))

static Random() → Vector2c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2c

UnitX = Vector2c(Complex("1","0"),Complex("0","0"))

UnitY = Vector2c(Complex("0","0"),Complex("1","0"))

Zero = Vector2c(Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Vector2c)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (Complex)x, (Complex)y) -> None

asDiagonal((Vector2c)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2c)arg1) → int :
Number of columns.

dot((Vector2c)arg1, (Vector2c)other) → Complex :
Dot product with other.

isApprox((Vector2c)arg1, (Vector2c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector2c)arg1) → Real :
Maximum absolute value over all elements.

mean((Vector2c)arg1) → Complex :
Mean value over all elements.

norm((Vector2c)arg1) → Real :
Euclidean norm.

normalize((Vector2c)arg1) → None :
Normalize this object in-place.

normalized((Vector2c)arg1) → Vector2c :
Return normalized copy of this object

outer((Vector2c)arg1, (Vector2c)other) → object :
Outer product with other.

754 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

prod((Vector2c)arg1) → Complex :
Product of all elements.

pruned((Vector2c)arg1[, (float)absTol=1e-06]) → Vector2c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2c)arg1) → int :
Number of rows.

squaredNorm((Vector2c)arg1) → Real :
Square of the Euclidean norm.

sum((Vector2c)arg1) → Complex :
Sum of all elements.

class Vector2i
2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)

Ones = Vector2i(1,1)

static Random() → Vector2i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2i

UnitX = Vector2i(1,0)

UnitY = Vector2i(0,1)

Zero = Vector2i(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2i)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (int)x, (int)y) -> None

asDiagonal((Vector2i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2i)arg1) → int :
Number of columns.

dot((Vector2i)arg1, (Vector2i)other) → int :
Dot product with other.

isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector2i)arg1) → int :
Maximum value over all elements.

2.4. Yade modules reference 755

Yade Documentation, Release 3rd ed.

mean((Vector2i)arg1) → int :
Mean value over all elements.

minCoeff((Vector2i)arg1) → int :
Minimum value over all elements.

outer((Vector2i)arg1, (Vector2i)other) → object :
Outer product with other.

prod((Vector2i)arg1) → int :
Product of all elements.

rows((Vector2i)arg1) → int :
Number of rows.

sum((Vector2i)arg1) → int :
Sum of all elements.

class Vector3
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, …) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3("1","0","0")

Ones = Vector3("1","1","1")

static Random() → Vector3 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3

UnitX = Vector3("1","0","0")

UnitY = Vector3("0","1","0")

UnitZ = Vector3("0","0","1")

Zero = Vector3("0","0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (Real)x=Real(“0”) [, (Real)y=Real(“0”) [,
(Real)z=Real(“0”)]]]) -> None

asDiagonal((Vector3)arg1) → Matrix3 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3)arg1) → int :
Number of columns.

cross((Vector3)arg1, (Vector3)arg2) → Vector3

dot((Vector3)arg1, (Vector3)other) → Real :
Dot product with other.

756 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

isApprox((Vector3)arg1, (Vector3)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector3)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector3)arg1) → Real :
Maximum value over all elements.

mean((Vector3)arg1) → Real :
Mean value over all elements.

minCoeff((Vector3)arg1) → Real :
Minimum value over all elements.

norm((Vector3)arg1) → Real :
Euclidean norm.

normalize((Vector3)arg1) → None :
Normalize this object in-place.

normalized((Vector3)arg1) → Vector3 :
Return normalized copy of this object

outer((Vector3)arg1, (Vector3)other) → Matrix3 :
Outer product with other.

prod((Vector3)arg1) → Real :
Product of all elements.

pruned((Vector3)arg1[, (float)absTol=1e-06]) → Vector3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3)arg1) → int :
Number of rows.

squaredNorm((Vector3)arg1) → Real :
Square of the Euclidean norm.

sum((Vector3)arg1) → Real :
Sum of all elements.

xy((Vector3)arg1) → Vector2

xz((Vector3)arg1) → Vector2

yx((Vector3)arg1) → Vector2

yz((Vector3)arg1) → Vector2

zx((Vector3)arg1) → Vector2

zy((Vector3)arg1) → Vector2

class Vector3c
/TODO/

Identity = Vector3c(Complex("1","0"),Complex("0","0"),Complex("0","0"))

Ones = Vector3c(Complex("1","0"),Complex("1","0"),Complex("1","0"))

2.4. Yade modules reference 757

Yade Documentation, Release 3rd ed.

static Random() → Vector3c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3c

UnitX = Vector3c(Complex("1","0"),Complex("0","0"),Complex("0","0"))

UnitY = Vector3c(Complex("0","0"),Complex("1","0"),Complex("0","0"))

UnitZ = Vector3c(Complex("0","0"),Complex("0","0"),Complex("1","0"))

Zero = Vector3c(Complex("0","0"),Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Vector3c)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (Complex)x=Complex(“0”,”0”) [, (Com-
plex)y=Complex(“0”,”0”) [, (Complex)z=Complex(“0”,”0”)]]]) -> None

asDiagonal((Vector3c)arg1) → Matrix3c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3c)arg1) → int :
Number of columns.

cross((Vector3c)arg1, (Vector3c)arg2) → Vector3c

dot((Vector3c)arg1, (Vector3c)other) → Complex :
Dot product with other.

isApprox((Vector3c)arg1, (Vector3c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector3c)arg1) → Real :
Maximum absolute value over all elements.

mean((Vector3c)arg1) → Complex :
Mean value over all elements.

norm((Vector3c)arg1) → Real :
Euclidean norm.

normalize((Vector3c)arg1) → None :
Normalize this object in-place.

normalized((Vector3c)arg1) → Vector3c :
Return normalized copy of this object

outer((Vector3c)arg1, (Vector3c)other) → Matrix3c :
Outer product with other.

prod((Vector3c)arg1) → Complex :
Product of all elements.

pruned((Vector3c)arg1[, (float)absTol=1e-06]) → Vector3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3c)arg1) → int :
Number of rows.

758 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

squaredNorm((Vector3c)arg1) → Real :
Square of the Euclidean norm.

sum((Vector3c)arg1) → Complex :
Sum of all elements.

xy((Vector3c)arg1) → Vector2c

xz((Vector3c)arg1) → Vector2c

yx((Vector3c)arg1) → Vector2c

yz((Vector3c)arg1) → Vector2c

zx((Vector3c)arg1) → Vector2c

zy((Vector3c)arg1) → Vector2c

class Vector3i
3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3i(1,0,0)

Ones = Vector3i(1,1,1)

static Random() → Vector3i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3i

UnitX = Vector3i(1,0,0)

UnitY = Vector3i(0,1,0)

UnitZ = Vector3i(0,0,1)

Zero = Vector3i(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3i)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (int)x=0 [, (int)y=0 [, (int)z=0]]]) -> None

asDiagonal((Vector3i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3i)arg1) → int :
Number of columns.

cross((Vector3i)arg1, (Vector3i)arg2) → Vector3i

dot((Vector3i)arg1, (Vector3i)other) → int :
Dot product with other.

isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

2.4. Yade modules reference 759

Yade Documentation, Release 3rd ed.

maxAbsCoeff((Vector3i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector3i)arg1) → int :
Maximum value over all elements.

mean((Vector3i)arg1) → int :
Mean value over all elements.

minCoeff((Vector3i)arg1) → int :
Minimum value over all elements.

outer((Vector3i)arg1, (Vector3i)other) → object :
Outer product with other.

prod((Vector3i)arg1) → int :
Product of all elements.

rows((Vector3i)arg1) → int :
Number of rows.

sum((Vector3i)arg1) → int :
Sum of all elements.

xy((Vector3i)arg1) → Vector2i

xz((Vector3i)arg1) → Vector2i

yx((Vector3i)arg1) → Vector2i

yz((Vector3i)arg1) → Vector2i

zx((Vector3i)arg1) → Vector2i

zy((Vector3i)arg1) → Vector2i

class Vector4
4-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 4 floats.

Static attributes: Zero, Ones.

Identity = Vector4("1","0","0", "0")

Ones = Vector4("1","1","1", "1")

static Random() → Vector4 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector4

Zero = Vector4("0","0","0", "0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector4)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (Real)v0, (Real)v1, (Real)v2, (Real)v3) -> None

asDiagonal((Vector4)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

760 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

cols((Vector4)arg1) → int :
Number of columns.

dot((Vector4)arg1, (Vector4)other) → Real :
Dot product with other.

isApprox((Vector4)arg1, (Vector4)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector4)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector4)arg1) → Real :
Maximum value over all elements.

mean((Vector4)arg1) → Real :
Mean value over all elements.

minCoeff((Vector4)arg1) → Real :
Minimum value over all elements.

norm((Vector4)arg1) → Real :
Euclidean norm.

normalize((Vector4)arg1) → None :
Normalize this object in-place.

normalized((Vector4)arg1) → Vector4 :
Return normalized copy of this object

outer((Vector4)arg1, (Vector4)other) → object :
Outer product with other.

prod((Vector4)arg1) → Real :
Product of all elements.

pruned((Vector4)arg1[, (float)absTol=1e-06]) → Vector4 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector4)arg1) → int :
Number of rows.

squaredNorm((Vector4)arg1) → Real :
Square of the Euclidean norm.

sum((Vector4)arg1) → Real :
Sum of all elements.

class Vector6
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6("1","0","0", "0","0","0")

Ones = Vector6("1","1","1", "1","1","1")

2.4. Yade modules reference 761

Yade Documentation, Release 3rd ed.

static Random() → Vector6 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6

Zero = Vector6("0","0","0", "0","0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector6)other) -> None

__init__((object)arg1, (Real)v0, (Real)v1, (Real)v2, (Real)v3, (Real)v4, (Real)v5) ->
object

__init__((object)arg1, (Vector3)head, (Vector3)tail) -> object

asDiagonal((Vector6)arg1) → Matrix6 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6)arg1) → int :
Number of columns.

dot((Vector6)arg1, (Vector6)other) → Real :
Dot product with other.

head((Vector6)arg1) → Vector3

isApprox((Vector6)arg1, (Vector6)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector6)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector6)arg1) → Real :
Maximum value over all elements.

mean((Vector6)arg1) → Real :
Mean value over all elements.

minCoeff((Vector6)arg1) → Real :
Minimum value over all elements.

norm((Vector6)arg1) → Real :
Euclidean norm.

normalize((Vector6)arg1) → None :
Normalize this object in-place.

normalized((Vector6)arg1) → Vector6 :
Return normalized copy of this object

outer((Vector6)arg1, (Vector6)other) → Matrix6 :
Outer product with other.

prod((Vector6)arg1) → Real :
Product of all elements.

pruned((Vector6)arg1[, (float)absTol=1e-06]) → Vector6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6)arg1) → int :
Number of rows.

762 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

squaredNorm((Vector6)arg1) → Real :
Square of the Euclidean norm.

sum((Vector6)arg1) → Real :
Sum of all elements.

tail((Vector6)arg1) → Vector3

class Vector6c
/TODO/

Identity = Vector6c(Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"))

Ones = Vector6c(Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0"))

static Random() → Vector6c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6c

Zero = Vector6c(Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Vector6c)other) -> None

__init__((object)arg1, (Complex)v0, (Complex)v1, (Complex)v2, (Complex)v3, (Com-
plex)v4, (Complex)v5) -> object

__init__((object)arg1, (Vector3c)head, (Vector3c)tail) -> object

asDiagonal((Vector6c)arg1) → Matrix6c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6c)arg1) → int :
Number of columns.

dot((Vector6c)arg1, (Vector6c)other) → Complex :
Dot product with other.

head((Vector6c)arg1) → Vector3c

isApprox((Vector6c)arg1, (Vector6c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector6c)arg1) → Real :
Maximum absolute value over all elements.

mean((Vector6c)arg1) → Complex :
Mean value over all elements.

norm((Vector6c)arg1) → Real :
Euclidean norm.

normalize((Vector6c)arg1) → None :
Normalize this object in-place.

normalized((Vector6c)arg1) → Vector6c :
Return normalized copy of this object

2.4. Yade modules reference 763

Yade Documentation, Release 3rd ed.

outer((Vector6c)arg1, (Vector6c)other) → Matrix6c :
Outer product with other.

prod((Vector6c)arg1) → Complex :
Product of all elements.

pruned((Vector6c)arg1[, (float)absTol=1e-06]) → Vector6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6c)arg1) → int :
Number of rows.

squaredNorm((Vector6c)arg1) → Real :
Square of the Euclidean norm.

sum((Vector6c)arg1) → Complex :
Sum of all elements.

tail((Vector6c)arg1) → Vector3c

class Vector6i
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 ints.

Static attributes: Zero, Ones.

Identity = Vector6i(1,0,0, 0,0,0)

Ones = Vector6i(1,1,1, 1,1,1)

static Random() → Vector6i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6i

Zero = Vector6i(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6i)other) -> None

__init__((object)arg1, (int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) -> object

__init__((object)arg1, (Vector3i)head, (Vector3i)tail) -> object

asDiagonal((Vector6i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6i)arg1) → int :
Number of columns.

dot((Vector6i)arg1, (Vector6i)other) → int :
Dot product with other.

head((Vector6i)arg1) → Vector3i

isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6i)arg1) → int :
Maximum absolute value over all elements.

764 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

maxCoeff((Vector6i)arg1) → int :
Maximum value over all elements.

mean((Vector6i)arg1) → int :
Mean value over all elements.

minCoeff((Vector6i)arg1) → int :
Minimum value over all elements.

outer((Vector6i)arg1, (Vector6i)other) → object :
Outer product with other.

prod((Vector6i)arg1) → int :
Product of all elements.

rows((Vector6i)arg1) → int :
Number of rows.

sum((Vector6i)arg1) → int :
Sum of all elements.

tail((Vector6i)arg1) → Vector3i

class VectorX
Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of X floats.

static Ones((int)arg1) → VectorX

static Random((int)len) → VectorX :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorX

static Zero((int)arg1) → VectorX

__init__((object)arg1) → None
__init__((object)arg1, (VectorX)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorX)arg1) → MatrixX :
Return diagonal matrix with this vector on the diagonal.

cols((VectorX)arg1) → int :
Number of columns.

dot((VectorX)arg1, (VectorX)other) → Real :
Dot product with other.

isApprox((VectorX)arg1, (VectorX)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((VectorX)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((VectorX)arg1) → Real :
Maximum value over all elements.

2.4. Yade modules reference 765

Yade Documentation, Release 3rd ed.

mean((VectorX)arg1) → Real :
Mean value over all elements.

minCoeff((VectorX)arg1) → Real :
Minimum value over all elements.

norm((VectorX)arg1) → Real :
Euclidean norm.

normalize((VectorX)arg1) → None :
Normalize this object in-place.

normalized((VectorX)arg1) → VectorX :
Return normalized copy of this object

outer((VectorX)arg1, (VectorX)other) → MatrixX :
Outer product with other.

prod((VectorX)arg1) → Real :
Product of all elements.

pruned((VectorX)arg1[, (float)absTol=1e-06]) → VectorX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorX)arg1, (int)arg2) → None

rows((VectorX)arg1) → int :
Number of rows.

squaredNorm((VectorX)arg1) → Real :
Square of the Euclidean norm.

sum((VectorX)arg1) → Real :
Sum of all elements.

class VectorXc
/TODO/

static Ones((int)arg1) → VectorXc

static Random((int)len) → VectorXc :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorXc

static Zero((int)arg1) → VectorXc

__init__((object)arg1) → None
__init__((object)arg1, (VectorXc)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorXc)arg1) → MatrixXc :
Return diagonal matrix with this vector on the diagonal.

cols((VectorXc)arg1) → int :
Number of columns.

dot((VectorXc)arg1, (VectorXc)other) → Complex :
Dot product with other.

766 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

isApprox((VectorXc)arg1, (VectorXc)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((VectorXc)arg1) → Real :
Maximum absolute value over all elements.

mean((VectorXc)arg1) → Complex :
Mean value over all elements.

norm((VectorXc)arg1) → Real :
Euclidean norm.

normalize((VectorXc)arg1) → None :
Normalize this object in-place.

normalized((VectorXc)arg1) → VectorXc :
Return normalized copy of this object

outer((VectorXc)arg1, (VectorXc)other) → MatrixXc :
Outer product with other.

prod((VectorXc)arg1) → Complex :
Product of all elements.

pruned((VectorXc)arg1[, (float)absTol=1e-06]) → VectorXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorXc)arg1, (int)arg2) → None

rows((VectorXc)arg1) → int :
Number of rows.

squaredNorm((VectorXc)arg1) → Real :
Square of the Euclidean norm.

sum((VectorXc)arg1) → Complex :
Sum of all elements.

vectorize = False

class yade._minieigenHP.Matrix3
3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3(0,0,0, 0,0,0, 0,0,0)

2.4. Yade modules reference 767

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (Quaternion)q) -> None

__init__((object)arg1, (Matrix3)other) -> None

__init__((object)arg1, (Vector3)diag) -> object

__init__((object)arg1, (float)m00, (float)m01, (float)m02, (float)m10, (float)m11,
(float)m12, (float)m20, (float)m21, (float)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) -> object

col((Matrix3)arg1, (int)col) → Vector3 :
Return column as vector.

cols((Matrix3)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix3)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix
P such that self=U*P).

determinant((Matrix3)arg1) → float :
Return matrix determinant.

diagonal((Matrix3)arg1) → Vector3 :
Return diagonal as vector.

inverse((Matrix3)arg1) → Matrix3 :
Return inverted matrix.

isApprox((Matrix3)arg1, (Matrix3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix3)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((Matrix3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix3)arg1) → float :
Maximum value over all elements.

mean((Matrix3)arg1) → float :
Mean value over all elements.

minCoeff((Matrix3)arg1) → float :
Minimum value over all elements.

norm((Matrix3)arg1) → float :
Euclidean norm.

normalize((Matrix3)arg1) → None :
Normalize this object in-place.

normalized((Matrix3)arg1) → Matrix3 :
Return normalized copy of this object

polarDecomposition((Matrix3)arg1) → tuple :
Alias for computeUnitaryPositive.

768 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

prod((Matrix3)arg1) → float :
Product of all elements.

pruned((Matrix3)arg1[, (float)absTol=1e-06]) → Matrix3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3)arg1, (int)row) → Vector3 :
Return row as vector.

rows((Matrix3)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix3)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix3)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix3)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3)arg1) → float :
Sum of all elements.

svd((Matrix3)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix3)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix3)arg1) → Matrix3 :
Return transposed matrix.

class yade._minieigenHP.Matrix3c
/TODO/

Identity = Matrix3c(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3c(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Matrix3c)other) -> None

__init__((object)arg1, (Vector3c)diag) -> object

__init__((object)arg1, (complex)m00, (complex)m01, (complex)m02, (complex)m10, (com-
plex)m11, (complex)m12, (complex)m20, (complex)m21, (complex)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False]) ->
object

col((Matrix3c)arg1, (int)col) → Vector3c :
Return column as vector.

2.4. Yade modules reference 769

Yade Documentation, Release 3rd ed.

cols((Matrix3c)arg1) → int :
Number of columns.

determinant((Matrix3c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix3c)arg1) → Vector3c :
Return diagonal as vector.

inverse((Matrix3c)arg1) → Matrix3c :
Return inverted matrix.

isApprox((Matrix3c)arg1, (Matrix3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Matrix3c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix3c)arg1) → complex :
Mean value over all elements.

norm((Matrix3c)arg1) → float :
Euclidean norm.

normalize((Matrix3c)arg1) → None :
Normalize this object in-place.

normalized((Matrix3c)arg1) → Matrix3c :
Return normalized copy of this object

prod((Matrix3c)arg1) → complex :
Product of all elements.

pruned((Matrix3c)arg1[, (float)absTol=1e-06]) → Matrix3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3c)arg1, (int)row) → Vector3c :
Return row as vector.

rows((Matrix3c)arg1) → int :
Number of rows.

squaredNorm((Matrix3c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3c)arg1) → complex :
Sum of all elements.

trace((Matrix3c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix3c)arg1) → Matrix3c :
Return transposed matrix.

class yade._minieigenHP.Matrix6
6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

770 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Matrix6((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0), (0,0,0,0,0,1))

Ones = Matrix6((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6)other) -> None

__init__((object)arg1, (Vector6)diag) -> object

__init__((object)arg1, (Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) -> object

__init__((object)arg1, (Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4, (Vec-
tor6)l5 [, (bool)cols=False]) -> object

col((Matrix6)arg1, (int)col) → Vector6 :
Return column as vector.

cols((Matrix6)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix6)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix
P such that self=U*P).

determinant((Matrix6)arg1) → float :
Return matrix determinant.

diagonal((Matrix6)arg1) → Vector6 :
Return diagonal as vector.

inverse((Matrix6)arg1) → Matrix6 :
Return inverted matrix.

isApprox((Matrix6)arg1, (Matrix6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix6)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

ll((Matrix6)arg1) → Matrix3 :
Return lower-left 3x3 block

lr((Matrix6)arg1) → Matrix3 :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix6)arg1) → float :
Maximum value over all elements.

mean((Matrix6)arg1) → float :
Mean value over all elements.

2.4. Yade modules reference 771

Yade Documentation, Release 3rd ed.

minCoeff((Matrix6)arg1) → float :
Minimum value over all elements.

norm((Matrix6)arg1) → float :
Euclidean norm.

normalize((Matrix6)arg1) → None :
Normalize this object in-place.

normalized((Matrix6)arg1) → Matrix6 :
Return normalized copy of this object

polarDecomposition((Matrix6)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix6)arg1) → float :
Product of all elements.

pruned((Matrix6)arg1[, (float)absTol=1e-06]) → Matrix6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6)arg1, (int)row) → Vector6 :
Return row as vector.

rows((Matrix6)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix6)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix6)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix6)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6)arg1) → float :
Sum of all elements.

svd((Matrix6)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix6)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix6)arg1) → Matrix6 :
Return transposed matrix.

ul((Matrix6)arg1) → Matrix3 :
Return upper-left 3x3 block

ur((Matrix6)arg1) → Matrix3 :
Return upper-right 3x3 block

class yade._minieigenHP.Matrix6c
/TODO/

Identity = Matrix6c((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0), (0,0,0,0,0,1))

772 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Ones = Matrix6c((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6c((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6c)other) -> None

__init__((object)arg1, (Vector6c)diag) -> object

__init__((object)arg1, (Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) -> object

__init__((object)arg1, (Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vector6c)l4,
(Vector6c)l5 [, (bool)cols=False]) -> object

col((Matrix6c)arg1, (int)col) → Vector6c :
Return column as vector.

cols((Matrix6c)arg1) → int :
Number of columns.

determinant((Matrix6c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix6c)arg1) → Vector6c :
Return diagonal as vector.

inverse((Matrix6c)arg1) → Matrix6c :
Return inverted matrix.

isApprox((Matrix6c)arg1, (Matrix6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

ll((Matrix6c)arg1) → Matrix3c :
Return lower-left 3x3 block

lr((Matrix6c)arg1) → Matrix3c :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix6c)arg1) → complex :
Mean value over all elements.

norm((Matrix6c)arg1) → float :
Euclidean norm.

normalize((Matrix6c)arg1) → None :
Normalize this object in-place.

normalized((Matrix6c)arg1) → Matrix6c :
Return normalized copy of this object

prod((Matrix6c)arg1) → complex :
Product of all elements.

pruned((Matrix6c)arg1[, (float)absTol=1e-06]) → Matrix6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

2.4. Yade modules reference 773

Yade Documentation, Release 3rd ed.

row((Matrix6c)arg1, (int)row) → Vector6c :
Return row as vector.

rows((Matrix6c)arg1) → int :
Number of rows.

squaredNorm((Matrix6c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6c)arg1) → complex :
Sum of all elements.

trace((Matrix6c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix6c)arg1) → Matrix6c :
Return transposed matrix.

ul((Matrix6c)arg1) → Matrix3c :
Return upper-left 3x3 block

ur((Matrix6c)arg1) → Matrix3c :
Return upper-right 3x3 block

class yade._minieigenHP.MatrixX
XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

static Identity((int)arg1, (int)rank) → MatrixX :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixX :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixX :
Create matrix with given dimensions where all elements are set to number between 0 and 1
(uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixX :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixX)other) -> None

__init__((object)arg1, (VectorX)diag) -> object

__init__((object)arg1 [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (Vec-
torX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (Vec-
torX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (Vec-
torX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixX)arg1, (int)col) → VectorX :
Return column as vector.

cols((MatrixX)arg1) → int :
Number of columns.

computeUnitaryPositive((MatrixX)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix
P such that self=U*P).

774 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

determinant((MatrixX)arg1) → float :
Return matrix determinant.

diagonal((MatrixX)arg1) → VectorX :
Return diagonal as vector.

inverse((MatrixX)arg1) → MatrixX :
Return inverted matrix.

isApprox((MatrixX)arg1, (MatrixX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((MatrixX)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((MatrixX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((MatrixX)arg1) → float :
Maximum value over all elements.

mean((MatrixX)arg1) → float :
Mean value over all elements.

minCoeff((MatrixX)arg1) → float :
Minimum value over all elements.

norm((MatrixX)arg1) → float :
Euclidean norm.

normalize((MatrixX)arg1) → None :
Normalize this object in-place.

normalized((MatrixX)arg1) → MatrixX :
Return normalized copy of this object

polarDecomposition((MatrixX)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((MatrixX)arg1) → float :
Product of all elements.

pruned((MatrixX)arg1[, (float)absTol=1e-06]) → MatrixX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixX)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixX)arg1, (int)row) → VectorX :
Return row as vector.

rows((MatrixX)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((MatrixX)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((MatrixX)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

2.4. Yade modules reference 775

Yade Documentation, Release 3rd ed.

squaredNorm((MatrixX)arg1) → float :
Square of the Euclidean norm.

sum((MatrixX)arg1) → float :
Sum of all elements.

svd((MatrixX)arg1) → tuple :
Alias for jacobiSVD.

trace((MatrixX)arg1) → float :
Return sum of diagonal elements.

transpose((MatrixX)arg1) → MatrixX :
Return transposed matrix.

class yade._minieigenHP.MatrixXc
/TODO/

static Identity((int)arg1, (int)rank) → MatrixXc :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixXc :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixXc :
Create matrix with given dimensions where all elements are set to number between 0 and 1
(uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixXc :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixXc)other) -> None

__init__((object)arg1, (VectorXc)diag) -> object

__init__((object)arg1 [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (Vec-
torXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (Vec-
torXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (Vec-
torXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixXc)arg1, (int)col) → VectorXc :
Return column as vector.

cols((MatrixXc)arg1) → int :
Number of columns.

determinant((MatrixXc)arg1) → complex :
Return matrix determinant.

diagonal((MatrixXc)arg1) → VectorXc :
Return diagonal as vector.

inverse((MatrixXc)arg1) → MatrixXc :
Return inverted matrix.

isApprox((MatrixXc)arg1, (MatrixXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((MatrixXc)arg1) → float :
Maximum absolute value over all elements.

776 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mean((MatrixXc)arg1) → complex :
Mean value over all elements.

norm((MatrixXc)arg1) → float :
Euclidean norm.

normalize((MatrixXc)arg1) → None :
Normalize this object in-place.

normalized((MatrixXc)arg1) → MatrixXc :
Return normalized copy of this object

prod((MatrixXc)arg1) → complex :
Product of all elements.

pruned((MatrixXc)arg1[, (float)absTol=1e-06]) → MatrixXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixXc)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixXc)arg1, (int)row) → VectorXc :
Return row as vector.

rows((MatrixXc)arg1) → int :
Number of rows.

squaredNorm((MatrixXc)arg1) → float :
Square of the Euclidean norm.

sum((MatrixXc)arg1) → complex :
Sum of all elements.

trace((MatrixXc)arg1) → complex :
Return sum of diagonal elements.

transpose((MatrixXc)arg1) → MatrixXc :
Return transposed matrix.

class yade._minieigenHP.Quaternion
Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q, q*v
(rotating v by q), q==q, q!=q.

Static attributes: Identity.

Note: Quaternion is represented as axis-angle when printed (e.g. Identity is Quaternion((1,
0,0),0), and can also be constructed from the axis-angle representation. This is however different
from the data stored inside, which can be accessed by indices [0] (x), [1] (y), [2] (z), [3] (w).
To obtain axis-angle programatically, use Quaternion.toAxisAngle which returns the tuple.

Identity = Quaternion((1,0,0),0)

Rotate((Quaternion)arg1, (Vector3)v) → Vector3

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)axis, (object)angle) -> object

__init__((object)arg1, (Vector3)axis, (float)angle) -> object

__init__((object)arg1, (object)angle, (Vector3)axis) -> object

2.4. Yade modules reference 777

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (float)angle, (Vector3)axis) -> object

__init__((object)arg1, (tuple)axis, (str)angle) -> object

__init__((object)arg1, (tuple)tuple) -> object

__init__((object)arg1, (Vector3)u, (Vector3)v) -> object

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (float)w, (float)x, (float)y, (float)z) -> None :
Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((object)arg1, (Matrix3)rotMatrix) -> None

__init__((object)arg1, (Quaternion)other) -> None

angularDistance((Quaternion)arg1, (Quaternion)arg2) → float

conjugate((Quaternion)arg1) → Quaternion

inverse((Quaternion)arg1) → Quaternion

norm((Quaternion)arg1) → float

normalize((Quaternion)arg1) → None

normalized((Quaternion)arg1) → Quaternion

setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) → None

slerp((Quaternion)arg1, (float)t, (Quaternion)other) → Quaternion

toAngleAxis((Quaternion)arg1) → tuple

toAxisAngle((Quaternion)arg1) → tuple

toRotationMatrix((Quaternion)arg1) → Matrix3

toRotationVector((Quaternion)arg1) → Vector3

class yade._minieigenHP.Vector2
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2(1,0)

Ones = Vector2(1,1)

static Random() → Vector2 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2

UnitX = Vector2(1,0)

UnitY = Vector2(0,1)

778 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Zero = Vector2(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (float)x, (float)y) -> None

asDiagonal((Vector2)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2)arg1) → int :
Number of columns.

dot((Vector2)arg1, (Vector2)other) → float :
Dot product with other.

isApprox((Vector2)arg1, (Vector2)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector2)arg1) → float :
Maximum value over all elements.

mean((Vector2)arg1) → float :
Mean value over all elements.

minCoeff((Vector2)arg1) → float :
Minimum value over all elements.

norm((Vector2)arg1) → float :
Euclidean norm.

normalize((Vector2)arg1) → None :
Normalize this object in-place.

normalized((Vector2)arg1) → Vector2 :
Return normalized copy of this object

outer((Vector2)arg1, (Vector2)other) → object :
Outer product with other.

prod((Vector2)arg1) → float :
Product of all elements.

pruned((Vector2)arg1[, (float)absTol=1e-06]) → Vector2 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2)arg1) → int :
Number of rows.

squaredNorm((Vector2)arg1) → float :
Square of the Euclidean norm.

sum((Vector2)arg1) → float :
Sum of all elements.

class yade._minieigenHP.Vector2c
/TODO/

2.4. Yade modules reference 779

Yade Documentation, Release 3rd ed.

Identity = Vector2c(1,0)

Ones = Vector2c(1,1)

static Random() → Vector2c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2c

UnitX = Vector2c(1,0)

UnitY = Vector2c(0,1)

Zero = Vector2c(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2c)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (complex)x, (complex)y) -> None

asDiagonal((Vector2c)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2c)arg1) → int :
Number of columns.

dot((Vector2c)arg1, (Vector2c)other) → complex :
Dot product with other.

isApprox((Vector2c)arg1, (Vector2c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector2c)arg1) → complex :
Mean value over all elements.

norm((Vector2c)arg1) → float :
Euclidean norm.

normalize((Vector2c)arg1) → None :
Normalize this object in-place.

normalized((Vector2c)arg1) → Vector2c :
Return normalized copy of this object

outer((Vector2c)arg1, (Vector2c)other) → object :
Outer product with other.

prod((Vector2c)arg1) → complex :
Product of all elements.

pruned((Vector2c)arg1[, (float)absTol=1e-06]) → Vector2c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2c)arg1) → int :
Number of rows.

squaredNorm((Vector2c)arg1) → float :
Square of the Euclidean norm.

780 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

sum((Vector2c)arg1) → complex :
Sum of all elements.

class yade._minieigenHP.Vector2i
2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v,
v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)

Ones = Vector2i(1,1)

static Random() → Vector2i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2i

UnitX = Vector2i(1,0)

UnitY = Vector2i(0,1)

Zero = Vector2i(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2i)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (int)x, (int)y) -> None

asDiagonal((Vector2i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2i)arg1) → int :
Number of columns.

dot((Vector2i)arg1, (Vector2i)other) → int :
Dot product with other.

isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector2i)arg1) → int :
Maximum value over all elements.

mean((Vector2i)arg1) → int :
Mean value over all elements.

minCoeff((Vector2i)arg1) → int :
Minimum value over all elements.

outer((Vector2i)arg1, (Vector2i)other) → object :
Outer product with other.

prod((Vector2i)arg1) → int :
Product of all elements.

2.4. Yade modules reference 781

Yade Documentation, Release 3rd ed.

rows((Vector2i)arg1) → int :
Number of rows.

sum((Vector2i)arg1) → int :
Sum of all elements.

class yade._minieigenHP.Vector3
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, …) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3(1,0,0)

Ones = Vector3(1,1,1)

static Random() → Vector3 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3

UnitX = Vector3(1,0,0)

UnitY = Vector3(0,1,0)

UnitZ = Vector3(0,0,1)

Zero = Vector3(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (float)x=0.0 [, (float)y=0.0 [, (float)z=0.0]]]) -> None

asDiagonal((Vector3)arg1) → Matrix3 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3)arg1) → int :
Number of columns.

cross((Vector3)arg1, (Vector3)arg2) → Vector3

dot((Vector3)arg1, (Vector3)other) → float :
Dot product with other.

isApprox((Vector3)arg1, (Vector3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector3)arg1) → float :
Maximum value over all elements.

mean((Vector3)arg1) → float :
Mean value over all elements.

minCoeff((Vector3)arg1) → float :
Minimum value over all elements.

782 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

norm((Vector3)arg1) → float :
Euclidean norm.

normalize((Vector3)arg1) → None :
Normalize this object in-place.

normalized((Vector3)arg1) → Vector3 :
Return normalized copy of this object

outer((Vector3)arg1, (Vector3)other) → Matrix3 :
Outer product with other.

prod((Vector3)arg1) → float :
Product of all elements.

pruned((Vector3)arg1[, (float)absTol=1e-06]) → Vector3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3)arg1) → int :
Number of rows.

squaredNorm((Vector3)arg1) → float :
Square of the Euclidean norm.

sum((Vector3)arg1) → float :
Sum of all elements.

xy((Vector3)arg1) → Vector2

xz((Vector3)arg1) → Vector2

yx((Vector3)arg1) → Vector2

yz((Vector3)arg1) → Vector2

zx((Vector3)arg1) → Vector2

zy((Vector3)arg1) → Vector2

class yade._minieigenHP.Vector3c
/TODO/

Identity = Vector3c(1,0,0)

Ones = Vector3c(1,1,1)

static Random() → Vector3c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3c

UnitX = Vector3c(1,0,0)

UnitY = Vector3c(0,1,0)

UnitZ = Vector3c(0,0,1)

Zero = Vector3c(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3c)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (complex)x=0j [, (complex)y=0j [, (complex)z=0j]]]) -> None

2.4. Yade modules reference 783

Yade Documentation, Release 3rd ed.

asDiagonal((Vector3c)arg1) → Matrix3c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3c)arg1) → int :
Number of columns.

cross((Vector3c)arg1, (Vector3c)arg2) → Vector3c

dot((Vector3c)arg1, (Vector3c)other) → complex :
Dot product with other.

isApprox((Vector3c)arg1, (Vector3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector3c)arg1) → complex :
Mean value over all elements.

norm((Vector3c)arg1) → float :
Euclidean norm.

normalize((Vector3c)arg1) → None :
Normalize this object in-place.

normalized((Vector3c)arg1) → Vector3c :
Return normalized copy of this object

outer((Vector3c)arg1, (Vector3c)other) → Matrix3c :
Outer product with other.

prod((Vector3c)arg1) → complex :
Product of all elements.

pruned((Vector3c)arg1[, (float)absTol=1e-06]) → Vector3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3c)arg1) → int :
Number of rows.

squaredNorm((Vector3c)arg1) → float :
Square of the Euclidean norm.

sum((Vector3c)arg1) → complex :
Sum of all elements.

xy((Vector3c)arg1) → Vector2c

xz((Vector3c)arg1) → Vector2c

yx((Vector3c)arg1) → Vector2c

yz((Vector3c)arg1) → Vector2c

zx((Vector3c)arg1) → Vector2c

zy((Vector3c)arg1) → Vector2c

784 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade._minieigenHP.Vector3i
3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v,
v!=v.

Implicit conversion from sequence (list, tuple, …) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3i(1,0,0)

Ones = Vector3i(1,1,1)

static Random() → Vector3i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3i

UnitX = Vector3i(1,0,0)

UnitY = Vector3i(0,1,0)

UnitZ = Vector3i(0,0,1)

Zero = Vector3i(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3i)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (int)x=0 [, (int)y=0 [, (int)z=0]]]) -> None

asDiagonal((Vector3i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3i)arg1) → int :
Number of columns.

cross((Vector3i)arg1, (Vector3i)arg2) → Vector3i

dot((Vector3i)arg1, (Vector3i)other) → int :
Dot product with other.

isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector3i)arg1) → int :
Maximum value over all elements.

mean((Vector3i)arg1) → int :
Mean value over all elements.

minCoeff((Vector3i)arg1) → int :
Minimum value over all elements.

outer((Vector3i)arg1, (Vector3i)other) → object :
Outer product with other.

prod((Vector3i)arg1) → int :
Product of all elements.

2.4. Yade modules reference 785

Yade Documentation, Release 3rd ed.

rows((Vector3i)arg1) → int :
Number of rows.

sum((Vector3i)arg1) → int :
Sum of all elements.

xy((Vector3i)arg1) → Vector2i

xz((Vector3i)arg1) → Vector2i

yx((Vector3i)arg1) → Vector2i

yz((Vector3i)arg1) → Vector2i

zx((Vector3i)arg1) → Vector2i

zy((Vector3i)arg1) → Vector2i

class yade._minieigenHP.Vector4
4-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 4 floats.

Static attributes: Zero, Ones.

Identity = Vector4(1,0,0, 0)

Ones = Vector4(1,1,1, 1)

static Random() → Vector4 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector4

Zero = Vector4(0,0,0, 0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector4)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3) -> None

asDiagonal((Vector4)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector4)arg1) → int :
Number of columns.

dot((Vector4)arg1, (Vector4)other) → float :
Dot product with other.

isApprox((Vector4)arg1, (Vector4)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector4)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector4)arg1) → float :
Maximum value over all elements.

mean((Vector4)arg1) → float :
Mean value over all elements.

786 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

minCoeff((Vector4)arg1) → float :
Minimum value over all elements.

norm((Vector4)arg1) → float :
Euclidean norm.

normalize((Vector4)arg1) → None :
Normalize this object in-place.

normalized((Vector4)arg1) → Vector4 :
Return normalized copy of this object

outer((Vector4)arg1, (Vector4)other) → object :
Outer product with other.

prod((Vector4)arg1) → float :
Product of all elements.

pruned((Vector4)arg1[, (float)absTol=1e-06]) → Vector4 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector4)arg1) → int :
Number of rows.

squaredNorm((Vector4)arg1) → float :
Square of the Euclidean norm.

sum((Vector4)arg1) → float :
Sum of all elements.

class yade._minieigenHP.Vector6
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6(1,0,0, 0,0,0)

Ones = Vector6(1,1,1, 1,1,1)

static Random() → Vector6 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6

Zero = Vector6(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6)other) -> None

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3, (float)v4, (float)v5) -> ob-
ject

__init__((object)arg1, (Vector3)head, (Vector3)tail) -> object

asDiagonal((Vector6)arg1) → Matrix6 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6)arg1) → int :
Number of columns.

2.4. Yade modules reference 787

Yade Documentation, Release 3rd ed.

dot((Vector6)arg1, (Vector6)other) → float :
Dot product with other.

head((Vector6)arg1) → Vector3

isApprox((Vector6)arg1, (Vector6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector6)arg1) → float :
Maximum value over all elements.

mean((Vector6)arg1) → float :
Mean value over all elements.

minCoeff((Vector6)arg1) → float :
Minimum value over all elements.

norm((Vector6)arg1) → float :
Euclidean norm.

normalize((Vector6)arg1) → None :
Normalize this object in-place.

normalized((Vector6)arg1) → Vector6 :
Return normalized copy of this object

outer((Vector6)arg1, (Vector6)other) → Matrix6 :
Outer product with other.

prod((Vector6)arg1) → float :
Product of all elements.

pruned((Vector6)arg1[, (float)absTol=1e-06]) → Vector6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6)arg1) → int :
Number of rows.

squaredNorm((Vector6)arg1) → float :
Square of the Euclidean norm.

sum((Vector6)arg1) → float :
Sum of all elements.

tail((Vector6)arg1) → Vector3

class yade._minieigenHP.Vector6c
/TODO/

Identity = Vector6c(1,0,0, 0,0,0)

Ones = Vector6c(1,1,1, 1,1,1)

static Random() → Vector6c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6c

Zero = Vector6c(0,0,0, 0,0,0)

788 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (Vector6c)other) -> None

__init__((object)arg1, (complex)v0, (complex)v1, (complex)v2, (complex)v3, (complex)v4,
(complex)v5) -> object

__init__((object)arg1, (Vector3c)head, (Vector3c)tail) -> object

asDiagonal((Vector6c)arg1) → Matrix6c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6c)arg1) → int :
Number of columns.

dot((Vector6c)arg1, (Vector6c)other) → complex :
Dot product with other.

head((Vector6c)arg1) → Vector3c

isApprox((Vector6c)arg1, (Vector6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector6c)arg1) → complex :
Mean value over all elements.

norm((Vector6c)arg1) → float :
Euclidean norm.

normalize((Vector6c)arg1) → None :
Normalize this object in-place.

normalized((Vector6c)arg1) → Vector6c :
Return normalized copy of this object

outer((Vector6c)arg1, (Vector6c)other) → Matrix6c :
Outer product with other.

prod((Vector6c)arg1) → complex :
Product of all elements.

pruned((Vector6c)arg1[, (float)absTol=1e-06]) → Vector6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6c)arg1) → int :
Number of rows.

squaredNorm((Vector6c)arg1) → float :
Square of the Euclidean norm.

sum((Vector6c)arg1) → complex :
Sum of all elements.

tail((Vector6c)arg1) → Vector3c

class yade._minieigenHP.Vector6i
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 ints.

Static attributes: Zero, Ones.

2.4. Yade modules reference 789

Yade Documentation, Release 3rd ed.

Identity = Vector6i(1,0,0, 0,0,0)

Ones = Vector6i(1,1,1, 1,1,1)

static Random() → Vector6i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6i

Zero = Vector6i(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6i)other) -> None

__init__((object)arg1, (int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) -> object

__init__((object)arg1, (Vector3i)head, (Vector3i)tail) -> object

asDiagonal((Vector6i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6i)arg1) → int :
Number of columns.

dot((Vector6i)arg1, (Vector6i)other) → int :
Dot product with other.

head((Vector6i)arg1) → Vector3i

isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector6i)arg1) → int :
Maximum value over all elements.

mean((Vector6i)arg1) → int :
Mean value over all elements.

minCoeff((Vector6i)arg1) → int :
Minimum value over all elements.

outer((Vector6i)arg1, (Vector6i)other) → object :
Outer product with other.

prod((Vector6i)arg1) → int :
Product of all elements.

rows((Vector6i)arg1) → int :
Number of rows.

sum((Vector6i)arg1) → int :
Sum of all elements.

tail((Vector6i)arg1) → Vector3i

class yade._minieigenHP.VectorX
Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of X floats.

790 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Ones((int)arg1) → VectorX

static Random((int)len) → VectorX :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorX

static Zero((int)arg1) → VectorX

__init__((object)arg1) → None
__init__((object)arg1, (VectorX)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorX)arg1) → MatrixX :
Return diagonal matrix with this vector on the diagonal.

cols((VectorX)arg1) → int :
Number of columns.

dot((VectorX)arg1, (VectorX)other) → float :
Dot product with other.

isApprox((VectorX)arg1, (VectorX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((VectorX)arg1) → float :
Maximum value over all elements.

mean((VectorX)arg1) → float :
Mean value over all elements.

minCoeff((VectorX)arg1) → float :
Minimum value over all elements.

norm((VectorX)arg1) → float :
Euclidean norm.

normalize((VectorX)arg1) → None :
Normalize this object in-place.

normalized((VectorX)arg1) → VectorX :
Return normalized copy of this object

outer((VectorX)arg1, (VectorX)other) → MatrixX :
Outer product with other.

prod((VectorX)arg1) → float :
Product of all elements.

pruned((VectorX)arg1[, (float)absTol=1e-06]) → VectorX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorX)arg1, (int)arg2) → None

rows((VectorX)arg1) → int :
Number of rows.

squaredNorm((VectorX)arg1) → float :
Square of the Euclidean norm.

2.4. Yade modules reference 791

Yade Documentation, Release 3rd ed.

sum((VectorX)arg1) → float :
Sum of all elements.

class yade._minieigenHP.VectorXc
/TODO/

static Ones((int)arg1) → VectorXc

static Random((int)len) → VectorXc :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorXc

static Zero((int)arg1) → VectorXc

__init__((object)arg1) → None
__init__((object)arg1, (VectorXc)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorXc)arg1) → MatrixXc :
Return diagonal matrix with this vector on the diagonal.

cols((VectorXc)arg1) → int :
Number of columns.

dot((VectorXc)arg1, (VectorXc)other) → complex :
Dot product with other.

isApprox((VectorXc)arg1, (VectorXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorXc)arg1) → float :
Maximum absolute value over all elements.

mean((VectorXc)arg1) → complex :
Mean value over all elements.

norm((VectorXc)arg1) → float :
Euclidean norm.

normalize((VectorXc)arg1) → None :
Normalize this object in-place.

normalized((VectorXc)arg1) → VectorXc :
Return normalized copy of this object

outer((VectorXc)arg1, (VectorXc)other) → MatrixXc :
Outer product with other.

prod((VectorXc)arg1) → complex :
Product of all elements.

pruned((VectorXc)arg1[, (float)absTol=1e-06]) → VectorXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorXc)arg1, (int)arg2) → None

rows((VectorXc)arg1) → int :
Number of rows.

squaredNorm((VectorXc)arg1) → float :
Square of the Euclidean norm.

sum((VectorXc)arg1) → complex :
Sum of all elements.

792 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.4.11 yade.mpy module

This module defines mpirun(), a parallel implementation of run() using a distributed memory approach.
Message passing is done with mpi4py mainly, however some messages are also handled in c++ (with
openmpi).

Note: Many internals of the mpy module listed on this page are not helpful to the user. Instead, please
find introductory material on mpy module in user manual.

Logic:

The logic for an initially centralized scene is as follows:

1. Instanciate a complete, ordinary, yade scene

2. Insert subdomains as special yade bodies. This is somehow similar to adding a clump body on the
top of clump members

3. Broadcast this scene to all workers. In the initialization phase the workers will:

• define the bounding box of their assigned bodies and return it to other workers

• detect which assigned bodies are virtually in interaction with other domains (based on their
bounding boxes) and communicate the lists to the relevant workers

• erase the bodies which are neither assigned nor virtually interacting with the subdomain

4. Run a number of ‘regular’ iterations without re-running collision detection (verlet dist mechanism).
In each regular iteration the workers will:

• calculate internal and cross-domains interactions

• execute Newton on assigned bodies (modified Newton skips other domains)

• send updated positions to other workers and partial force on floor to master

5. When one worker triggers collision detection all workers will follow. It will result in updating the
intersections between subdomains.

6. If enabled, bodies may be re-allocated to different domains just after a collision detection, based
on a filter. Custom filters are possible. One is predidefined here (medianFilter)

Rules:

• intersections[0] has 0-bodies (to which we need to send force)

• intersections[thisDomain] has ids of the other domains overlapping the current ones

• intersections[otherDomain] has ids of bodies in _current_ domain which are overlapping with other
domain (for which we need to send updated pos/vel)

2.4. Yade modules reference 793

Yade Documentation, Release 3rd ed.

Hint:

handle subD.intersections with care (same for mirrorIntersections). subD.intersections.append() will not
reach the c++ object. subD.intersections can only be assigned (a list of list of int)

yade.mpy.MAX_RANK_OUTPUT = 5
larger ranks will be skipped in mprint

yade.mpy.REALLOCATE_FILTER(i, j, giveAway)
Returns bodies in “i” to be assigned to “j” based on median split between the center points of
subdomain’s AABBs If giveAway!=0, positive or negative, “i” will give/acquire this number to “j”
with nothing in return (for load balancing purposes)

class yade.mpy.Timing_comm(inherits object)

Allgather(timing_name, *args, **kwargs)

Gather(timing_name, *args, **kwargs)

Gatherv(timing_name, *args, **kwargs)

allreduce(timing_name, *args, **kwargs)

bcast(timing_name, *args, **kwargs)

clear()

enable_timing()

mpiSendStates(timing_name, *args, **kwargs)

mpiWait(timing_name, *args, **kwargs)

mpiWaitReceived(timing_name, *args, **kwargs)

print_all()

recv(timing_name, *args, **kwargs)

send(timing_name, *args, **kwargs)

yade.mpy.bodyErase(ids)
The parallel version of O.bodies.erase(id), should be called collectively else the distributed scenes
become inconsistent with each other (even the subdomains which don’t have ‘id’ can call safely).
For performance, better call on a list: bodyErase([i,j,k]).

yade.mpy.checkAndCollide()
return true if collision detection needs activation in at least one SD, else false. If COPY_MIR-
ROR_BODIES_WHEN_COLLIDE run collider when needed, and in that case return False.

yade.mpy.colorDomains()
Apply color to body to reflect their subdomain idx

yade.mpy.configure()
Import MPI and define context, configure will no spawn workers by itself, that is done by initialize()
openmpi environment variables needs to be set before calling configure()

yade.mpy.declareMasterInteractive()
This is to signal that we are in interactive session, so TIMEOUT will be reset to 0 (ignored)

yade.mpy.disconnect()
Kill all mpi processes, leaving python interpreter to rank 0 as in single-threaded execution. The
scenes in workers are lost since further reconnexion to mpi will just spawn new processes. The
scene in master thread is left unchanged.

794 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade.mpy.eraseRemote()

yade.mpy.genLocalIntersections(subdomains)
Defines sets of bodies within current domain overlapping with other domains.

The structure of the data for domain ‘k’ is: [[id1, id2, …], <———– intersections[0] = ids of bodies
in domain k interacting with master domain (subdomain k itself excluded) [id3, id4, …], <——
—– intersections[1] = ids of bodies in domain k interacting with domain rank=1 (subdomain k
itself excluded) … [domain1, domain2, domain3, …], <———- intersections[k] = ranks (not ids!) of
external domains interacting with domain k …]

yade.mpy.genUpdatedStates(b_ids)
return list of [id,state] (or [id,state,shape] conditionnaly) to be sent to other workers

yade.mpy.initialize(np)

yade.mpy.isendRecvForces()
Communicate forces from subdomain to master Warning: the sending sides (everyone but master)
must wait() the returned list of requests

yade.mpy.makeColorScale(n=None)

yade.mpy.makeMpiArgv()

yade.mpy.maskedConnection(b, boolArray)
List bodies within a facet selectively, the ones marked ‘True’ in boolArray (i.e. already selected
from another facet) are discarded

yade.mpy.maskedPFacet(b, boolArray)
List bodies within a facet selectively, the ones marked ‘True’ in boolArray (i.e. already selected
from another facet) are discarded

yade.mpy.medianFilter(i, j, giveAway)
Returns bodies in “i” to be assigned to “j” based on median split between the center points of
subdomain’s AABBs If giveAway!=0, positive or negative, “i” will give/acquire this number to “j”
with nothing in return (for load balancing purposes)

yade.mpy.mergeScene()

yade.mpy.migrateBodies(ids, origin, destination)
Reassign bodies from origin to destination. The function has to be called by both origin (send)
and destination (recv). Note: subD.completeSendBodies() will have to be called after a series of
reassignement since subD.sendBodies() is non-blocking

yade.mpy.mpiStats()

yade.mpy.mpirun(nSteps, np=None, withMerge=False)
Parallel version of O.run() using MPI domain decomposition.

Parameters

nSteps : The numer of steps to compute np : number of mpi workers (master+subdomains), if=1
the function fallback to O.run() withMerge : wether subdomains should be merged into master
at the end of the run (default False). If True the scene in the master process is exactly in the
same state as after O.run(nSteps,True). The merge can be time consumming, it is recommended
to activate only if post-processing or other similar tasks require it.

yade.mpy.mprint(*args, force=False)
Print with rank-reflecting color regardless of mpy.VERBOSE_OUTPUT, still limited to
rank<=mpy.MAX_RANK_OUTPUT

yade.mpy.pairOp(talkTo)

2.4. Yade modules reference 795

Yade Documentation, Release 3rd ed.

yade.mpy.parallelCollide()

yade.mpy.probeRecvMessage(source, tag)

yade.mpy.projectedBounds(i, j)
Returns sorted list of projections of bounds on a given axis, with bounds taken in i->j and j->i
intersections

yade.mpy.reallocateBodiesPairWiseBlocking(_filter, otherDomain)
Re-assign bodies from/to otherDomain based on ‘_filter’ argument. Requirement: ‘_filter’ is a
function taking ranks of origin and destination and returning the list of bodies (by index) to be
moved. That’s where the decomposition strategy is defined. See example medianFilter (used by
default).

yade.mpy.reallocateBodiesToSubdomains(_filter=<function medianFilter>, blocking=True)
Re-assign bodies to subdomains based on ‘_filter’ argument. Requirement: ‘_filter’ is a function
taking ranks of origin and destination and returning the list of bodies (by index) to be moved.
That’s where the decomposition strategy is defined. See example medianFilter (used by default).
This function must be called in parallel, hence if ran interactively the command needs to be sent
explicitely: mp.sendCommand(“all”,”reallocateBodiesToSubdomains(medianFilter)”,True)

yade.mpy.reboundRemoteBodies(ids)
update states of bodies handled by other workers, argument ‘states’ is a list of [id,state] (or
[id,state,shape] conditionnaly)

yade.mpy.receiveForces(subdomains)
Accumulate forces from subdomains (only executed by master process), should happen after
ForceResetter but before Newton and before any other force-dependent engine (e.g. StressCon-
troller), could be inserted via yade’s pyRunner.

yade.mpy.recordMpiTiming(name, val)
append val to a list of values defined by ‘name’ in the dictionnary timing.mpi

yade.mpy.runOnSynchronouslPairs(workers, command)
Locally (from one worker POV), this function runs interactive mpi tasks defined by ‘command’ on a
list of other workers (typically the list of interacting subdomains). Overall, peer-to-peer connexions
are established so so that ‘command’ is executed symmetrically and simultaneously on both sides
of each worker pair. I.e. if worker “i” executes “command” with argument “j” (index of another
worker), then by design “j” will execute the same thing with argument “i” simultaneously.

In many cases a similar series of data exchanges can be obtained more simply (and fastly) with
asynchronous irecv+send like below.

for w in workers:
m=comm.irecv(w) comm.send(data,dest=w)

The above only works if the messages are all known in advance locally, before any communication.
If the interaction with workers[1] depends on the result of a previous interaction with workers[0]
OTOH, it needs synchronous execution, hence this function. Synchronicity is also required if more
than one blocking call is present in ‘command’, else an obvious deadlock as if ‘irecv’ was replaced
by ‘recv’ in that naive loop. Both cases occur with the ‘medianFilter’ algorithm, hence why we
need this synchronous method.

In this function pair connexions are established by the workers in a non-supervized and non-
deterministic manner. Each time an interactive communication (i,j) is established ‘command’ is
executed simultaneously by i and j. It is guaranted that all possible pairs are visited.

The function can be used for all-to-all operations (N^2 pairs), but more interestingly it works
with workers=intersections[rank] (O(N) pairs). It can be tested with the dummy funtion ‘pairOp’:
runOnSynchronouslPairs(range(numThreads),pairOp)

command:
a function taking index of another worker as argument, can include blocking communications

796 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

with the other worker since runOnSynchronouslPairs guarantee that the other worker will be
running the command symmetrically.

yade.mpy.sendCommand(executors, command, wait=True, workerToWorker=False)
Send a command to a worker (or list of) from master or from another worker. Accepted executors
are “i”, “[i,j,k]”, “slaves”, “all” (then even master will execute the command).

yade.mpy.sendRecvStates()

yade.mpy.shrinkIntersections()
Reduce intersections and mirrorIntersections to bodies effectively interacting with another statefull
body form current subdomain This will reduce the number of updates in sendRecvStates Initial
lists are backed-up and need to be restored (and all states updated) before collision detection (see
checkAndCollide())

yade.mpy.spawnedProcessWaitCommand()

yade.mpy.splitScene()
Split a monolithic scene into distributed scenes on threads.

Precondition: the bodies have subdomain no. set in user script

yade.mpy.unboundRemoteBodies()
Turn bounding boxes on/off depending on rank

yade.mpy.updateAllIntersections()

yade.mpy.updateDomainBounds(subdomains)
Update bounds of current subdomain, broadcast, and receive updated bounds from other subdo-
mains Precondition: collider.boundDispatcher.__call__()

yade.mpy.updateMirrorOwners()

yade.mpy.updateRemoteStates(states, setBounded=False)
update states of bodies handled by other workers, argument ‘states’ is a list of [id,state] (or
[id,state,shape] conditionnaly)

yade.mpy.waitForces()
wait until all forces are sent to master. O.freqs is empty for master, and for all threads if not
ACCUMULATE_FORCES

yade.mpy.wprint(*args)
Print with rank-reflecting color, only if mpy.VERBOSE_OUTPUT=True (else see mpy.mprint),
limited to rank<=mpy.MAX_RANK_OUTPUT

2.4.12 yade.pack module

Creating packings and filling volumes defined by boundary representation or constructive solid geometry.

For examples, see

• examples/gts-horse/gts-operators.py

• examples/gts-horse/gts-random-pack-obb.py

• examples/gts-horse/gts-random-pack.py

• examples/test/pack-cloud.py

• examples/test/pack-predicates.py

• examples/packs/packs.py

• examples/gts-horse/gts-horse.py

2.4. Yade modules reference 797

https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-operators.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-random-pack-obb.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-random-pack.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/pack-cloud.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/pack-predicates.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/packs/packs.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-horse.py

Yade Documentation, Release 3rd ed.

• examples/WireMatPM/wirepackings.py

yade.pack.SpherePack_toSimulation(self , rot=Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), **kw)
Append spheres directly to the simulation. In addition calling O.bodies.append, this method also
appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation (this could be
avoided by explicitly passing “hSize=O.cell.hSize” as an argument):

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)
>>> O.cell.hSize
Matrix3(3.53553,-3.53553,0, 3.53553,3.53553,0, 0,0,5)

The current state (even if rotated) is taken as mechanically undeformed, i.e. with identity trans-
formation:

>>> O.cell.trsf
Matrix3(1,0,0, 0,1,0, 0,0,1)

Parameters

• rot (Quaternion/Matrix3) – rotation of the packing, which will be applied on
spheres and will be used to set Cell.trsf as well.

• **kw – passed to utils.sphere

Returns
list of body ids added (like O.bodies.append)

yade.pack.filterSpherePack(predicate, spherePack, returnSpherePack=None, **kw)
Using given SpherePack instance, return spheres that satisfy predicate. It returns either a
pack.SpherePack (if returnSpherePack) or a list. The packing will be recentered to match the
predicate and warning is given if the predicate is larger than the packing.

yade.pack.gtsSurface2Facets(surf , **kw)
Construct facets from given GTS surface. **kw is passed to utils.facet.

798 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wirepackings.py

Yade Documentation, Release 3rd ed.

yade.pack.gtsSurfaceBestFitOBB(surf)
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) describing best-fit oriented
bounding box (OBB) for the given surface. See cloudBestFitOBB for details.

yade.pack.hexaNet(radius, cornerCoord=[0, 0, 0], xLength=1.0, yLength=0.5, mos=0.08, a=0.04,
b=0.04, startAtCorner=True, isSymmetric=False, **kw)

Definition of the particles for a hexagonal wire net in the x-y-plane for the WireMatPM.

Parameters

• radius – radius of the particle

• cornerCoord – coordinates of the lower left corner of the net

• xLenght – net length in x-direction

• yLenght – net length in y-direction

• mos – mesh opening size (horizontal distance between the double twists)

• a – length of double-twist

• b – height of single wire section

• startAtCorner – if true the generation starts with a double-twist at the lower
left corner

• isSymmetric – defines if the net is symmetric with respect to the y-axis

Returns
set of spheres which defines the net (net) and exact dimensions of the net (lx,ly).

Note: This packing works for the WireMatPM only. The particles at the corner are always
generated first. For examples on how to use this packing see examples/WireMatPM. In order to
create the proper interactions for the net the interaction radius has to be adapted in the simulation.

class yade.pack.inConvexPolyhedron(inherits Predicate)

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade.pack.inGtsSurface_py(inherits Predicate)
This class was re-implemented in c++, but should stay here to serve as reference for implementing
Predicates in pure python code. C++ allows us to play dirty tricks in GTS which are not accessible
through pygts itself; the performance penalty of pygts comes from fact that if constructs and
destructs bb tree for the surface at every invocation of gts.Point().is_inside(). That is cached in
the c++ code, provided that the surface is not manipulated with during lifetime of the object
(user’s responsibility).

—

Predicate for GTS surfaces. Constructed using an already existing surfaces, which must be closed.

2.4. Yade modules reference 799

Yade Documentation, Release 3rd ed.

import gts surf=gts.read(open(‘horse.gts’)) inGtsSurface(surf)

Note: Padding is optionally supported by testing 6 points along the axes in the pad distance.
This must be enabled in the ctor by saying doSlowPad=True. If it is not enabled and pad is not
zero, warning is issued.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade.pack.inHalfSpace(inherits Predicate)
Predicate returning True any points, with infinite bounding box.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade.pack.inSpace(inherits Predicate)
Predicate returning True for any points, with infinite bounding box.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

800 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade.pack.randomDensePack(predicate, radius, material=-1, dim=None, cropLayers=0, rRelFuzz=0.0,
spheresInCell=0, memoizeDb=None, useOBB=False, memoDbg=False,
color=None, returnSpherePack=None, seed=-1)

Generator of random dense packing with given geometry properties, using TriaxialTest (aperiodic)
or PeriIsoCompressor (periodic). The periodicity depens on whether the spheresInCell parameter
is given.

O.switchScene() magic is used to have clean simulation for TriaxialTest without deleting the original
simulation. This function therefore should never run in parallel with some code accessing your
simulation.

Parameters

• predicate – solid-defining predicate for which we generate packing

• spheresInCell – if given, the packing will be periodic, with given number of
spheres in the periodic cell.

• radius – mean radius of spheres

• rRelFuzz – relative fuzz of the radius – e.g. radius=10, rRelFuzz=.2, then
spheres will have radii 10 ± (10*.2)), with an uniform distribution. 0 by default,
meaning all spheres will have exactly the same radius.

• cropLayers – (aperiodic only) how many layers of spheres will be added to
the computed dimension of the box so that there no (or not so much, at least)
boundary effects at the boundaries of the predicate.

• dim – dimension of the packing, to override dimensions of the predicate (if it is
infinite, for instance)

• memoizeDb – name of sqlite database (existent or nonexistent) to find an already
generated packing or to store the packing that will be generated, if not found (the
technique of caching results of expensive computations is known as memoization).
Fuzzy matching is used to select suitable candidate – packing will be scaled,
rRelFuzz and dimensions compared. Packing that are too small are dictarded.
From the remaining candidate, the one with the least number spheres will be
loaded and returned.

• useOBB – effective only if a inGtsSurface predicate is given. If true (not default),
oriented bounding box will be computed first; it can reduce substantially num-
ber of spheres for the triaxial compression (like 10× depending on how much
asymmetric the body is), see examples/gts-horse/gts-random-pack-obb.py

• memoDbg – show packings that are considered and reasons why they are re-
jected/accepted

• returnSpherePack – see the corresponding argument in pack.filterSpherePack

Returns
SpherePack object with spheres, filtered by the predicate.

yade.pack.randomPeriPack(radius, initSize, rRelFuzz=0.0, memoizeDb=None, noPrint=False,
seed=-1)

Generate periodic dense packing.

A cell of initSize is stuffed with as many spheres as possible, then we run periodic compression
with PeriIsoCompressor, just like with randomDensePack.

Parameters

• radius – mean sphere radius

• rRelFuzz – relative fuzz of sphere radius (equal distribution); see the same param
for randomDensePack.

• initSize – initial size of the periodic cell.

2.4. Yade modules reference 801

Yade Documentation, Release 3rd ed.

Returns
SpherePack object, which also contains periodicity information.

yade.pack.regularHexa(predicate, radius, gap, **kw)
Return set of spheres in regular hexagonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.regularOrtho(predicate, radius, gap, **kw)
Return set of spheres in regular orthogonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.revolutionSurfaceMeridians(sects, angles, origin=Vector3(0, 0, 0),
orientation=Quaternion((1, 0, 0), 0))

Revolution surface given sequences of 2d points and sequence of corresponding angles, returning
sequences of 3d points representing meridian sections of the revolution surface. The 2d sections
are turned around z-axis, but they can be transformed using the origin and orientation arguments
to give arbitrary orientation.

yade.pack.sweptPolylines2gtsSurface(pts, threshold=0, capStart=False, capEnd=False)
Create swept suface (as GTS triangulation) given same-length sequences of points (as 3-tuples).

If threshold is given (>0), then

• degenerate faces (with edges shorter than threshold) will not be created

• gts.Surface().cleanup(threshold) will be called before returning, which merges vertices mutu-
ally closer than threshold. In case your pts are closed (last point concident with the first
one) this will the surface strip of triangles. If you additionally have capStart==True and
capEnd==True, the surface will be closed.

Note: capStart and capEnd make the most naive polygon triangulation (diagonals) and will
perhaps fail for non-convex sections.

Warning: the algorithm connects points sequentially; if two polylines are mutually rotated or
have inverse sense, the algorithm will not detect it and connect them regardless in their given
order.

Creation, manipulation, IO for generic sphere packings.

class yade._packSpheres.SpherePack
Set of spheres represented as centers and radii. This class is returned by pack.randomDensePack,
pack.randomPeriPack and others. The object supports iteration over spheres, as in

>>> sp=SpherePack()
>>> for center,radius in sp: print(center,radius)

>>> for sphere in sp: print(sphere[0],sphere[1]) ## same, but without␣
↪→unpacking the tuple automatically

>>> for i in range(0,len(sp)): print(sp[i][0], sp[i][1]) ## same, but␣
↪→accessing spheres by index

Special constructors

Construct from list of [(c1,r1),(c2,r2),…]. To convert two same-length lists of centers and
radii, construct with zip(centers,radii).

802 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1[, (list)list]) → None :
Empty constructor, optionally taking list [((cx,cy,cz),r), …] for initial data.

aabb((SpherePack)arg1) → tuple :
Get axis-aligned bounding box coordinates, as 2 3-tuples.

add((SpherePack)arg1, (Vector3)arg2, (float)arg3) → None :
Add single sphere to packing, given center as 3-tuple and radius

property appliedPsdScaling
A factor between 0 and 1, uniformly applied on all sizes of of the PSD.

cellFill((SpherePack)arg1, (Vector3)arg2) → None :
Repeat the packing (if periodic) so that the results has dim() >= given size. The packing
retains periodicity, but changes cellSize. Raises exception for non-periodic packing.

cellRepeat((SpherePack)arg1, (Vector3i)arg2) → None :
Repeat the packing given number of times in each dimension. Periodicity is retained, cellSize
changes. Raises exception for non-periodic packing.

property cellSize
Size of periodic cell; is Vector3(0,0,0) if not periodic. (Change this property only if you know
what you’re doing).

center((SpherePack)arg1) → Vector3 :
Return coordinates of the bounding box center.

dim((SpherePack)arg1) → Vector3 :
Return dimensions of the packing in terms of aabb(), as a 3-tuple.

fromList((SpherePack)arg1, (list)arg2) → None :
Make packing from given list, same format as for constructor. Discards current data.

fromList((SpherePack)arg1, (object)centers, (object)radii) -> None :
Make packing from given list, same format as for constructor. Discards current data.

fromSimulation((SpherePack)arg1) → None :
Make packing corresponding to the current simulation. Discards current data.

getClumps((SpherePack)arg1) → tuple :
Return lists of sphere ids sorted by clumps they belong to. The return value is (stan-
dalones,[clump1,clump2,…]), where each item is list of id’s of spheres.

hasClumps((SpherePack)arg1) → bool :
Whether this object contains clumps.

property isPeriodic
was the packing generated in periodic boundaries?

load((SpherePack)arg1, (str)fileName) → None :
Load packing from external text file (current data will be discarded).

makeCloud((SpherePack)arg1[, (Vector3)minCorner=Vector3(0, 0, 0)[,
(Vector3)maxCorner=Vector3(0, 0, 0)[, (float)rMean=-1[, (float)rRelFuzz=0[,
(int)num=-1[, (bool)periodic=False[, (float)porosity=0.65[, (object)psdSizes=[][,
(object)psdCumm=[][, (bool)distributeMass=False[, (int)seed=-1[,
(Matrix3)hSize=Matrix3(0, 0, 0, 0, 0, 0, 0, 0, 0)]]]]]]]]]]]]) → int :

Create a random cloud of particles enclosed in a parallelepiped. The resulting packing is a
gas-like state with no contacts between particles initially. Usually used as a first step before
reaching a dense packing.

2.4. Yade modules reference 803

Yade Documentation, Release 3rd ed.

Parameters

• minCorner (Vector3) – lower corner of an axis-aligned box

• maxCorner (Vector3) – upper corner of an axis-aligned box

• hSize (Matrix3) – base vectors of a generalized box (arbitrary parallelepiped,
typically Cell::hSize), superseeds minCorner and maxCorner if defined. For
periodic boundaries only.

• rMean (float) – mean radius or spheres

• rRelFuzz (float) – dispersion of radius relative to rMean

• num (int) – number of spheres to be generated. If negative (default), generate
as many as possible with stochastic sizes, ending after a fixed number of tries to
place the sphere in space, else generate exactly num spheres with deterministic
size distribution.

• periodic (bool) – whether the packing to be generated should be periodic

• porosity (float) – initial guess for the iterative generation procedure (if
num>1). The algorithm will be retrying until the number of generated spheres
is num. The first iteration tries with the provided porosity, but next iterations
increase it if necessary (hence an initialy high porosity can speed-up the al-
gorithm). If psdSizes is not defined, rRelFuzz (z) and num (N) are used so
that the porosity given (ρ) is approximately achieved at the end of generation,
rm = 3

√
V(1−ρ)

4
3
π(1+z2)N

. The default is ρ=0.5. The optimal value depends on
rRelFuzz or psdSizes.

• psdSizes – sieve sizes (particle diameters) when particle size distribution
(PSD) is specified.

• psdCumm – cummulative fractions of particle sizes given by psdSizes; must be
the same length as psdSizes and should be non-decreasing.

• distributeMass (bool) – if True, given distribution reflects mass per radius
(the most common), else number of spheres per radius.

• seed – number used to initialize the random number generator.

Returns
number of created spheres, which can be lower than num depending on the method
used.

Note:

• Works in 2D if minCorner[k]=maxCorner[k] for one coordinate.

• If num is defined, then sizes generation is deterministic, giving the best fit of target
distribution. It enables spheres placement in descending size order, thus giving lower
porosity than the random generation.

• By default (with distributeMass==False), the distribution is applied to particle count
(i.e. particle count percent passing). The typical geomechanics sense of “particle size
distribution” is the distribution of mass fraction (i.e. mass percent passing); this can be
achieved with distributeMass=True.

• Sphere radius distribution can be specified using one of the following ways:

1. rMean, rRelFuzz and num gives uniform radius distribution in rMean×(1±rRelFuzz).
Less than num spheres can be generated if it is too high.

2. rRelFuzz, num and (optional) porosity, which estimates mean radius so that
porosity is attained at the end. rMean must be less than 0 (default). porosity
is only an initial guess for the generation algorithm, which will retry with higher
porosity until the prescibed num is obtained.

804 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

3. psdSizes and psdCumm, two arrays specifying points of the particle size distribution
function. As many spheres as possible are generated.

4. psdSizes, psdCumm, num, and (optional) porosity, like above but if num is not ob-
tained, psdSizes will be scaled down uniformly, until num is obtained (see appliedPs-
dScaling).

makeClumpCloud((SpherePack)arg1, (Vector3)minCorner, (Vector3)maxCorner, (object)clumps[,
(bool)periodic=False[, (int)num=-1[, (int)seed=-1]]]) → int :

Create a random (in particles positions and orientations) cloud of clumps the same way
makeCloud does with spheres. The parameters minCorner, maxCorner, periodic, num and
seed are the same as in makeCloud. The parameter clumps is a list containing all the different
clumps to be appended as SpherePack objects. Here is an exemple that shows how to create
a cloud made of 10 identical clumps :

clp = SpherePack([((0,0,0), 1e-2), ((1e-2,0,0), 1e-2)]) # The clump we want␣
↪→a cloud of
sp = SpherePack()
sp.makeClumpCloud((0,0,0), (1,1,1), [clp], num=10, seed=42)
sp.toSimulation() # All the particles in the cloud are now appended to O.
↪→bodies

psd((SpherePack)arg1[, (int)bins=50[, (bool)mass=True]]) → tuple :
Return particle size distribution of the packing.

Parameters

• bins (int) – number of bins between minimum and maximum diameter

• mass – Compute relative mass rather than relative particle count for each bin.
Corresponds to distributeMass parameter for makeCloud.

Returns
tuple of (cumm,edges), where cumm are cummulative fractions for respective di-
ameters and edges are those diameter values. Dimension of both arrays is equal
to bins+1.

relDensity((SpherePack)arg1) → float :
Relative packing density, measured as sum of spheres’ volumes / aabb volume. (Sphere
overlaps are ignored.)

rotate((SpherePack)arg1, (Vector3)axis, (float)angle) → None :
Rotate all spheres around packing center (in terms of aabb()), given axis and angle of the
rotation.

save((SpherePack)arg1, (str)fileName) → None :
Save packing to external text file (will be overwritten).

scale((SpherePack)arg1, (float)arg2) → None :
Scale the packing around its center (in terms of aabb()) by given factor (may be negative).

toList((SpherePack)arg1) → list :
Return packing data as python list.

toSimulation(rot=Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), **kw)
Append spheres directly to the simulation. In addition calling O.bodies.append, this method
also appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

2.4. Yade modules reference 805

http://en.wikipedia.org/wiki/Particle_size_distribution
https://yade-dem.org/doc/yade.pack.html?highlight=makecloud#yade._packSpheres.SpherePack.makeCloud
https://yade-dem.org/doc/yade.pack.html?highlight=makecloud#yade._packSpheres.SpherePack.makeCloud
http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Documentation, Release 3rd ed.

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation (this could
be avoided by explicitly passing “hSize=O.cell.hSize” as an argument):

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)
>>> O.cell.hSize
Matrix3(3.53553,-3.53553,0, 3.53553,3.53553,0, 0,0,5)

The current state (even if rotated) is taken as mechanically undeformed, i.e. with identity
transformation:

>>> O.cell.trsf
Matrix3(1,0,0, 0,1,0, 0,0,1)

Parameters

• rot (Quaternion/Matrix3) – rotation of the packing, which will be applied on
spheres and will be used to set Cell.trsf as well.

• **kw – passed to utils.sphere

Returns
list of body ids added (like O.bodies.append)

translate((SpherePack)arg1, (Vector3)arg2) → None :
Translate all spheres by given vector.

class yade._packSpheres.SpherePackIterator

__init__((object)arg1, (SpherePackIterator)arg2) → None

next()
__next__((SpherePackIterator)arg1) -> tuple

Spatial predicates for volumes (defined analytically or by triangulation).

class yade._packPredicates.Predicate
Spatial predicate base class. Predicates support boolean operations as described in user’s manual

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

806 Chapter 2. Yade for users

user.html#boolean-operations-on-predicates

Yade Documentation, Release 3rd ed.

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.PredicateBoolean(inherits Predicate)
Boolean operation on 2 predicates (abstract class)

property A

property B

__init__()
Raises an exception This class cannot be instantiated from Python

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.PredicateDifference(inherits PredicateBoolean → Predicate)
Difference (conjunction with negative predicate) of 2 predicates. A point has to be inside the first
and outside the second predicate. Can be constructed using the - operator on predicates: pred1
- pred2.

property A

property B

__init__((object)arg1, (object)arg2, (object)arg3) → None

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

2.4. Yade modules reference 807

Yade Documentation, Release 3rd ed.

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.PredicateIntersection(inherits PredicateBoolean → Predicate)
Intersection (conjunction) of 2 predicates. A point has to be inside both predicates. Can be
constructed using the & operator on predicates: pred1 & pred2.

property A

property B

__init__((object)arg1, (object)arg2, (object)arg3) → None

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.PredicateSymmetricDifference(inherits PredicateBoolean →
Predicate)

SymmetricDifference (exclusive disjunction) of 2 predicates. A point has to be in exactly one
predicate of the two. Can be constructed using the ^ operator on predicates: pred1 ^ pred2.

property A

property B

__init__((object)arg1, (object)arg2, (object)arg3) → None

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.PredicateUnion(inherits PredicateBoolean → Predicate)
Union (non-exclusive disjunction) of 2 predicates. A point has to be inside any of the two predicates
to be inside. Can be constructed using the | operator on predicates: pred1 | pred2.

property A

808 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property B

__init__((object)arg1, (object)arg2, (object)arg3) → None

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.inAlignedBox(inherits Predicate)
Axis-aligned box predicate

__init__((object)arg1, (Vector3)minAABB, (Vector3)maxAABB) → None :
Ctor taking minumum and maximum points of the box (as 3-tuples).

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.inCylinder(inherits Predicate)
Cylinder predicate

__init__((object)arg1, (Vector3)centerBottom, (Vector3)centerTop, (float)radius) → None :
Ctor taking centers of the lateral walls (as 3-tuples) and radius.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

2.4. Yade modules reference 809

Yade Documentation, Release 3rd ed.

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.inEllipsoid(inherits Predicate)
Ellipsoid predicate

__init__((object)arg1, (Vector3)centerPoint, (Vector3)abc) → None :
Ctor taking center of the ellipsoid (3-tuple) and its 3 radii (3-tuple).

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.inGtsSurface(inherits Predicate)
GTS surface predicate

__init__((object)arg1, (object)surface[, (bool)noPad]) → None :
Ctor taking a gts.Surface() instance, which must not be modified during instance lifetime.
The optional noPad can disable padding (if set to True), which speeds up calls several times.
Note: padding checks inclusion of 6 points along +- cardinal directions in the pad distance
from given point, which is not exact.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

property surf
The associated gts.Surface object.

class yade._packPredicates.inHyperboloid(inherits Predicate)
Hyperboloid predicate

__init__((object)arg1, (Vector3)centerBottom, (Vector3)centerTop, (float)radius, (float)skirt) →
None :

Ctor taking centers of the lateral walls (as 3-tuples), radius at bases and skirt (middle radius).

810 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.inParallelepiped(inherits Predicate)
Parallelepiped predicate

__init__((object)arg1, (Vector3)o, (Vector3)a, (Vector3)b, (Vector3)c) → None :
Ctor taking four points: o (for origin) and then a, b, c which define endpoints of 3 respective
edges from o.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

class yade._packPredicates.inSphere(inherits Predicate)
Sphere predicate.

__init__((object)arg1, (Vector3)center, (float)radius) → None :
Ctor taking center (as a 3-tuple) and radius

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

2.4. Yade modules reference 811

Yade Documentation, Release 3rd ed.

class yade._packPredicates.notInNotch(inherits Predicate)
Outside of infinite, rectangle-shaped notch predicate

__init__((object)arg1, (Vector3)centerPoint, (Vector3)edge, (Vector3)normal, (float)aperture)→ None :
Ctor taking point in the symmetry plane, vector pointing along the edge, plane normal and
aperture size. The side inside the notch is edge×normal. Normal is made perpendicular to
the edge. All vectors are normalized at construction time.

aabb((Predicate)arg1) → tuple :
lower and upper corner of predicate’s axis aligned bounding box

aabb((Predicate)arg1) -> None

center((Predicate)arg1) → Vector3 :
center of the predicate

containsPoint((Predicate)arg1, (Vector3)pt[, (float)pad=0]) → bool :
if given point is inside the predicate or not. pred.containsPoint(pt,pad) is equivalent to
directly calling predicate itself pred(pt,pad)

containsPoint((Predicate)arg1, (Vector3)arg2, (float)arg3) -> None

dim((Predicate)arg1) → Vector3 :
axis aligned dimensions of the predicate

Computation of oriented bounding box for cloud of points.

yade._packObb.cloudBestFitOBB((tuple)arg1) → tuple
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

2.4.13 yade.plot module

Module containing utility functions for plotting inside yade. See examples/simple-scene/simple-scene-
plot.py or examples/concrete/uniax.py for example of usage.

class yade.plot.Aabb(inherits Bound → Serializable)
Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)

property color
Color for rendering this object

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Bound)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property lastUpdateIter
record iteration of last reference position update (auto-updated)

property max
Upper corner of box containing this bound (and the Body as well)

812 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

property min
Lower corner of box containing this bound (and the Body as well)

property refPos
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

property sweepLength
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.AlignedBox2
Axis-aligned box object in 2d, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox2)other) -> None

__init__((object)arg1, (Vector2)min, (Vector2)max) -> None

center((AlignedBox2)arg1) → Vector2

clamp((AlignedBox2)arg1, (AlignedBox2)arg2) → None

contains((AlignedBox2)arg1, (Vector2)arg2) → bool
contains((AlignedBox2)arg1, (AlignedBox2)arg2) -> bool

empty((AlignedBox2)arg1) → bool

extend((AlignedBox2)arg1, (Vector2)arg2) → None
extend((AlignedBox2)arg1, (AlignedBox2)arg2) -> None

intersection((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property max

merged((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property min

sizes((AlignedBox2)arg1) → Vector2

volume((AlignedBox2)arg1) → float

class yade.plot.AlignedBox3
Axis-aligned box object, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox3)other) -> None

__init__((object)arg1, (Vector3)min, (Vector3)max) -> None

center((AlignedBox3)arg1) → Vector3

clamp((AlignedBox3)arg1, (AlignedBox3)arg2) → None

contains((AlignedBox3)arg1, (Vector3)arg2) → bool
contains((AlignedBox3)arg1, (AlignedBox3)arg2) -> bool

empty((AlignedBox3)arg1) → bool

2.4. Yade modules reference 813

Yade Documentation, Release 3rd ed.

extend((AlignedBox3)arg1, (Vector3)arg2) → None
extend((AlignedBox3)arg1, (AlignedBox3)arg2) -> None

intersection((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property max

merged((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property min

sizes((AlignedBox3)arg1) → Vector3

volume((AlignedBox3)arg1) → float

class yade.plot.AttrFlags

__init__()

as_integer_ratio()
Return a pair of integers, whose ratio is equal to the original int.

The ratio is in lowest terms and has a positive denominator.

>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)

bit_count()
Number of ones in the binary representation of the absolute value of self.

Also known as the population count.

>>> bin(13)
'0b1101'
>>> (13).bit_count()
3

bit_length()
Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6

conjugate()
Returns self, the complex conjugate of any int.

denominator
the denominator of a rational number in lowest terms

from_bytes(byteorder=’big’, *, signed=False)
Return the integer represented by the given array of bytes.

bytes
Holds the array of bytes to convert. The argument must either support the buffer protocol
or be an iterable object producing bytes. Bytes and bytearray are examples of built-in
objects that support the buffer protocol.

814 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant
byte is at the beginning of the byte array. If byteorder is ‘little’, the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use
‘sys.byteorder’ as the byte order value. Default is to use ‘big’.

signed
Indicates whether two’s complement is used to represent the integer.

imag
the imaginary part of a complex number

is_integer()
Returns True. Exists for duck type compatibility with float.is_integer.

name

names = {'noResize': yade.wrapper.AttrFlags.noResize, 'noSave':
yade.wrapper.AttrFlags.noSave, 'readonly': yade.wrapper.AttrFlags.readonly,
'triggerPostLoad': yade.wrapper.AttrFlags.triggerPostLoad}

noResize = yade.wrapper.AttrFlags.noResize

noSave = yade.wrapper.AttrFlags.noSave

numerator
the numerator of a rational number in lowest terms

readonly = yade.wrapper.AttrFlags.readonly

real
the real part of a complex number

to_bytes(length=1, byteorder=’big’, *, signed=False)
Return an array of bytes representing an integer.

length
Length of bytes object to use. An OverflowError is raised if the integer is not representable
with the given number of bytes. Default is length 1.

byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant
byte is at the beginning of the byte array. If byteorder is ‘little’, the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use
‘sys.byteorder’ as the byte order value. Default is to use ‘big’.

signed
Determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised.

triggerPostLoad = yade.wrapper.AttrFlags.triggerPostLoad

values = {1: yade.wrapper.AttrFlags.noSave, 2: yade.wrapper.AttrFlags.readonly,
4: yade.wrapper.AttrFlags.triggerPostLoad, 16: yade.wrapper.AttrFlags.noResize}

class yade.plot.AxialGravityEngine(inherits FieldApplier → GlobalEngine → Engine →
Serializable)

Apply acceleration (independent of distance) directed towards an axis.

property acceleration
Acceleration magnitude [kgms�2]

2.4. Yade modules reference 815

Yade Documentation, Release 3rd ed.

property axisDirection
direction of the gravity axis (will be normalized automatically)

property axisPoint
Point through which the axis is passing.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.BicyclePedalEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying the linear motion of bicycle pedal e.g. moving points around the axis without
rotation

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

816 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fi
Initial phase [radians]

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property radius
Rotation radius. [m]

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.BlockGen(inherits FileGenerator → Serializable)
Prepare a scene for Block Generation using the Potential Blocks.

property Kn
Volumetric contact normal stiffness

property Ks
Volumetric contact shear stiffness

property RForPP
R in Potential Particles

property Talesnick
Whether to choose the Talesnick contact law, used for validating code previously against
model test

property boundaries
Whether to check for filename boundaries

property boundarySizeXmax
Max X of domain

property boundarySizeXmin
Min X of domain

property boundarySizeYmax
Max Y of domain

2.4. Yade modules reference 817

Yade Documentation, Release 3rd ed.

property boundarySizeYmin
Min Y of domain

property boundarySizeZmax
Max Z of domain

property boundarySizeZmin
Min Z of domain

property calContactArea
Whether to calculate jointLength for 2-D contacts and contactArea for 2-D and 3-D contacts

property color
color of generated blocks (random color will be assigned to each sub-block if a color is not
specified)

property dampingMomentum
Coefficient of global damping

property defaultDt
Max time-step. Used as initial value if defined. Later adjusted by the time stepper

property density
Density of blocks

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property directionA
Local x-direction to check minSize

property directionB
Local y-direction to check minSize

property directionC
Local z-direction to check minSize

property exactRotation
Whether to handle the rotational motion of aspherical bodies more accurately

property filenameBoundaries
filename to look for joint with probabilistic models

property filenameOpening
filename to look for joint outline of joints

property filenamePersistentPlanes
filename to look for joint properties

property filenameProbabilistic
filename to look for joint with probabilistic models

property filenameSliceBoundaries
filename to look for joint outline of joints

property filenameSlopeFace
filename to look for joint outline of joints

property frictionDeg
Friction angle [°]

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

818 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property globalOrigin
Global origin (reference point) for the discontinuities to be imposed

property gravity
Gravity

property inertiaFactor
Scaling of inertia

property initialOverlap
Initial overlap between blocks

property intactRockDegradation
Whether to activate degradation of parameters for contact

property jointProbabilistic
Whether to check for filename jointProbabilistic

property joint_a
Introduce discontinuities from Python: List of a coefficients of plane normals

property joint_b
Introduce discontinuities from Python: List of b coefficients of plane normals

property joint_c
Introduce discontinuities from Python: List of c coefficients of plane normals

property joint_d
Introduce discontinuities from Python: List of d coefficients of plane equations

property kForPP
k in Potential Particles

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

property maxRatio
Minimum ratio for all blocks

property minSize
Minimum size for all blocks

property neverErase
Whether to erase non interacting contacts

property opening
Whether to check for filename opening

property outputFile
Filename where the data of the block generation are saved. Leave blank if an output file is
not needed

property persistentPlanes
Whether to check persistence

property probabilisticOrientation
Whether to generate rock joints randomly

property rForPP
r in Potential Particles

2.4. Yade modules reference 819

Yade Documentation, Release 3rd ed.

property saveBlockGenData
Whether to write the data of the block generation in a text file (if true) or display on the
terminal (if false)

property shrinkFactor
Ratio to shrink r

property sliceBoundaries
Whether to check for filename sliceBoundaries

property slopeFace
Whether to check for filename slopeFace

property timeStepUpdateInterval
Interval for GlobalStiffnessTimeStepper

property traceEnergy
Whether to calculate energy terms (elastic potential energy (normal and shear), plastic dis-
sipation due to friction and dissipation of energy (normal and tangential) due to viscous
damping)

property twoDimension
Whether the model is 2D

property unitWidth2D
Unit width in 2D (out of plane distance)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to use face properties

property useGlobalStiffnessTimeStepper
Whether to use GlobalStiffnessTimeStepper

property viscousDamping
Viscous damping

class yade.plot.Bo1_Box_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update an Aabb of a Box.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_ChainedCylinder_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from ChainedCylinder.

820 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Cylinder_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Cylinder.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_DeformableElement_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from DeformableElement.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

2.4. Yade modules reference 821

Yade Documentation, Release 3rd ed.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Facet_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Facet.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_FluidDomainBbox_Aabb(inherits BoundFunctor → Functor → Serializable)
creates/updates an Aabb of a FluidDomainBbox.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

822 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.Bo1_GridConnection_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from a GridConnection.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_LevelSet_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a LevelSet

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Node_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Node.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 823

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_PFacet_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from a PFacet.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Polyhedra_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update Aabb of a Polyhedra

property aabbEnlargeFactor
see Bo1_Sphere_Aabb.aabbEnlargeFactor

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Sphere_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Sphere.

824 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Subdomain_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Subdomain (mpi parallel simulations).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Tetra_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update Aabb of a Tetra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.4. Yade modules reference 825

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Bo1_Wall_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Wall

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Body(inherits Serializable)
A particle, basic element of simulation; interacts with other bodies.

property aspherical
Whether this body has different inertia along principal axes; NewtonIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

property bound
Bound, approximating volume for the purposes of collision detection.

property bounded
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body::isBounded/Body::setBounded)

property clumpId
Id of clump this body makes part of; invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.

Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property dynamic
Whether this body will be moved by forces. (In c++, use
Body::isDynamic/Body::setDynamic)

property flags
Bits of various body-related flags. Do not access directly. In c++, use isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

property groupMask
Bitmask for interaction detection purposes: it is required that two bodies have at least one
bit in common in their groupMask for their interaction to be possible from the Collider point
of view.

property id
Unique id of this body.

826 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

intrs((Body)arg1) → list :
Return list of all real interactions in which this body participates.

property isClump
True if this body is clump itself, false otherwise.

property isClumpMember
True if this body is clump member, false otherwise.

property isFluidDomainBox
Whether this body is a Fluid grid bounding box should have Body.bound created. Fluid-
DomainBboxes‘ do not participate to collision detection with their own bodies, they may
interact with external bodies and other subdomains through virtual interactions. (In c++,
use Body::getIsFluidDomainBbox/Body::setIsFluidDomainBbox)

property isStandalone
True if this body is neither clump, nor clump member; false otherwise.

property isSubdomain
Whether this body is a subdomain should have Body.bound created. Subdomains‘ do
not participate to collision detection with their own bodies, they may interact with
external bodies and other subdomains through virtual interactions. (In c++, use
Body::getIsSubdomain/Body::setIsSubdomain)

property iterBorn
Step number at which the body was added to simulation.

property mask
Shorthand for Body::groupMask

property mat
Shorthand for Body::material

property material
Material instance associated with this body.

property shape
Geometrical Shape.

property state
Physical state.

property subdomain
the subdomain this body belongs to.

property timeBorn
Time at which the body was added to simulation.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.BodyContainer

__init__((object)arg1, (BodyContainer)arg2) → None

addToClump((BodyContainer)arg1, (object)arg2, (int)arg3[, (int)discretization=0]) → None :
Add body b (or a list of bodies) to an existing clump c. c must be clump and b may not be
a clump member of c. Clump masses and inertia are adapted automatically (for details see
clump()).

See examples/clumps/addToClump-example.py for an example script.

2.4. Yade modules reference 827

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/addToClump-example.py

Yade Documentation, Release 3rd ed.

Note: If b is a clump itself, then all members will be added to c and b will be deleted. If
b is a clump member of clump d, then all members from d will be added to c and d will be
deleted. If you need to add just clump member b, release this member from d first.

append((BodyContainer)arg1, (Body)arg2) → int :
Append one Body instance, return its id.

append((BodyContainer)arg1, (object)arg2) -> object :
Append list of Body instance, return list of ids

appendClumped((BodyContainer)arg1, (object)arg2[, (int)discretization=0]) → tuple :
Append given list of bodies as a clump (rigid aggregate); returns a tuple of (clumpId,
[memberId1,memberId2,...]). Clump masses and inertia are computed automatically de-
pending upon discretization (for details see clump()).

clear((BodyContainer)arg1) → None :
Remove all bodies (interactions not checked)

clump((BodyContainer)arg1, (object)arg2[, (int)discretization=0]) → int :
Clump given bodies together (creating a rigid aggregate); returns clumpId. A precise defini-
tion of clump masses and inertia when clump members overlap requires spherical members to-
gether with discretization>0 and is achieved in this case by integration/summation over mass
points using a regular grid of cells (grid cells length is defined as Lmin/discretization, where
Lmin is the minimum length of an Axis-Aligned Bounding Box. If *discretization*<=0 sum
of inertias from members is simply used, which is faster but accurate only for non-overlapping
members).

deleteClumpBody((BodyContainer)arg1, (Body)arg2) → None :
Erase clump member.

deleteClumpMember((BodyContainer)arg1, (Body)arg2, (Body)arg3) → None :
Erase clump member.

property enableRedirection
let collider switch to optimized algorithm with body redirection when bodies are erased - true
by default

erase((BodyContainer)arg1, (int)arg2[, (bool)eraseClumpMembers=0]) → bool :
Erase body with the given id; all interaction will be deleted by InteractionLoop in the next
step. If a clump is erased use O.bodies.erase(clumpId,True) to erase the clump AND its
members.

getRoundness((BodyContainer)arg1[, (list)excludeList=[]]) → float :
Returns roundness coefficient RC = R2/R1. R1 is the equivalent sphere radius of a clump.
R2 is the minimum radius of a sphere, that imbeds the clump. If just spheres are present
RC = 1. If clumps are present 0 < RC < 1. Bodies can be excluded from the calculation by
giving a list of ids: O.bodies.getRoundness([ids]).

See examples/clumps/replaceByClumps-example.py for an example script.

insertAtId((BodyContainer)arg1, (Body)arg2, (int)insertatid) → int :
Insert a body at theid, (no body should exist in this id)

releaseFromClump((BodyContainer)arg1, (int)arg2, (int)arg3[, (int)discretization=0]) → None :
Release body b from clump c. b must be a clump member of c. Clump masses and inertia
are adapted automatically (for details see clump()).

See examples/clumps/releaseFromClump-example.py for an example script.

828 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/replaceByClumps-example.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/releaseFromClump-example.py

Yade Documentation, Release 3rd ed.

Note: If c contains only 2 members b will not be released and a warning will appear. In
this case clump c should be erased.

replace((BodyContainer)arg1, (object)arg2) → object

replaceByClumps((BodyContainer)arg1, (list)arg2, (object)arg3[, (int)discretization=0]) → list :
Replace spheres by clumps using a list of clump templates and a list of amounts; returns a list
of tuples: [(clumpId1,[memberId1,memberId2,...]),(clumpId2,[memberId1,memberId2,
...]),...]. A new clump will have the same volume as the sphere, that was replaced. Clump
masses and inertia are adapted automatically (for details see clump()).

O.bodies.replaceByClumps([utils.clumpTemplate([1,1],[.5,.5])] , [.9]) #will replace
90 % of all standalone spheres by ‘dyads’

See examples/clumps/replaceByClumps-example.py for an example script.

subdomainBodies((BodyContainer)arg1) → object :
id’s of bodies with bounds in MPI subdomain

updateClumpProperties((BodyContainer)arg1[, (list)excludeList=[][, (int)discretization=5]])→ None :
Manually force Yade to update clump properties mass, volume and inertia (for details of
‘discretization’ value see clump()). Can be used, when clumps are modified or erased dur-
ing a simulation. Clumps can be excluded from the calculation by giving a list of ids:
O.bodies.updateProperties([ids]).

property useRedirection
true if the scene uses up-to-date lists for boundedBodies and realBodies; turned true auto-
matically 1/ after removal of bodies if enableRedirection=True , and 2/ in MPI execution.
(auto-updated)

class yade.plot.BodyIterator

__init__((object)arg1, (BodyIterator)arg2) → None

next()
__next__((BodyIterator)arg1) -> Body

class yade.plot.Bound(inherits Serializable)
Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection

property color
Color for rendering this object

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Bound)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property lastUpdateIter
record iteration of last reference position update (auto-updated)

2.4. Yade modules reference 829

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/replaceByClumps-example.py

Yade Documentation, Release 3rd ed.

property max
Upper corner of box containing this bound (and the Body as well)

property min
Lower corner of box containing this bound (and the Body as well)

property refPos
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

property sweepLength
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.BoundDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property activated
Whether the engine is activated (only should be changed by the collider)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((BoundDispatcher)arg1, (Shape)arg2) → BoundFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((BoundDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property minSweepDistFactor
Minimal distance by which enlarge all bounding boxes; superseeds computed value of sweep-
Dist when lower that (minSweepDistFactor x sweepDist). Updated by the collider. (auto-
updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

830 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property sweepDist
Distance by which enlarge all bounding boxes, to prevent collider from being run at every
step (only should be changed by the collider).

property targetInterv
see InsertionSortCollider::targetInterv (auto-updated)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatingDispFactor
see InsertionSortCollider::updatingDispFactor (auto-updated)

class yade.plot.BoundFunctor(inherits Functor → Serializable)
Functor for creating/updating Body::bound.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.BoundaryController(inherits GlobalEngine → Engine → Serializable)
Base for engines controlling boundary conditions of simulations. Not to be used directly.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

2.4. Yade modules reference 831

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Box(inherits Shape → Serializable)

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property extents
Half-size of the cuboid

property highlight
Whether this Shape will be highlighted when rendered.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.BoxFactory(inherits SpheresFactory → GlobalEngine → Engine → Serializable)
Box geometry of the SpheresFactory region, given by extents and center

property PSDcalculateMass
PSD-Input is in mass (true), otherwise the number of particles will be considered.

property PSDcum
PSD-dispersion, cumulative procent meanings [-]

property PSDsizes
PSD-dispersion, sizes of cells, Diameter [m]

property blockedDOFs
Blocked degress of freedom

property center
Center of the region

property color
Use the color for newly created particles, if specified

832 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactDiam
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property extents
Extents of the region

property goalMass
Total mass that should be attained at the end of the current step. (auto-updated)

property ids
ids of created bodies

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
groupMask to apply for newly created spheres

property massFlowRate
Mass flow rate [kg/s]

property materialId
Shared material id to use for newly created spheres (can be negative to count from the end)

property maxAttempt
Maximum number of attempts to position a new sphere randomly.

property maxMass
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

property maxParticles
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

property normal
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

property normalVel
Direction of particle’s velocites.

property numParticles
Cummulative number of particles produces so far (auto-updated)

2.4. Yade modules reference 833

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rMax
Maximum radius of generated spheres (uniform distribution)

property rMin
Minimum radius of generated spheres (uniform distribution)

property silent
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

property stopIfFailed
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalMass
Mass of spheres that was produced so far. (auto-updated)

property totalVolume
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vAngle
Maximum angle by which the initial sphere velocity deviates from the normal.

property vMax
Maximum velocity norm of generated spheres (uniform distribution)

property vMin
Minimum velocity norm of generated spheres (uniform distribution)

class yade.plot.BubbleMat(inherits Material → Serializable)
material for bubble interactions, for use with other Bubble classes

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

834 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property surfaceTension
The surface tension in the fluid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.BubblePhys(inherits IPhys → Serializable)
Physics of bubble-bubble interactions, for use with BubbleMat

property Dmax
Maximum penetrationDepth of the bubbles before the force displacement curve changes to
an artificial exponential curve. Setting this value will have no effect. See Law2_ScGeom_-
BubblePhys_Bubble::pctMaxForce for more information

static computeForce((float)arg1, (float)arg2, (float)arg3, (int)arg4, (float)arg5, (float)arg6,
(float)arg7 , (BubblePhys)arg8) → float :

Computes the normal force acting between the two interacting bubbles using the Newton-
Rhapson method

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fN
Contact normal force

property newtonIter
Maximum number of force iterations allowed

property newtonTol
Convergence criteria for force iterations

property normalForce
Normal force

property rAvg
Average radius of the two interacting bubbles

2.4. Yade modules reference 835

Yade Documentation, Release 3rd ed.

property surfaceTension
Surface tension of the surrounding liquid

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CapillarityEngine(inherits GlobalEngine → Engine → Serializable)
This engine loops over interactions with physics CapillaryPhysDelaunay and it assign pendular
bridges to them. It is a reimplementation of [Scholtes2009b], adding the option of imposing the
bridge volume (instead of only capillary pressure) and enabling using unstructured input data by
triangulation. This reimplementation also provides more geometrical quantities in order to define
interfacial energy terms, it was used specifically in [Chalak2017].

If :yref:‘CapillarityEngine.imposePressure‘==True, a uniform capillary pressure is assigned to all
bridges, the liquid volume of each bridge is a result and it will change if the distance between
the spheres changes. If :yref:‘CapillarityEngine.imposePressure‘==False, then the volume of each
bridge remains constant during motion, and capillary pressure is updated, instead.

For references, see [Scholtes2009b] and a couple papers by the same authors; [Scholtes2009d] (in
french) is the most detailed.

The engine needs an input data file available in yade-data package.

In order to allow capillary forces between distant spheres, it is necessary to en-
large the bounding boxes using Bo1_Sphere_Aabb::aabbEnlargeFactor and make the Ig2
define define distant interactions via:yref:interactionDetectionFactor<Ig2_Sphere_Sphere_Sc-
Geom::interactionDetectionFactor>. It is also necessary to disable interactions removal by the
constitutive law (Law2). The only combinations of laws supported are currently capillary law
+ Law2_ScGeom_FrictPhys_CundallStrack and capillary law + Law2_ScGeom_MindlinPhys_-
Mindlin (and the other variants of Hertz-Mindlin).

See triaxCapillarityDelaunay.py for an example script.

property binaryFusion
If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected

property capillaryPressure
Value of the capillary pressure Uc defines as Uc=Ugas-Uliquid

property createDistantMeniscii
Generate meniscii between distant spheres? Else only maintain the existing one. For modeling
a wetting path this flag should always be false. For a drying path it should be true for one
step (initialization) then false, as in the logic of [Scholtes2009c]. The engine turns it off
automatically after one execution.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property disp
Dispersion from the mean Value of the roughness

property epsilonMean
Mean Value of the roughness

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

836 Chapter 2. Yade for users

https://gitlab.com/yade-dev/yade-data/-/raw/887bfc12b6a8ad91024662fcf83efaf1dd01d968/capillaryFiles/capillaryfile.txt?inline=false

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fusionDetection
If true potential menisci overlaps are checked

property hertzInitialized
FIXME: replace by class index

property hertzOn
(auto-updated) true if hertz model is used

property imposePressure
If True, suction is imposed and is constant if not Volume is imposed-Undrained test

property initialized

property inputFilename
the file with meniscus solutions, used for interpolation.

intEnergy((CapillarityEngine)arg1) → float :
define the energy of interfaces in unsaturated pendular state

property interactionDetectionFactor
defines critical distance for deleting interactions. Must be consistent with the Ig2 value.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property liquidTension
Value of the superficial water tension in N/m

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

solveStandalone((CapillarityEngine)arg1, (float)R1, (float)R2, (float)pressure, (float)gap[,
(CapillaryPhysDelaunay)bridge=None]) → CapillaryPhysDelaunay :

Returns a CapillaryPhysDelaunay object representing a single bridge independently of the
scene, using radii R1 and R2, capillary pressure, and gap between two spheres. The returned
value contains internals of the interpolation process, it can be passed as an optional argument
(‘bridge’). If the resolution is repeated multiple times, re-using cached data will increase
performance if the geometrical parameters are changing by small increments

swInterface((CapillarityEngine)arg1) → float :
define the amount of solid-wetting interfaces in unsaturated pendular state

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalVolumeConstant
in undrained test there are 2 options, If True, the total volume of water is imposed,if false the
volume of each meniscus is kept constant: in this case capillary pressure can be imposed for
initial distribution of meniscus or it is the total volume that can be imposed initially

2.4. Yade modules reference 837

Yade Documentation, Release 3rd ed.

property totalVolumeofWater
Value of imposed water volume

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

waterVolume((CapillarityEngine)arg1) → float :
return the total value of water in the sample

wnInterface((CapillarityEngine)arg1) → float :
define the amount of wetting-non-wetiing interfaces in unsaturated pendular state

class yade.plot.CapillaryMindlinPhysDelaunay(inherits MindlinPhys → RotStiffFrictPhys →
FrictPhys → NormShearPhys → NormPhys →
IPhys → Serializable)

An extended version of ̀(iPhysType), adding capillary data for CapillarityEngine.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property Fs
Shear force in local axes (computed incrementally)

property SInterface
Fluid-Gaz Interfacial area

property adhesionForce
Force of adhesion as predicted by DMT

property arcLength
Arc Length of the Fluid-Gaz Interface

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

property capillaryPressure
Value of the capillary pressure Uc defines as Ugas-Uliquid

property computeBridge
If true, capillary bridge will be computed if not it will be ignored.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

838 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fCap
Capillary Force produces by the presence of the meniscus

property fusionNumber
Indicates the number of meniscii that overlap with this one

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
If true, capillary force is zero and liquid bridge is inactive.

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property meniscus
Presence of a meniscus if true

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

2.4. Yade modules reference 839

Yade Documentation, Release 3rd ed.

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

property vMeniscus
Volume of the menicus

class yade.plot.CapillaryPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

Physics (of interaction) for Law2_ScGeom_CapillaryPhys_Capillarity.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property capillaryPressure
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law2 parameter

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fCap
Capillary force produced by the presence of the meniscus. This is the force acting on particle
#2

property fusionNumber
Indicates the number of meniscii that overlap with this one

property isBroken
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

property kn
Normal stiffness

840 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ks
Shear stiffness

property meniscus
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

property nn11∫∫
A
n1n1 dS =

∫∫
A
n2n2 dS, A being the liquid-gas surface of the meniscus, n the associated

normal, and (1, 2, 3) a local basis with 3 the meniscus orientation (ScGeom.normal). NB: A
= 2 nn11 + nn33.

property nn33∫∫
A
n3n3 dS, A being the liquid-gas surface of the meniscus, n the associated normal, and

(1, 2, 3) a local basis with 3 the meniscus orientation (ScGeom.normal). NB: A = 2 nn11 +
nn33.

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vMeniscus
Volume of the meniscus

class yade.plot.CapillaryPhysDelaunay(inherits FrictPhys → NormShearPhys → NormPhys →
IPhys → Serializable)

An extended version of ̀FrictPhys, adding capillary data for CapillarityEngine.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property SInterface
Fluid-Gaz Interfacial area

property arcLength
Arc Length of the Fluid-Gaz Interface

property capillaryPressure
Value of the capillary pressure Uc defines as Ugas-Uliquid

property computeBridge
If true, capillary bridge will be computed if not it will be ignored.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.4. Yade modules reference 841

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property fCap
Capillary Force produces by the presence of the meniscus

property fusionNumber
Indicates the number of meniscii that overlap with this one

property isBroken
If true, capillary force is zero and liquid bridge is inactive.

property kn
Normal stiffness

property ks
Shear stiffness

property meniscus
Presence of a meniscus if true

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vMeniscus
Volume of the menicus

class yade.plot.CapillaryStressRecorder(inherits Recorder → PeriodicEngine → GlobalEngine→ Engine → Serializable)
Records information from capillary meniscii on samples submitted to triaxial compressions. Clas-
sical sign convention (tension positiv) is used for capillary stresses. -> New formalism needs to be
tested!!!

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

842 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.Cell(inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 843

Yade Documentation, Release 3rd ed.

flipCell((Cell)arg1) → Matrix3 :
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible,
using the two following facts:1. repeating in R3 space the corners of a periodic cell defines
a regular grid; 2. two cells leading through this process to a unique grid are equivalent and
can be flipped one over another. Flipping includes adjustment of Interaction.cellDist for
interactions that cross the boundary and didn’t before (or vice versa), and re-initialization of
collider. See also collision detection

property flipFlippable
flip automatically as soon as a more compact geometry is possible (see trsf)

getDefGrad((Cell)arg1) → Matrix3 :
Returns trsf = deformation gradient tensor F of the cell deformation (http://en.wikipedia.
org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain((Cell)arg1) → Matrix3 :
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT)−1) of the cell (http:

//en.wikipedia.org/wiki/Finite_strain_theory)

getFluctuationVelocity((Cell)arg1, (Body)b) → Vector3 :
get velocity fluctuation of a body, i.e. the velocity relative to mean field velocity: ṽ =
v− (∇vm) · x

getLCauchyGreenDef((Cell)arg1) → Matrix3 :
Returns left Cauchy-Green deformation tensor b = FFT of the cell (http://en.wikipedia.org/
wiki/Finite_strain_theory)

getLagrangianStrain((Cell)arg1) → Matrix3 :
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)

getLeftStretch((Cell)arg1) → Matrix3 :
Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU)

getPolarDecOfDefGrad((Cell)arg1) → tuple :
Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell (F = RU)

getRCauchyGreenDef((Cell)arg1) → Matrix3 :
Returns right Cauchy-Green deformation tensor C = FTF of the cell (http://en.wikipedia.org/
wiki/Finite_strain_theory)

getRightStretch((Cell)arg1) → Matrix3 :
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT)

getRotation((Cell)arg1) → Matrix3 :
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU)

getSmallStrain((Cell)arg1) → Matrix3 :
Returns small strain tensor ε = 1

2
(F+FT)−I of the cell (http://en.wikipedia.org/wiki/Finite_

strain_theory)

getSpin((Cell)arg1) → Vector3 :
Returns the spin defined by the skew symmetric part of velGrad

property hSize
Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

844 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 3rd ed.

property hSize0
Value of untransformed hSize with respect to current trsf (computed as trsf �1 × hSize).

property homoDeform
If >0, deform (velGrad) the cell homothetically by adjusting positions and velocities of bodies.
The velocity change is obtained by deriving the expression v=�v.x with respect to time, where
�v is the macroscopic velocity gradient, giving in an incremental form: Δv=Δ �v x + �v Δx
across one DEM iteration. As a result, velocities are modified as soon as velGrad changes,
according to the first term: Δv(t)=Δ �v x(t), while the 2nd term reflects a convective term:
Δv’= �v v(t-dt/2). The second term is neglected if homoDeform=1. All terms are included if
homoDeform=2 (default)

property nextVelGrad
see Cell.velGrad.

property prevHSize
hSize from the previous step, used in the definition of relative velocity across periods.

property prevVelGrad
Velocity gradient in the previous step.

property refHSize
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

property refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox((Cell)arg1, (Vector3)arg2) → None :
Set Cell shape to be rectangular, with dimensions along axes specified by given argument.
Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) -> None :
Set Cell shape to be rectangular, with dimensions along x, y, z specified by arguments.
Shorthand for assigning diagonal matrix with the respective entries to hSize.

shearPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Apply shear (cell skew+rot) on the point

property shearTrsf
Current skew+rot transformation (no resize)

property size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
(auto-updated)

property trsf
Current transformation matrix of the cell F giving current Cell vector dx from its reference
state dX as per dx = FdX. Obtained from time integration of velGrad×F as detailed in the
documentation during the prologue of a YADE iteration (before the O.engines loop). (auto-
updated)

unshearPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Apply inverse shear on the point (removes skew+rot of the cell)

property unshearTrsf
Inverse of the current skew+rot transformation (no resize)

2.4. Yade modules reference 845

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velGrad
Velocity gradient of the transformation of the Cell; used in NewtonIntegrator. Values of
velGrad accumulate in trsf at every step.

note: changing velGrad at the beginning of a timestep would lead to inaccurate
integration for that step, as it should normally be changed after the contact laws
(but before Newton). To avoid this problem, assignment is deferred automatically.
The assigned value is internaly stored in Cell.nextVelGrad and will be applied right
in time by Newton integrator.

Warning: Assigning individual components as in O.cell.velGrad[0,0]=1 is not possible
(it will not return any error but it will have no effect). Instead, the whole matrix should
be assigned, as in O.cell.velGrad=Matrix3(…).

property velGradChanged
true when velGrad has been changed manually (see also Cell.nextVelGrad)

property volume
Current volume of the cell.

wrap((Cell)arg1, (Vector3)arg2) → Vector3 :
Transform an arbitrary point into a point in the reference cell

wrapPt((Cell)arg1, (Vector3)arg2) → Vector3 :
Wrap point inside the reference cell, assuming the cell has no skew+rot.

class yade.plot.CentralConstantAccelerationEngine(inherits FieldApplier → GlobalEngine →
Engine → Serializable)

Engine applying constant acceleration to all bodies, towards a central body. Ignoring the distance
between them.

property accel
Acceleration magnitude [kgms�2]

property centralBody
The body towards which all other bodies are attracted.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

846 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property reciprocal
If true, acceleration will be applied on the central body as well.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ChCylGeom6D(inherits ScGeom6D → ScGeom → GenericSpheresContact → IGeom→ Serializable)
Test

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

2.4. Yade modules reference 847

Yade Documentation, Release 3rd ed.

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ChainedCylinder(inherits Cylinder → Sphere → Shape → Serializable)
Geometry of a deformable chained cylinder, using geometry Cylinder.

property chainedOrientation
Deviation of node1 orientation from node-to-node vector

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property initLength
tensile-free length, used as reference for tensile strain

property length
Length [m]

property radius
Radius [m]

property segment
Length vector

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

848 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.ChainedState(inherits State → Serializable)
State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
rank and chainNumber.

addToChain((ChainedState)arg1, (int)bodyId) → None :
Add body to current active chain

property angMom
Current angular momentum

property angVel
Current angular velocity

property bId
id of the body containing - for postLoad operations only.

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property chainNumber
chain id.

currentChain = 0

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property ori
Current orientation.

property pos
Current position.

2.4. Yade modules reference 849

Yade Documentation, Release 3rd ed.

property rank
rank in the chain.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.plot.CircularFactory(inherits SpheresFactory → GlobalEngine → Engine →
Serializable)

Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or
cylinder (given by radius, length and center).

property PSDcalculateMass
PSD-Input is in mass (true), otherwise the number of particles will be considered.

property PSDcum
PSD-dispersion, cumulative procent meanings [-]

property PSDsizes
PSD-dispersion, sizes of cells, Diameter [m]

property blockedDOFs
Blocked degress of freedom

property center
Center of the region

property color
Use the color for newly created particles, if specified

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactDiam
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

850 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property goalMass
Total mass that should be attained at the end of the current step. (auto-updated)

property ids
ids of created bodies

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property length
Length of the cylindrical region (0 by default)

property mask
groupMask to apply for newly created spheres

property massFlowRate
Mass flow rate [kg/s]

property materialId
Shared material id to use for newly created spheres (can be negative to count from the end)

property maxAttempt
Maximum number of attempts to position a new sphere randomly.

property maxMass
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

property maxParticles
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

property normal
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

property normalVel
Direction of particle’s velocites.

property numParticles
Cummulative number of particles produces so far (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rMax
Maximum radius of generated spheres (uniform distribution)

property rMin
Minimum radius of generated spheres (uniform distribution)

property radius
Radius of the region

property silent
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

2.4. Yade modules reference 851

Yade Documentation, Release 3rd ed.

property stopIfFailed
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalMass
Mass of spheres that was produced so far. (auto-updated)

property totalVolume
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vAngle
Maximum angle by which the initial sphere velocity deviates from the normal.

property vMax
Maximum velocity norm of generated spheres (uniform distribution)

property vMin
Minimum velocity norm of generated spheres (uniform distribution)

class yade.plot.Clump(inherits Shape → Serializable)
Rigid aggregate of bodies whose usage is detailed here

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property ids
Ids of constituent particles (only informative; direct modifications will have no effect).

property members
Return clump members as {‘id1’:(relPos,relOri),…}

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.CohFrictMat(inherits FrictMat → ElastMat → Material → Serializable)
Material description extending FrictMat with cohesive properties and rotational stiffnesses. For
use e.g. with Law2_ScGeom6D_CohFrictPhys_CohesionMoment.

852 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property alphaKr
Dimensionless rolling stiffness.

property alphaKtw
Dimensionless twist stiffness.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property etaRoll
Dimensionless rolling (aka ‘bending’) strength. If negative, rolling moment will be elastic.

property etaTwist
Dimensionless twisting strength. If negative, twist moment will be elastic.

property fragile
does cohesion disappear when contact strength is exceeded?

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property isCohesive
Whether this body can form possibly cohesive interactions (if true and depending on other
parameters such as Ip2_CohFrictMat_CohFrictMat_CohFrictPhys.setCohesionNow).

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property momentRotationLaw
Use bending/twisting moment at contact. The contact may have moments only if both bodies
have this flag true. See Law2_ScGeom6D_CohFrictPhys_CohesionMoment.always_use_-
moment_law for details.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property normalCohesion
Tensile strength, homogeneous to a pressure. If negative the normal force is purely elastic.

2.4. Yade modules reference 853

Yade Documentation, Release 3rd ed.

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property shearCohesion
Shear strength, homogeneous to a pressure. If negative the shear force is purely elastic.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.CohFrictPhys(inherits RotStiffFrictPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

An interaction physics that extends RotStiffFrictPhys adding a breakable cohesive nature. Used
e.g. by Law2_ScGeom6D_CohFrictPhys_CohesionMoment.

property cohesionBroken
is cohesion active? Set to false at the creation of a cohesive contact, and set to true when a
fragile contact is broken

property cohesionDisablesFriction
is shear strength the sum of friction and adhesion or only adhesion?

property creep_viscosity
creep viscosity [Pa.s/m].

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fragile
do cohesion disappear when contact strength is exceeded?

property initCohesion
Initialize the cohesive behaviour with current state as equilibrium state (same as Ip2_Co-
hFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow but acting on only one interaction)

property kn
Normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property ktw
twist stiffness [N.m/rad]

property maxRollPl
Coefficient of rolling friction (negative means elastic).

854 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxTwistPl
Coefficient of twisting friction (negative means elastic).

property momentRotationLaw
set from CohFrictMat::momentRotationLaw in order to possibly use bending/twisting moment
at contacts (if true). See Law2_ScGeom6D_CohFrictPhys_CohesionMoment::always_use_-
moment_law for details.

property moment_bending
Bending moment

property moment_twist
Twist moment

property normalAdhesion
tensile strength

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property rollingAdhesion
maximum bending moment when normal force is null (a frictional term might be added
depending on CohFrictPhys::cohesionDisablesFriction and CohFrictPhys::maxRollPl)

property shearAdhesion
cohesive part of the shear strength (a frictional term might be added depending on CohFrict-
Phys::cohesionDisablesFriction)

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

property twistingAdhesion
maximum twisting moment when normal force is null (a frictional term might be added
depending on CohFrictPhys::cohesionDisablesFriction and CohFrictPhys::maxTwistPl)

property unp
plastic normal displacement, only used for tensile behaviour and if CohFrictPhys::fragile
=false.

property unpMax
maximum value of plastic normal displacement (counted positively), after that the interaction
breaks even if CohFrictPhys::fragile =false. A negative value (i.e. -1) means no maximum.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CohesiveDeformableElementMaterial(inherits Material → Serializable)
Deformable Element Material.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 855

Yade Documentation, Release 3rd ed.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CohesiveFrictionalContactLaw(inherits GlobalEngine → Engine → Serializable)
[DEPRECATED] Loop over interactions applying Law2_ScGeom6D_CohFrictPhys_CohesionMo-
ment on all interactions.

Note: Use InteractionLoop and Law2_ScGeom6D_CohFrictPhys_CohesionMoment instead of
this class for performance reasons.

property always_use_moment_law
If false, compute moments only for cohesive contacts, broken contacts will have only normal
and shear forces. If true, compute bending/twisting moments at all contacts and use the
frictional coefficients CohFrictMat::etaRoll and CohFrictMat::etaTwist to define the strength
of the broken contacts.

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys…

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

856 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Collider(inherits GlobalEngine → Engine → Serializable)
Abstract class for finding spatial collisions between bodies.

Special constructor

Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.4. Yade modules reference 857

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CombinedKinematicEngine(inherits PartialEngine → Engine → Serializable)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator
on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).

property comb
Kinematic engines that will be combined by this one, run in the order given.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

858 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

yade.plot.Complex
alias of complex

class yade.plot.CpmMat(inherits FrictMat → ElastMat → Material → Serializable)
Concrete material, for use with other Cpm classes.

Note: Density is initialized to 4800 kgm�3automatically, which gives approximate 2800 kgm�3 on
0.5 density packing.

Concrete Particle Model (CPM)

CpmMat is particle material, Ip2_CpmMat_CpmMat_CpmPhys averages two particles’ materials,
creating CpmPhys, which is then used in interaction resultion by Law2_ScGeom_CpmPhys_Cpm.
CpmState is associated to CpmMat and keeps state defined on particles rather than interactions
(such as number of completely damaged interactions).

The model is contained in externally defined macro CPM_MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM_MATERIAL_MODEL is not defined. The full model will be described in de-
tail in my (Václav Šmilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).

Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.

property damLaw
Law for damage evolution in uniaxial tension. 0 for linear stress-strain softening branch, 1
(default) for exponential damage evolution law

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property dmgRateExp
Exponent for normal viscosity function. [-]

property dmgTau
Characteristic time for normal viscosity. [s]

property epsCrackOnset
Limit elastic strain [-]

property equivStrainShearContrib
Coefficient of shear contribution to equivalent strain

2.4. Yade modules reference 859

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property isoPrestress
Isotropic prestress of the whole specimen. [Pa]

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property neverDamage
If true, no damage will occur (for testing only).

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property plRateExp
Exponent for visco-plasticity function. [-]

property plTau
Characteristic time for visco-plasticity. [s]

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property relDuctility
relative ductility of bonds in normal direction

property sigmaT
Initial cohesion [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.CpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the Cpm type: storage for relevant parameters.

Evolution of the contact is governed by Law2_ScGeom_CpmPhys_Cpm, that includes damage
effects and chages of parameters inside CpmPhys. See cpm-model for details.

property E
normal modulus (stiffness / crossSection) [Pa]

property Fn
Magnitude of normal force (auto-updated)

property Fs
Magnitude of shear force (auto-updated)

860 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property G
shear modulus [Pa]

property crossSection
equivalent cross-section associated with this contact [m2]

cummBetaCount = 0

cummBetaIter = 0

property damLaw
Law for softening part of uniaxial tension. 0 for linear, 1 for exponential (default)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property dmgOverstress
damage viscous overstress (at previous step or at current step)

property dmgRateExp
exponent in the rate-dependent damage evolution

property dmgStrain
damage strain (at previous or current step)

property dmgTau
characteristic time for damage (if non-positive, the law without rate-dependence is used)

property epsCrackOnset
strain at which the material starts to behave non-linearly

property epsFracture
strain at which the bond is fully broken [-]

property epsN
Current normal strain (auto-updated)

property epsNPl
normal plastic strain (initially zero) (auto-updated)

property epsT
Current shear strain (auto-updated)

property epsTPl
shear plastic strain (initially zero) (auto-updated)

property equivStrainShearContrib
Coefficient of shear contribution to equivalent strain

static funcG((float)kappaD, (float)epsCrackOnset, (float)epsFracture[,
(bool)neverDamage=False[, (int)damLaw=1]]) → float :

Damage evolution law, evaluating the ω parameter. κD is historically maximum strain, ep-
sCrackOnset (ε0) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage). TODO

2.4. Yade modules reference 861

Yade Documentation, Release 3rd ed.

static funcGInv((float)omega, (float)epsCrackOnset, (float)epsFracture[,
(bool)neverDamage=False[, (int)damLaw=1]]) → float :

Inversion of damage evolution law, evaluating the κD parameter. ω is damage, for other
parameters see funcG function

property isCohesive
if not cohesive, interaction is deleted when distance is greater than zero.

property isoPrestress
“prestress” of this link (used to simulate isotropic stress)

property kappaD
Up to now maximum normal strain (semi-norm), non-decreasing in time (auto-updated)

property kn
Normal stiffness

property ks
Shear stiffness

property neverDamage
the damage evolution function will always return virgin state

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property omega
Damage internal variable (auto-updated)

property plRateExp
exponent in the rate-dependent viscoplasticity

property plTau
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

property refLength
initial length of interaction [m]

property refPD
initial penetration depth of interaction [m] (used with ScGeom)

property relDuctility
Relative ductility of bonds in normal direction

property relResidualStrength
Relative residual strength (auto-updated)

setDamage((CpmPhys)arg1, (float)arg2) → None :
TODO

setRelResidualStrength((CpmPhys)arg1, (float)arg2) → None :
TODO

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property sigmaN
Current normal stress (auto-updated)

862 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property sigmaT
Current shear stress (auto-updated)

property tanFrictionAngle
tangens of internal friction angle [-]

property undamagedCohesion
virgin material cohesion [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CpmState(inherits State → Serializable)
State information about body use by cpm-model.

None of that is used for computation (at least not now), only for post-processing.

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property damageTensor
Damage tensor computed with microplane theory averaging. state.damageTensor.trace() =
state.normDmg

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property epsVolumetric
Volumetric strain around this body (unused for now)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

2.4. Yade modules reference 863

Yade Documentation, Release 3rd ed.

property normDmg
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

property numBrokenCohesive
Number of (cohesive) contacts that damaged completely

property numContacts
Number of contacts with this body

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property stress
Stress tensor of the spherical particle (under assumption that particle volume = pi*r*r*r*4/3.)
for packing fraction 0.62

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.plot.CpmStateUpdater(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In
particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.
This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.

property avgRelResidual
Average residual strength at last run.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

864 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxOmega
Globally maximum damage parameter at last run.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.CundallStrackAdhesivePotential(inherits CundallStrackPotential →
GenericPotential → Serializable)

CundallStrack model with adhesive part. Contact is created when u/a− ε < 0 and released when
u/a− ε > ladh, where ladh = fadh/kn. This lead to an hysteretic attractive part.

property alpha
Bulk-to-roughness stiffness ratio

2.4. Yade modules reference 865

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fadh
Adhesion force.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CundallStrackPotential(inherits GenericPotential → Serializable)
Potential with only Cundall-and-Strack-like contact.

property alpha
Bulk-to-roughness stiffness ratio

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CylScGeom(inherits ScGeom → GenericSpheresContact → IGeom → Serializable)
Geometry of a cylinder-sphere contact.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property end
position of 2nd node (auto-updated)

property id3
id of next chained cylinder (auto-updated)

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property isDuplicate
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property onNode
contact on node?

866 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

property start
position of 1st node (auto-updated)

property trueInt
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.CylScGeom6D(inherits ScGeom6D → ScGeom → GenericSpheresContact → IGeom→ Serializable)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property end
position of 2nd node (auto-updated)

property id3
id of next chained cylinder (auto-updated)

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

2.4. Yade modules reference 867

Yade Documentation, Release 3rd ed.

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property isDuplicate
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property onNode
contact on node?

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

property start
position of 1st node (auto-updated)

property trueInt
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Cylinder(inherits Sphere → Shape → Serializable)
Geometry of a cylinder, as Minkowski sum of line and sphere.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

868 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property length
Length [m]

property radius
Radius [m]

property segment
Length vector

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.DeformableCohesiveElement(inherits DeformableElement → Shape →
Serializable)

Tetrahedral Deformable Element Composed of Nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

addPair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

2.4. Yade modules reference 869

Yade Documentation, Release 3rd ed.

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

property nodepairs
Ids and relative position+orientation difference of members of the cohesive deformable element
in the inital condition (should not be accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

removePair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.DeformableElement(inherits Shape → Serializable)
Deformable aggregate of nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

870 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.DeformableElementMaterial(inherits Material → Serializable)
Deformable Element Material.

property density
Density of the material.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Disp2DPropLoadEngine(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Disturbs a simple shear sample in a given displacement direction

This engine allows one to apply, on a simple shear sample, a loading controlled by du/dgamma =
cste, which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so,
the upper plate of the simple shear box is moved in a given direction (corresponding to a given
du/dgamma), whereas lateral plates are moved so that the box remains closed. This engine can
easily be used to perform directionnal probes, with a python script launching successivly the same

2.4. Yade modules reference 871

Yade Documentation, Release 3rd ed.

.xml which contains this engine, after having modified the direction of loading (see theta attribute).
That’s why this Engine contains a saveData procedure which can save data on the state of the
sample at the end of the loading (in case of successive loadings - for successive directions - through
a python script, each line would correspond to one direction of loading).

property Key
string to add at the names of the saved files, and of the output file filled by saveData

property LOG
boolean controling the output of messages on the screen

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nbre_iter
the number of iterations of loading to perform

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property theta
the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

872 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property v
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v = V_shear - | (V_shear-
V_comp)*sin(theta) | => v=V_shear in shear; V_comp in compression [m/s]

class yade.plot.Dispatcher(inherits Engine → Serializable)
Engine dispatching control to its associated functors, based on types of argument it receives. This
abstract base class provides no functionality in itself.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.DomainLimiter(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Delete particles that are out of axis-aligned box given by lo and hi.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.4. Yade modules reference 873

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property hi
Upper corner of the domain.

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lo
Lower corner of the domain.

property mDeleted
Mass of deleted particles.

property mask
If mask is defined, only particles with corresponding groupMask will be deleted.

property nDeleted
Cummulative number of particles deleted.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

874 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vDeleted
Volume of deleted spheres (clumps not counted, in that case check mDeleted)

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.DragEngine(inherits PartialEngine → Engine → Serializable)
Apply drag force on some particles at each step, decelerating them proportionally to their linear
velocities. The applied force reads

Fd = −
v

|v|

1

2
ρ|v|2CdA

where ρ is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cd is the drag coefficient (0.47 for Sphere),

Note: Drag force is only applied to spherical particles, listed in ids.

property Cd
Drag coefficient <http://en.wikipedia.org/wiki/Drag_coefficient>‘_.

property Rho
Density of the medium (fluid or air), by default - the density of the air.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.4. Yade modules reference 875

http://en.wikipedia.org/wiki/Drag_equation
http://en.wikipedia.org/wiki/Drag_coefficient

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ElastMat(inherits Material → Serializable)
Purely elastic material. The material parameters may have different meanings depending on the
IPhysFunctor used : true Young and Poisson in Ip2_FrictMat_FrictMat_MindlinPhys, or contact
stiffnesses in Ip2_FrictMat_FrictMat_FrictPhys.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.ElasticContactLaw(inherits GlobalEngine → Engine → Serializable)
[DEPRECATED] Loop over interactions applying Law2_ScGeom_FrictPhys_CundallStrack on all
interactions.

Note: Use InteractionLoop and Law2_ScGeom_FrictPhys_CundallStrack instead of this class
for performance reasons.

876 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.EnergyTracker(inherits Serializable)
Storage for tracing energies. Only to be used if O.trackEnergy is True.

clear((EnergyTracker)arg1) → None :
Clear all stored values.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property energies
Energy values, in linear array

items((EnergyTracker)arg1) → list :
Return contents as list of (name,value) tuples.

keys((EnergyTracker)arg1) → list :
Return defined energies.

total((EnergyTracker)arg1) → float :
Return sum of all energies.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 877

Yade Documentation, Release 3rd ed.

class yade.plot.Engine(inherits Serializable)
Basic execution unit of simulation, called from the simulation loop (O.engines)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.FEInternalForceEngine(inherits GlobalEngine → Engine → Serializable)
Unified dispatcher for handling Finite Element internal force loop at every step, for parallel per-
formance reasons.

Special constructor

Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

878 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property internalforcedispatcher
InternalForceDispatcher object that is used for dispatching of element types.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Facet(inherits Shape → Serializable)
Facet (triangular particle) geometry.

property area
Facet’s area

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property normal
Facet’s normal n (in local coordinate system) oriented towards e0 × e1 with e0 = V0V1,
e1 = V1V2 and Vi the vertices

setVertices((Facet)arg1, (Vector3)v0, (Vector3)v1, (Vector3)v2) → None :
Defines vertices

Parameters

• v0 (Vector3) – first vertex

• v1 (Vector3) – second vertex

• v2 (Vector3) – third vertex

Returns
nothing

2.4. Yade modules reference 879

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertices
Vertex positions in local coordinates.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.FacetTopologyAnalyzer(inherits GlobalEngine → Engine → Serializable)
Initializer for filling adjacency geometry data for facets.

Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.

property commonEdgesFound
how many common edges were identified during last run. (auto-updated)

property commonVerticesFound
how many common vertices were identified during last run. (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property projectionAxis
Axis along which to do the initial vertex sort

property relTolerance
maximum distance of ‘identical’ vertices, relative to minimum facet size

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

880 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.FastMarchingMethod(inherits Serializable)
Executes a Fast Marching Method (FMM) to solve ||∇φ|| = c for a discrete field φ defined on grid,
with phiIni serving as boundary condition. Typically, c = 1 (see speed) and φ is a distance field.
See [Duriez2021b] for more details (where the class was coined DistFMM) and pay attention to
heapSort for possibly faster executions.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property grid
The underlying regular grid.

property heapSort
Whether to use a heap-sort (if True) when advancing the narrow band and picking the closest-
to-surface gridpoint, for a much faster execution (one or more order of magnitude for significant
grid with 1e5 gridpoints or more). Note that the present implementation is not fully bullet-
proof in principle for non-convex cases, from the point of view of conserving a heap-structure
over the course of all operations, but that no significant consequences of using True have been
observed to date.

property known
Gridpoints (indices) with distance known for good: they have been at some point the shortest
gp to the surface while executing the FMM.

phi((FastMarchingMethod)arg1) → object :
Executes the FMM and returns its solution as a list of list of list, with the [i][j][k] element
corresponding to grid.gridPoint(i,j,k).

property phiIni
Initial discrete field defined on the grid that will serve as a boundary condition for the FMM.
Field values have to be - inf (resp. inf) for points being far inside (resp. outside) and
correct (finite) on each side of the interface. Built-in functions distIniSE (for superellipsoids),
phiIniCppPy (for a Python user function, through a mixed C++-Py internal implementation)
or phiIniPy (for a Python user function through a pure Py internal implementation) may be
used for such a purpose.

property speed
Keep to 1 for a true distance, 2 for the flake-like rose verification of [Duriez2021b].

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.FieldApplier(inherits GlobalEngine → Engine → Serializable)
Base for engines applying force files on particles. Not to be used directly.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 881

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.FileGenerator(inherits Serializable)
Base class for scene generators, preprocessors.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.FlatGridCollider(inherits Collider → GlobalEngine → Engine → Serializable)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly
multiple) cells, which are arranged in regular grid between aabbMin and aabbMax, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMax) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.

Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: objects Body::bound are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).

property aabbMax
Upper corner of grid (approximate, might be rouded up to minStep.

property aabbMin
Lower corner of grid.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

882 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property step
Step in the grid (cell size)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property verletDist
Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.plot.FlowEngine(inherits FlowEngineT → PartialEngine → Engine → Serializable)
An engine to solve flow problem in saturated granular media. Model description can be found in
[Chareyre2012a] and [Catalano2014a]. See the example script FluidCouplingPFV/oedometer.py.
More documentation to come.

OSI((FlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

2.4. Yade modules reference 883

Yade Documentation, Release 3rd ed.

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

884 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

2.4. Yade modules reference 885

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((FlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

886 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

2.4. Yade modules reference 887

Yade Documentation, Release 3rd ed.

getCellPImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((FlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

888 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

2.4. Yade modules reference 889

Yade Documentation, Release 3rd ed.

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

890 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

pressureProfile((FlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]]) → None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

2.4. Yade modules reference 891

Yade Documentation, Release 3rd ed.

surfaceDistanceParticle((FlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngineT)arg1, (int)cellId, (int)throatIndex) → float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((FlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

892 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.FlowEngineT(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((FlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

2.4. Yade modules reference 893

Yade Documentation, Release 3rd ed.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

894 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

2.4. Yade modules reference 895

Yade Documentation, Release 3rd ed.

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((FlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

896 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

2.4. Yade modules reference 897

Yade Documentation, Release 3rd ed.

getCellCenter((FlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((FlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

898 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getPorePressure((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

2.4. Yade modules reference 899

Yade Documentation, Release 3rd ed.

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

900 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]]) → None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

2.4. Yade modules reference 901

Yade Documentation, Release 3rd ed.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngineT)arg1, (int)cellId, (int)throatIndex) → float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((FlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and

902 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

2.4. Yade modules reference 903

Yade Documentation, Release 3rd ed.

property zmin
See FlowEngine::xmin.

class yade.plot.FlowEngine_PeriodicInfo(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngine_PeriodicInfo)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngine_PeriodicInfo)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngine_PeriodicInfo)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngine_PeriodicInfo)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

904 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

bodyShearLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngine_PeriodicInfo)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngine_PeriodicInfo)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

2.4. Yade modules reference 905

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngine_PeriodicInfo)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngine_PeriodicInfo)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngine_PeriodicInfo)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

906 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngine_PeriodicInfo)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngine_PeriodicInfo)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngine_PeriodicInfo)arg1) → float :
Return the density of cavity fluid.

2.4. Yade modules reference 907

Yade Documentation, Release 3rd ed.

getCavityFlux((FlowEngine_PeriodicInfo)arg1) → float :
Return the flux through the edge of the cavity.

getCell((FlowEngine_PeriodicInfo)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngine_PeriodicInfo)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngine_PeriodicInfo)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

908 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getIncidentCells((FlowEngine_PeriodicInfo)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngine_PeriodicInfo)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngine_PeriodicInfo)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngine_PeriodicInfo)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngine_PeriodicInfo)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngine_PeriodicInfo)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 909

Yade Documentation, Release 3rd ed.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngine_PeriodicInfo)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngine_PeriodicInfo)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngine_PeriodicInfo)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

910 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngine_PeriodicInfo)arg1, (float)wallUpY , (float)wallDownY) → None
:

Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngine_PeriodicInfo)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngine_PeriodicInfo)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngine_PeriodicInfo)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngine_PeriodicInfo)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngine_PeriodicInfo)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

2.4. Yade modules reference 911

Yade Documentation, Release 3rd ed.

shearLubTorque((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngine_PeriodicInfo)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throatIndex) →
float :

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

912 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateBCs((FlowEngine_PeriodicInfo)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngine_PeriodicInfo)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngine_PeriodicInfo)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

2.4. Yade modules reference 913

Yade Documentation, Release 3rd ed.

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.FluidDomainBbox(inherits Shape → Serializable)
The bounding box of a fluid grid from one OpenFOAM/YALES2 proc

property bIds
ids of bodies intersecting with this subdomain,

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property hasIntersection
if this Yade subdomain has intersection with this OpenFOAM/YALES2 subdomain

property highlight
Whether this Shape will be highlighted when rendered.

property maxBound
max bounds of the fluid grid

property minBound
min bounds of the fluid grid

property minMaxisSet
flag to check if the min max bounds of this body are set.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.FoamCoupling(inherits GlobalEngine → Engine → Serializable)

An engine for coupling Yade with the finite volume fluid solver OpenFOAM in
parallel.

Requirements : Yade compiled with MPI libs, OpenFOAM-6 (openfoam is not required for
compilation).Yade is executed under MPI environment with OpenFOAM simultaneously, and
using MPI communication routines data is exchanged between the solvers.

1. Yade broadcasts the particle data -> position, velocity, ang-velocity, radius to all the
foam processes as in castParticle

914 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2. In each foam process, particle is searched.Yade keeps a vector(cpp) of the rank of the openfoam
process containing that particular particle (FoamCoupling::procList), using updateProcList

3. In simple lagrangian point force coupling Yade recieves the particle hydrodynamic force
and torque from the openfoam process, the sender is identified from the vector FoamCou-
pling::procList. In the case of Gaussian interpolation, contribution from every process is summed
using function sumHydroForce . 4. The interval (substepping) is set automatically (FoamCou-
pling::dataExchangeInterval) based on dtfoam/dtYade, calculated in function exchangeDeltaT

SetOpenFoamSolver((FoamCoupling)arg1, (str)OpenFOAMSolverName,
(int)numOpenFOAMProcesses) → None :

Starts the Yade coupled OpenFOAM solver with the requested number of processes

StartFoamSolver((FoamCoupling)arg1) → None :
Starts the OpenFOAM solver

property comm
Communicator to be used for MPI (converts mpi4py comm <-> c++ comm)

property dataExchangeInterval
Number of iterations/substepping : for stability and to be in sync with fluid solver calculated
in exchangeDeltaT

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

eraseId((FoamCoupling)arg1, (int)idToErase) → bool :
remove a body from hydrodynamic force coupling

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fluidDensity
fluidDensity

property fluidDomains
list of fluid domain bounding fictitious fluid bodies that has the fluid mesh bounds

property foamDeltaT
timestep in openfoam solver from exchangeDeltaT

property foamPath
path to OpenFoam

property foamVersion
version of OpenFoam environment

getFluidDomainBbox((FoamCoupling)arg1) → None :
get the fluid domain bounding boxes, called once during simulation initialization.

getIdList((FoamCoupling)arg1) → object :
get the ids of bodies in coupling

2.4. Yade modules reference 915

Yade Documentation, Release 3rd ed.

getNumBodies((FoamCoupling)arg1) → int :
get the number of bodies in the coupling

insertBodyId((FoamCoupling)arg1, (int)newId) → None :
insert a new body id for hydrodynamic force coupling

property isGaussianInterp
switch for Gaussian interpolation of field varibles in openfoam. Uses sumHydroForce to obtain
hydrodynamic force

killMPI((FoamCoupling)arg1) → None :
Destroy MPI, to be called at the end of the simulation, from killMPI

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property numParticles
number of particles in coupling.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particleDensity
particle Density

setIdList((FoamCoupling)arg1, (object)bodyIdlist) → None :
list of body ids in hydroForce coupling. (links to :yref: FoamCoupling::bodyList vector, used
to build particle data FoamCoupling::particleData. FoamCoupling::particleData contains the
particle pos, vel, angvel, radius and this is sent to foam.)

setNumParticles((FoamCoupling)arg1, (int)numparticles) → None :
number of particles in coupling

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ForceContainer

__init__((object)arg1, (ForceContainer)arg2) → None

addF((ForceContainer)arg1, (int)id, (Vector3)f [, (bool)permanent=False]) → None :
Apply force on body (accumulates). The force applies for one iteration, then it is reset by
ForceResetter. # permanent parameter is deprecated, instead of addF(…,permanent=True)
use setPermF(…).

addT((ForceContainer)arg1, (int)id, (Vector3)t[, (bool)permanent=False]) → None :
Apply torque on body (accumulates). The torque applies for one iteration, then it is reset by
ForceResetter. # permanent parameter is deprecated, instead of addT(…,permanent=True)
use setPermT(…).

916 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

f((ForceContainer)arg1, (int)id[, (bool)sync=False]) → Vector3 :
Resultant force on body, excluding gravity. For clumps in openMP, synchronize the force
container with sync=True, else the value will be wrong.

getPermForceUsed((ForceContainer)arg1) → bool :
Check wether permanent forces are present.

m((ForceContainer)arg1, (int)id[, (bool)sync=False]) → Vector3 :
Deprecated alias for t (torque).

permF((ForceContainer)arg1, (int)id) → Vector3 :
read the value of permanent force on body (set with setPermF()).

permT((ForceContainer)arg1, (int)id) → Vector3 :
read the value of permanent torque on body (set with setPermT()).

reset((ForceContainer)arg1[, (bool)resetAll=True]) → None :
Reset the force container, including user defined permanent forces/torques. resetAll=False
will keep permanent forces/torques unchanged.

setPermF((ForceContainer)arg1, (int)arg2, (Vector3)arg3) → None :
set the value of permanent force on body.

setPermT((ForceContainer)arg1, (int)arg2, (Vector3)arg3) → None :
set the value of permanent torque on body.

property syncCount
Number of synchronizations of ForceContainer (cummulative); if significantly higher than
number of steps, there might be unnecessary syncs hurting performance.

t((ForceContainer)arg1, (int)id[, (bool)sync=False]) → Vector3 :
Torque applied on body. For clumps in openMP, synchronize the force container with
sync=True, else the value will be wrong.

class yade.plot.ForceEngine(inherits PartialEngine → Engine → Serializable)
Apply contact force on some particles at each step.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property force
Force to apply.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 917

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ForceRecorder(inherits Recorder → PeriodicEngine → GlobalEngine → Engine →
Serializable)

Engine saves the resultant force affecting to bodies, listed in ids. For instance, can be useful for
defining the forces, which affects to _buldozer_ during its work.

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property ids
List of bodies whose state will be measured

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

918 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalForce
Resultant force, returning by the function.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.ForceResetter(inherits GlobalEngine → Engine → Serializable)
Reset all forces stored in Scene::forces (O.forces in python). Typically, this is the first engine to
be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 919

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.FrictMat(inherits ElastMat → Material → Serializable)
Elastic material with contact friction. See also ElastMat.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

920 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.FrictMatCDM(inherits FrictMat → ElastMat → Material → Serializable)
Material to be used for extended Hertz-Mindlin contact law. Normal direction: parameters for
Conical Damage Model (Harkness et al. 2016, Suhr & Six 2017). Tangential direction: parameters
for stress dependent interparticle friction coefficient (Suhr & Six 2016). Both models can be
switched on/off separately.

property alpha
[rad] angle of conical asperities, alpha in (0, pi/2)

property c1
[-] parameter of pressure dependent friction model c1, choose 0 for constant interparticle
friction coefficient

property c2
[-] parameter of pressure dependent friction model c2, choose 0 for constant interparticle
friction coefficient

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property sigmaMax
>0 [Pa] max compressive strength of material, choose 1e99 to switch off conical damage model

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 921

Yade Documentation, Release 3rd ed.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.FrictPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
The simple linear elastic-plastic interaction with friction angle, like in the traditional
[CundallStrack1979]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.FrictViscoMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for use with the FrictViscoPM classes

property betan
Fraction of the viscous damping coefficient in normal direction equal to cn

Cn,crit
.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

922 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.FrictViscoPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

Representation of a single interaction of the FrictViscoPM type, storage for relevant parameters

property cn
Normal viscous constant defined as n = cn,critβn.

property cn_crit
Normal viscous constant for ctitical damping defined as n = Cn,critβn.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

2.4. Yade modules reference 923

Yade Documentation, Release 3rd ed.

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Functor(inherits Serializable)
Function-like object that is called by Dispatcher, if types of arguments match those the Functor
declares to accept.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GeneralIntegratorInsertionSortCollider(inherits InsertionSortCollider →
Collider → GlobalEngine → Engine→ Serializable)

This class is the adaptive version of the InsertionSortCollider and changes the NewtonIntegrator
dependency of the collider algorithms to the Integrator interface which is more general.

property allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doSort
Do forced resorting of interactions.

924 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dumpBounds((InsertionSortCollider)arg1) → tuple :
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

• coordinate (float)

• body id (int), but negated for negative bounds

• period numer (int), if the collider is in the periodic regime.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fastestBodyMaxDist
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

isActivated((InsertionSortCollider)arg1) → bool :
Return true if collider needs execution at next iteration.

property keepListsShort
if true remove bounds of non-existent or unbounded bodies from the lists (auto-updated);
turned true automatically in MPI mode and if bodies are erased with BodyCon-
tainer.enableRedirection‘=True. :ydefault:‘false

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property minSweepDistFactor
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

property newton
reference to active Newton integrator. (auto-updated)

property numAction
Cummulative number of collision detection.

property numReinit
Cummulative number of bound array re-initialization.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property overlapTolerance
Tolerance on determining overlap. In rare cases different parts of the code can inconsistently
lead to different results in terms of overlap, with false negative by spatialOverlapPeri possibly
leading to nasty bugs in contact detection (false positive are harmless). This tolerance is to
avoid false negative, the value can be understood as relative to 1 (i.e. independent of particle
size or any other reference length). The default should be ok.

2.4. Yade modules reference 925

Yade Documentation, Release 3rd ed.

property periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

property smartInsertErase
Use an algorithm optimized for heavy insert/delete (avoid initSort) - experimental.

property sortAxis
Axis for the initial contact detection.

property sortThenCollide
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

property strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

property targetInterv
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatingDispFactor
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

property verletDist
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.plot.GenericPotential(inherits Serializable)
Generic class for potential representation in PotentialLubrication law. Don’t do anything. If set
as potential, the result will be a lubrication-only simulation.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GenericSpheresContact(inherits IGeom → Serializable)
Class uniting ScGeom and L3Geom, for the purposes of GlobalStiffnessTimeStepper. (It might be
removed in the future). Do not use this class directly.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

926 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_Aabb(inherits GlBoundFunctor → Functor → Serializable)
Render Axis-aligned bounding box (Aabb).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_Box(inherits GlShapeFunctor → Functor → Serializable)
Renders Box object

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 927

Yade Documentation, Release 3rd ed.

class yade.plot.Gl1_ChainedCylinder(inherits Gl1_Cylinder → GlShapeFunctor → Functor →
Serializable)

Renders ChainedCylinder object including a shift for compensating flexion.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutNormalize = True

glutSlices = 8

glutStacks = 4

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_CpmPhys(inherits GlIPhysFunctor → Functor → Serializable)
Render CpmPhys objects of interactions.

contactLine(=true) [static]
Show contact line

dmgLabel(=true) [static]
Numerically show contact damage parameter

dmgPlane(=false) [static]
[what is this?]

epsT(=false) [static]
Show shear strain

epsTAxes(=false) [static]
Show axes of shear plane

normal(=false) [static]
Show contact normal

colorStrainRatio(=-1) [static]
If positive, set the interaction (wire) color based on εN normalized by ε0 x colorStrainRatio
(ε0 = CpmPhys.epsCrackOnset). Otherwise, color based on the residual strength.

epsNLabel(=false) [static]
Numerically show normal strain

property bases
Ordered list of types (as strings) this functor accepts.

colorStrainRatio = -1.0

contactLine = True

928 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dmgLabel = True

dmgPlane = False

epsNLabel = False

epsT = False

epsTAxes = False

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normal = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_Cylinder(inherits GlShapeFunctor → Functor → Serializable)
Renders Cylinder object

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

glutNormalize(=true) [static]
Fix normals for non-wire rendering

glutSlices(=8) [static]
Number of sphere slices.

glutStacks(=4) [static]
Number of sphere stacks.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutNormalize = True

glutSlices = 8

glutStacks = 4

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 929

Yade Documentation, Release 3rd ed.

wire = False

class yade.plot.Gl1_DeformableElement(inherits GlShapeFunctor → Functor → Serializable)
Renders Node object

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_Facet(inherits GlShapeFunctor → Functor → Serializable)
Renders Facet object

normals(=false) [static]
In wire mode, render normals of facets and edges; facet’s colors are disregarded in that case.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normals = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_GridConnection(inherits GlShapeFunctor → Functor → Serializable)
Renders Cylinder object

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

glutNormalize(=true) [static]
Fix normals for non-wire rendering

glutSlices(=8) [static]
Number of cylinder slices.

glutStacks(=4) [static]
Number of cylinder stacks.

930 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutNormalize = True

glutSlices = 8

glutStacks = 4

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_L3Geom(inherits GlIGeomFunctor → Functor → Serializable)
Render L3Geom geometry.

axesLabels(=false) [static]
Whether to display labels for local axes (x,y,z)

axesScale(=1.) [static]
Scale local axes, their reference length being half of the minimum radius.

axesWd(=1.) [static]
Width of axes lines, in pixels; not drawn if non-positive

uPhiWd(=2.) [static]
Width of lines for drawing displacements (and rotations for L6Geom); not drawn if non-
positive.

uScale(=1.) [static]
Scale local displacements (u - u0); 1 means the true scale, 0 disables drawing local displace-
ments; negative values are permissible.

axesLabels = False

axesScale = 1.0

axesWd = 1.0

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.4. Yade modules reference 931

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0

uScale = 1.0

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_L6Geom(inherits Gl1_L3Geom → GlIGeomFunctor → Functor → Serializable)
Render L6Geom geometry.

phiScale(=1.) [static]
Scale local rotations (phi - phi0). The default scale is to draw π rotation with length equal to
minimum radius.

axesLabels = False

axesScale = 1.0

axesWd = 1.0

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

phiScale = 1.0

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0

uScale = 1.0

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_LevelSet(inherits GlShapeFunctor → Functor → Serializable)
Renders LevelSet object

recompute(=false) [static]
Whether to recompute the triangulation every time it is rendered.

wire(=false) [static]
Only show wireframe

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

932 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

recompute = False

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_Node(inherits GlShapeFunctor → Functor → Serializable)
Renders Node object

quality(=1.0) [static]
Change discretization level of spheres. quality>1 for better image quality, at the price of more
cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color spheres are displayed (Gl1_-
Node::stripes = False), quality mutiplies Gl1_Node::glutSlices and Gl1_Node::glutStacks. If
striped spheres are displayed (Gl1_Node::stripes = True), only integer increments are mean-
ingfull : quality=1 and quality=1.9 will give the same result, quality=2 will give finer result.

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=false) [static]
In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true) [static]
Compute specular light in local eye coordinate system.

glutSlices(=12) [static]
Base number of sphere slices, multiplied by Gl1_Node::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6) [static]
Base number of sphere stacks, multiplied by Gl1_Node::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutSlices = 12

glutStacks = 6

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

localSpecView = True

quality = 1.0

stripes = False

2.4. Yade modules reference 933

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_NormPhys(inherits GlIPhysFunctor → Functor → Serializable)
Renders NormPhys objects as cylinders of which diameter and color depends on Norm-
Phys.normalForce magnitude.

maxFn(=0) [static]
Value of NormPhys.normalForce corresponding to maxRadius. This value will be increased
(but not decreased) automatically.

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius; used only if maxRadius is negative. This value will be
decreased (but not increased) automatically. (auto-updated)

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force. If negative, auto-updated re-
fRadius will be used instead.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

maxWeakFn(=NaN) [static]
Value that divides contacts by their normal force into the ‘weak fabric’ and ‘strong fabric’.
This value is set as side-effect by utils.fabricTensor.

weakFilter(=0) [static]
If non-zero, only display contacts belonging to the ‘weak’ (-1) or ‘strong’ (+1) fabric.

weakScale(=1.) [static]
If maxWeakFn is set, scale radius of the weak fabric by this amount (usually smaller than 1).
If zero, 1 pixel line is displayed. Colors are not affected by this value.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0

maxRadius = -1.0

maxWeakFn = nan

934 Chapter 2. Yade for users

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Documentation, Release 3rd ed.

refRadius = inf

signFilter = 0

slices = 6

stacks = 1

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

weakFilter = 0

weakScale = 1.0

class yade.plot.Gl1_PFacet(inherits GlShapeFunctor → Functor → Serializable)
Renders Facet object

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_Polyhedra(inherits GlShapeFunctor → Functor → Serializable)
Renders Polyhedra object

wire(=false) [static]
Only show wireframe

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.4. Yade modules reference 935

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_PolyhedraGeom(inherits GlIGeomFunctor → Functor → Serializable)
Render PolyhedraGeom geometry.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_PolyhedraPhys(inherits GlIPhysFunctor → Functor → Serializable)
Renders PolyhedraPhys objects as cylinders of which diameter and color depends on Polyhedra-
Phys::normForce magnitude.

maxFn(=0) [static]
Value of NormPhys.normalForce corresponding to maxDiameter. This value will be increased
(but not decreased) automatically.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0

maxRadius = -1.0

936 Chapter 2. Yade for users

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Documentation, Release 3rd ed.

refRadius = inf

signFilter = 0

slices = 6

stacks = 1

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Gl1_PotentialBlock(inherits GlShapeFunctor → Functor → Serializable)
Renders PotentialBlock object

wire(=false) [static]
Only show wireframe

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_PotentialParticle(inherits GlShapeFunctor → Functor → Serializable)
Renders PotentialParticle object

sizeX(=20) [static]
Number of divisions in the X direction for triangulation

sizeY(=20) [static]
Number of divisions in the Y direction for triangulation

sizeZ(=20) [static]
Number of divisions in the Z direction for triangulation

store(=true) [static]
Whether to store computed triangulation or not

initialized(=false) [static]
Whether the triangulation is initialized

aabbEnlargeFactor(=1.3) [static]
Enlargement factor of the Marching Cubes drawing grid, used for displaying purposes. Try
different value if the particles are not displayed properly

2.4. Yade modules reference 937

Yade Documentation, Release 3rd ed.

wire(=false) [static]
Only show wireframe

aabbEnlargeFactor = 1.3

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

initialized = False

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

sizeX = 20

sizeY = 20

sizeZ = 20

store = True

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_Sphere(inherits GlShapeFunctor → Functor → Serializable)
Renders Sphere object

quality(=1.0) [static]
Change discretization level of spheres. quality>1 for better image quality, at the price of more
cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color spheres are displayed (Gl1_-
Sphere::stripes = False), quality mutiplies Gl1_Sphere::glutSlices and Gl1_Sphere::glutStacks.
If striped spheres are displayed (Gl1_Sphere::stripes = True), only integer increments are
meaningfull : quality=1 and quality=1.9 will give the same result, quality=2 will give finer
result.

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=true) [static]
In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true) [static]
Compute specular light in local eye coordinate system.

glutSlices(=12) [static]
Base number of sphere slices, multiplied by Gl1_Sphere::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6) [static]
Base number of sphere stacks, multiplied by Gl1_Sphere::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

938 Chapter 2. Yade for users

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Documentation, Release 3rd ed.

circleView(=false) [static]
For 2D simulations : display tori instead of spheres, so they will appear like circles if the viewer
is looking in the right direction. In this case, remember to disable perspective by pressing
“t”-key in the viewer.

circleRelThickness(=0.2) [static]
If Gl1_Sphere::circleView is enabled, this is the torus diameter relative to the sphere radius
(i.e. the circle relative thickness).

circleAllowedRotationAxis(=’z’) [static]
If Gl1_Sphere::circleView is enabled, this is the only axis (‘x’, ‘y’ or ‘z’) along which rotation
is allowed for the 2D simulation. It allows right orientation of the tori to appear like circles in
the viewer. For example, if circleAllowedRotationAxis=’x’ is set, blockedDOFs=”YZ” should
also be set for all your particles.

property bases
Ordered list of types (as strings) this functor accepts.

circleAllowedRotationAxis = 'z'

circleRelThickness = 0.2

circleView = False

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

glutSlices = 12

glutStacks = 6

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

localSpecView = True

quality = 1.0

stripes = True

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = False

class yade.plot.Gl1_Tetra(inherits GlShapeFunctor → Functor → Serializable)
Renders Tetra object

wire(=true) [static]
TODO

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 939

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

wire = True

class yade.plot.Gl1_Wall(inherits GlShapeFunctor → Functor → Serializable)
Renders Wall object

div(=20) [static]
Number of divisions of the wall inside visible scene part.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

div = 20

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlBoundDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlBoundDispatcher)arg1, (Bound)arg2) → GlBoundFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlBoundDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

940 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlBoundFunctor(inherits Functor → Serializable)
Abstract functor for rendering Bound objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlExtraDrawer(inherits Serializable)
Performing arbitrary OpenGL drawing commands; called from OpenGLRenderer (see OpenGLRen-
derer.extraDrawers) once regular rendering routines will have finished.

This class itself does not render anything, derived classes should override the render method.

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlExtra_AlphaGraph(inherits GlExtraDrawer → Serializable)
Display the outer surface defined by alpha contour. Add it to qt.Renderer().extraDrawers.
If no instance of TesselationWrapper is provided, the functor will create its own. See
scripts/examples/alphaShapes/GlDrawAlpha.py.

2.4. Yade modules reference 941

https://gitlab.com/yade-dev/trunk/blob/master/scripts/examples/alphaShapes/GlDrawAlpha.py

Yade Documentation, Release 3rd ed.

property alpha
alpha value

property color
color

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fixedAlpha
fixedAlpha option

property lighting
lighting of cylinders

property lineWidth
lineWidth in pixels

property radius
radius of cylinder representation, if null 1/12th of average diameter will be used

refresh((GlExtra_AlphaGraph)arg1) → None :
Refresh internals. Particularly usefull for correct display after the TesselationWrapper is
modified externally, not needed if ‘wire’=True

property shrinkedAlpha
shrinkedAlpha value

property tesselationWrapper
Associated instance of TesselationWrapper.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
display as solid cylinders or lines

class yade.plot.GlExtra_LawTester(inherits GlExtraDrawer → Serializable)
Find an instance of LawTester and show visually its data.

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property tester
Associated LawTester object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlExtra_OctreeCubes(inherits GlExtraDrawer → Serializable)
Render boxed read from file

property boxesFile
File to read boxes from; ascii files with x0 y0 z0 x1 y1 z1 c records, where c is an integer
specifying fill (0 for wire, 1 for filled).

942 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dead
Deactivate the object (on error/exception).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fillRangeDraw
Range of fill indices that will be rendered.

property fillRangeFill
Range of fill indices that will be filled.

property levelRangeDraw
Range of levels that will be rendered.

property noFillZero
Do not fill 0-fill boxed (those that are further subdivided)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlIGeomDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlIGeomDispatcher)arg1, (IGeom)arg2) → GlIGeomFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlIGeomDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.4. Yade modules reference 943

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlIGeomFunctor(inherits Functor → Serializable)
Abstract functor for rendering IGeom objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlIPhysDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlIPhysDispatcher)arg1, (IPhys)arg2) → GlIPhysFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlIPhysDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

944 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlIPhysFunctor(inherits Functor → Serializable)
Abstract functor for rendering IPhys objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlShapeDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlShapeDispatcher)arg1, (Shape)arg2) → GlShapeFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlShapeDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 945

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlShapeFunctor(inherits Functor → Serializable)
Abstract functor for rendering Shape objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlStateDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((GlStateDispatcher)arg1, (State)arg2) → GlStateFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((GlStateDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

946 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlStateFunctor(inherits Functor → Serializable)
Abstract functor for rendering State objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlobalEngine(inherits Engine → Serializable)
Engine that will generally affect the whole simulation (contrary to PartialEngine).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 947

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GlobalStiffnessTimeStepper(inherits TimeStepper → GlobalEngine → Engine →
Serializable)

An engine assigning the time-step as a fraction of the minimum eigen-period in the problem. The
derivation is detailed in the chapter on DEM formulation. The viscEl option enables to evaluate
the timestep in a similar way for the visco-elastic contact law Law2_ScGeom_ViscElPhys_Basic,
more detail in GlobalStiffnessTimestepper::viscEl.

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property defaultDt
used as the initial value of the timestep (especially useful in the first steps when no contact
exist). If negative, it will be defined by utils.PWaveTimeStep * GlobalStiffnessTimeStep-
per::timestepSafetyCoefficient

property densityScaling
(auto-updated) don’t modify this value if you don’t plan to modify the scaling factor manually
for some bodies. In most cases, it is enough to set NewtonIntegrator::densityScaling and let
this one be adjusted automatically.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxDt
if positive, used as max value of the timestep whatever the computed value

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

948 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property parallelMode
if parallelMode, dt is set to min of all subdomain dt.

property previousDt
last computed dt (auto-updated)

property targetDt
if NewtonIntegrator::densityScaling is active, this value will be used as the simulation timestep
and the scaling will use this value of dt as the target value. The value of targetDt is arbitrary
and should have no effect in the result in general. However if some bodies have imposed
velocities, for instance, they will move more or less per each step depending on this value.

property timeStepUpdateInterval
dt update interval

property timestepSafetyCoefficient
safety factor between the minimum eigen-period and the final assigned dt (less than 1)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscEl
To use with ViscElPhys. if True, evaluate separetly the minimum eigen-period in the problem
considering only the elastic contribution on one hand (spring only), and only the viscous
contribution on the other hand (dashpot only). Take then the minimum of the two and
use the safety coefficient GlobalStiffnessTimestepper::timestepSafetyCoefficient to take into
account the possible coupling between the two contribution.

class yade.plot.GravityEngine(inherits FieldApplier → GlobalEngine → Engine → Serializable)
Engine applying constant acceleration to all bodies. DEPRECATED, use Newton::gravity unless
you need energy tracking or selective gravity application using groupMask).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property gravity
Acceleration [kgms�2]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 949

Yade Documentation, Release 3rd ed.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property warnOnce
For deprecation warning once.

class yade.plot.GridCoGridCoGeom(inherits ScGeom → GenericSpheresContact → IGeom →
Serializable)

Geometry of a GridConnection-GridConnection contact.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos1
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

950 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property relPos2
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.GridConnection(inherits Sphere → Shape → Serializable)
GridConnection shape (see [Effeindzourou2016], [Bourrier2013]). Component of a grid designed to
link two GridNodes. It is highly recommended to use gridpfacet.gridConnection to generate correct
GridConnections.

addPFacet((GridConnection)arg1, (Body)Body) → None :
Add a PFacet to the GridConnection.

property cellDist
Distance of bodies in cell size units, if using periodic boundary conditions. Note that periodic
boundary conditions for GridConnections have not yet been fully implemented.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

getPFacets((GridConnection)arg1) → object :
get list of linked PFacets.

property highlight
Whether this Shape will be highlighted when rendered.

property node1
First Body the GridConnection is connected to.

property node2
Second Body the GridConnection is connected to.

property periodic
true if two nodes from different periods are connected.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

2.4. Yade modules reference 951

Yade Documentation, Release 3rd ed.

class yade.plot.GridNode(inherits Sphere → Shape → Serializable)
GridNode shape, component of a grid. To create a Grid, place the nodes first, they will define the
spacial discretisation of it. It is highly recommended to use gridpfacet.gridNode to generate correct
GridNodes. Note that the GridNodes should only be in an Interaction with other GridNodes. The
Sphere-Grid contact is only handled by the GridConnections.

addConnection((GridNode)arg1, (Body)Body) → None :
Add a GridConnection to the GridNode.

addPFacet((GridNode)arg1, (Body)Body) → None :
Add a PFacet to the GridNode.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

getConnections((GridNode)arg1) → object :
get list of linked GridConnection’s.

getPFacets((GridNode)arg1) → object :
get list of linked PFacet’s.

property highlight
Whether this Shape will be highlighted when rendered.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.GridNodeGeom6D(inherits ScGeom6D → ScGeom → GenericSpheresContact →
IGeom → Serializable)

Geometry of a GridNode-GridNode contact. Inherits almost everything from ScGeom6D.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property connectionBody
Reference to the GridNode Body who is linking the two GridNodes.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

952 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.HP1

class AlignedBox2
Axis-aligned box object in 2d, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox2)other) -> None

__init__((object)arg1, (Vector2)min, (Vector2)max) -> None

center((AlignedBox2)arg1) → Vector2

clamp((AlignedBox2)arg1, (AlignedBox2)arg2) → None

contains((AlignedBox2)arg1, (Vector2)arg2) → bool
contains((AlignedBox2)arg1, (AlignedBox2)arg2) -> bool

2.4. Yade modules reference 953

Yade Documentation, Release 3rd ed.

empty((AlignedBox2)arg1) → bool

extend((AlignedBox2)arg1, (Vector2)arg2) → None
extend((AlignedBox2)arg1, (AlignedBox2)arg2) -> None

intersection((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property max

merged((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property min

sizes((AlignedBox2)arg1) → Vector2

volume((AlignedBox2)arg1) → float

class AlignedBox3
Axis-aligned box object, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox3)other) -> None

__init__((object)arg1, (Vector3)min, (Vector3)max) -> None

center((AlignedBox3)arg1) → Vector3

clamp((AlignedBox3)arg1, (AlignedBox3)arg2) → None

contains((AlignedBox3)arg1, (Vector3)arg2) → bool
contains((AlignedBox3)arg1, (AlignedBox3)arg2) -> bool

empty((AlignedBox3)arg1) → bool

extend((AlignedBox3)arg1, (Vector3)arg2) → None
extend((AlignedBox3)arg1, (AlignedBox3)arg2) -> None

intersection((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property max

merged((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property min

sizes((AlignedBox3)arg1) → Vector3

volume((AlignedBox3)arg1) → float

Complex
alias of complex

class Matrix3
3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3 :
Return an object where all elements are randomly set to values between 0 and 1.

954 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Zero = Matrix3(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Quaternion)q) -> None

__init__((object)arg1, (Matrix3)other) -> None

__init__((object)arg1, (Vector3)diag) -> object

__init__((object)arg1, (float)m00, (float)m01, (float)m02, (float)m10, (float)m11,
(float)m12, (float)m20, (float)m21, (float)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) ->
object

col((Matrix3)arg1, (int)col) → Vector3 :
Return column as vector.

cols((Matrix3)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix3)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix3)arg1) → float :
Return matrix determinant.

diagonal((Matrix3)arg1) → Vector3 :
Return diagonal as vector.

inverse((Matrix3)arg1) → Matrix3 :
Return inverted matrix.

isApprox((Matrix3)arg1, (Matrix3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix3)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((Matrix3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix3)arg1) → float :
Maximum value over all elements.

mean((Matrix3)arg1) → float :
Mean value over all elements.

minCoeff((Matrix3)arg1) → float :
Minimum value over all elements.

norm((Matrix3)arg1) → float :
Euclidean norm.

normalize((Matrix3)arg1) → None :
Normalize this object in-place.

normalized((Matrix3)arg1) → Matrix3 :
Return normalized copy of this object

2.4. Yade modules reference 955

Yade Documentation, Release 3rd ed.

polarDecomposition((Matrix3)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix3)arg1) → float :
Product of all elements.

pruned((Matrix3)arg1[, (float)absTol=1e-06]) → Matrix3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3)arg1, (int)row) → Vector3 :
Return row as vector.

rows((Matrix3)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix3)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix3)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix3)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3)arg1) → float :
Sum of all elements.

svd((Matrix3)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix3)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix3)arg1) → Matrix3 :
Return transposed matrix.

class Matrix3c
/TODO/

Identity = Matrix3c(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3c(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Matrix3c)other) -> None

__init__((object)arg1, (Vector3c)diag) -> object

__init__((object)arg1, (complex)m00, (complex)m01, (complex)m02, (complex)m10,
(complex)m11, (complex)m12, (complex)m20, (complex)m21, (complex)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False])
-> object

956 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

col((Matrix3c)arg1, (int)col) → Vector3c :
Return column as vector.

cols((Matrix3c)arg1) → int :
Number of columns.

determinant((Matrix3c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix3c)arg1) → Vector3c :
Return diagonal as vector.

inverse((Matrix3c)arg1) → Matrix3c :
Return inverted matrix.

isApprox((Matrix3c)arg1, (Matrix3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Matrix3c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix3c)arg1) → complex :
Mean value over all elements.

norm((Matrix3c)arg1) → float :
Euclidean norm.

normalize((Matrix3c)arg1) → None :
Normalize this object in-place.

normalized((Matrix3c)arg1) → Matrix3c :
Return normalized copy of this object

prod((Matrix3c)arg1) → complex :
Product of all elements.

pruned((Matrix3c)arg1[, (float)absTol=1e-06]) → Matrix3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3c)arg1, (int)row) → Vector3c :
Return row as vector.

rows((Matrix3c)arg1) → int :
Number of rows.

squaredNorm((Matrix3c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3c)arg1) → complex :
Sum of all elements.

trace((Matrix3c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix3c)arg1) → Matrix3c :
Return transposed matrix.

class Matrix6
6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

2.4. Yade modules reference 957

Yade Documentation, Release 3rd ed.

Identity = Matrix6((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1))

Ones = Matrix6((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6)other) -> None

__init__((object)arg1, (Vector6)diag) -> object

__init__((object)arg1, (Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) -> object

__init__((object)arg1, (Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4,
(Vector6)l5 [, (bool)cols=False]) -> object

col((Matrix6)arg1, (int)col) → Vector6 :
Return column as vector.

cols((Matrix6)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix6)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix6)arg1) → float :
Return matrix determinant.

diagonal((Matrix6)arg1) → Vector6 :
Return diagonal as vector.

inverse((Matrix6)arg1) → Matrix6 :
Return inverted matrix.

isApprox((Matrix6)arg1, (Matrix6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix6)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

ll((Matrix6)arg1) → Matrix3 :
Return lower-left 3x3 block

lr((Matrix6)arg1) → Matrix3 :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix6)arg1) → float :
Maximum value over all elements.

mean((Matrix6)arg1) → float :
Mean value over all elements.

958 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

minCoeff((Matrix6)arg1) → float :
Minimum value over all elements.

norm((Matrix6)arg1) → float :
Euclidean norm.

normalize((Matrix6)arg1) → None :
Normalize this object in-place.

normalized((Matrix6)arg1) → Matrix6 :
Return normalized copy of this object

polarDecomposition((Matrix6)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix6)arg1) → float :
Product of all elements.

pruned((Matrix6)arg1[, (float)absTol=1e-06]) → Matrix6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6)arg1, (int)row) → Vector6 :
Return row as vector.

rows((Matrix6)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix6)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix6)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix6)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6)arg1) → float :
Sum of all elements.

svd((Matrix6)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix6)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix6)arg1) → Matrix6 :
Return transposed matrix.

ul((Matrix6)arg1) → Matrix3 :
Return upper-left 3x3 block

ur((Matrix6)arg1) → Matrix3 :
Return upper-right 3x3 block

class Matrix6c
/TODO/

Identity = Matrix6c((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1))

2.4. Yade modules reference 959

Yade Documentation, Release 3rd ed.

Ones = Matrix6c((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6c((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6c)other) -> None

__init__((object)arg1, (Vector6c)diag) -> object

__init__((object)arg1, (Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) -> ob-
ject

__init__((object)arg1, (Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vec-
tor6c)l4, (Vector6c)l5 [, (bool)cols=False]) -> object

col((Matrix6c)arg1, (int)col) → Vector6c :
Return column as vector.

cols((Matrix6c)arg1) → int :
Number of columns.

determinant((Matrix6c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix6c)arg1) → Vector6c :
Return diagonal as vector.

inverse((Matrix6c)arg1) → Matrix6c :
Return inverted matrix.

isApprox((Matrix6c)arg1, (Matrix6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

ll((Matrix6c)arg1) → Matrix3c :
Return lower-left 3x3 block

lr((Matrix6c)arg1) → Matrix3c :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix6c)arg1) → complex :
Mean value over all elements.

norm((Matrix6c)arg1) → float :
Euclidean norm.

normalize((Matrix6c)arg1) → None :
Normalize this object in-place.

normalized((Matrix6c)arg1) → Matrix6c :
Return normalized copy of this object

prod((Matrix6c)arg1) → complex :
Product of all elements.

pruned((Matrix6c)arg1[, (float)absTol=1e-06]) → Matrix6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

960 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

row((Matrix6c)arg1, (int)row) → Vector6c :
Return row as vector.

rows((Matrix6c)arg1) → int :
Number of rows.

squaredNorm((Matrix6c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6c)arg1) → complex :
Sum of all elements.

trace((Matrix6c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix6c)arg1) → Matrix6c :
Return transposed matrix.

ul((Matrix6c)arg1) → Matrix3c :
Return upper-left 3x3 block

ur((Matrix6c)arg1) → Matrix3c :
Return upper-right 3x3 block

class MatrixX
XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

static Identity((int)arg1, (int)rank) → MatrixX :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixX :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixX :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixX :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixX)other) -> None

__init__((object)arg1, (VectorX)diag) -> object

__init__((object)arg1 [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (Vec-
torX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (Vec-
torX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (Vec-
torX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixX)arg1, (int)col) → VectorX :
Return column as vector.

cols((MatrixX)arg1) → int :
Number of columns.

computeUnitaryPositive((MatrixX)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

2.4. Yade modules reference 961

Yade Documentation, Release 3rd ed.

determinant((MatrixX)arg1) → float :
Return matrix determinant.

diagonal((MatrixX)arg1) → VectorX :
Return diagonal as vector.

inverse((MatrixX)arg1) → MatrixX :
Return inverted matrix.

isApprox((MatrixX)arg1, (MatrixX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((MatrixX)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((MatrixX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((MatrixX)arg1) → float :
Maximum value over all elements.

mean((MatrixX)arg1) → float :
Mean value over all elements.

minCoeff((MatrixX)arg1) → float :
Minimum value over all elements.

norm((MatrixX)arg1) → float :
Euclidean norm.

normalize((MatrixX)arg1) → None :
Normalize this object in-place.

normalized((MatrixX)arg1) → MatrixX :
Return normalized copy of this object

polarDecomposition((MatrixX)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((MatrixX)arg1) → float :
Product of all elements.

pruned((MatrixX)arg1[, (float)absTol=1e-06]) → MatrixX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixX)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixX)arg1, (int)row) → VectorX :
Return row as vector.

rows((MatrixX)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((MatrixX)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((MatrixX)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

962 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

squaredNorm((MatrixX)arg1) → float :
Square of the Euclidean norm.

sum((MatrixX)arg1) → float :
Sum of all elements.

svd((MatrixX)arg1) → tuple :
Alias for jacobiSVD.

trace((MatrixX)arg1) → float :
Return sum of diagonal elements.

transpose((MatrixX)arg1) → MatrixX :
Return transposed matrix.

class MatrixXc
/TODO/

static Identity((int)arg1, (int)rank) → MatrixXc :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixXc :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixXc :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixXc :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixXc)other) -> None

__init__((object)arg1, (VectorXc)diag) -> object

__init__((object)arg1 [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (Vec-
torXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (Vec-
torXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (Vec-
torXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixXc)arg1, (int)col) → VectorXc :
Return column as vector.

cols((MatrixXc)arg1) → int :
Number of columns.

determinant((MatrixXc)arg1) → complex :
Return matrix determinant.

diagonal((MatrixXc)arg1) → VectorXc :
Return diagonal as vector.

inverse((MatrixXc)arg1) → MatrixXc :
Return inverted matrix.

isApprox((MatrixXc)arg1, (MatrixXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((MatrixXc)arg1) → float :
Maximum absolute value over all elements.

2.4. Yade modules reference 963

Yade Documentation, Release 3rd ed.

mean((MatrixXc)arg1) → complex :
Mean value over all elements.

norm((MatrixXc)arg1) → float :
Euclidean norm.

normalize((MatrixXc)arg1) → None :
Normalize this object in-place.

normalized((MatrixXc)arg1) → MatrixXc :
Return normalized copy of this object

prod((MatrixXc)arg1) → complex :
Product of all elements.

pruned((MatrixXc)arg1[, (float)absTol=1e-06]) → MatrixXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixXc)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixXc)arg1, (int)row) → VectorXc :
Return row as vector.

rows((MatrixXc)arg1) → int :
Number of rows.

squaredNorm((MatrixXc)arg1) → float :
Square of the Euclidean norm.

sum((MatrixXc)arg1) → complex :
Sum of all elements.

trace((MatrixXc)arg1) → complex :
Return sum of diagonal elements.

transpose((MatrixXc)arg1) → MatrixXc :
Return transposed matrix.

class Quaternion
Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q,
q*v (rotating v by q), q==q, q!=q.

Static attributes: Identity.

Note: Quaternion is represented as axis-angle when printed (e.g. Identity is
Quaternion((1,0,0),0), and can also be constructed from the axis-angle representation.
This is however different from the data stored inside, which can be accessed by indices
[0] (x), [1] (y), [2] (z), [3] (w). To obtain axis-angle programatically, use Quaternion.
toAxisAngle which returns the tuple.

Identity = Quaternion((1,0,0),0)

Rotate((Quaternion)arg1, (Vector3)v) → Vector3

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)axis, (object)angle) -> object

__init__((object)arg1, (Vector3)axis, (float)angle) -> object

__init__((object)arg1, (object)angle, (Vector3)axis) -> object

964 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (float)angle, (Vector3)axis) -> object

__init__((object)arg1, (tuple)axis, (str)angle) -> object

__init__((object)arg1, (tuple)tuple) -> object

__init__((object)arg1, (Vector3)u, (Vector3)v) -> object

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object
__init__((object)arg1, (float)w, (float)x, (float)y, (float)z) -> None :

Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((object)arg1, (Matrix3)rotMatrix) -> None

__init__((object)arg1, (Quaternion)other) -> None

angularDistance((Quaternion)arg1, (Quaternion)arg2) → float

conjugate((Quaternion)arg1) → Quaternion

inverse((Quaternion)arg1) → Quaternion

norm((Quaternion)arg1) → float

normalize((Quaternion)arg1) → None

normalized((Quaternion)arg1) → Quaternion

setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) → None

slerp((Quaternion)arg1, (float)t, (Quaternion)other) → Quaternion

toAngleAxis((Quaternion)arg1) → tuple

toAxisAngle((Quaternion)arg1) → tuple

toRotationMatrix((Quaternion)arg1) → Matrix3

toRotationVector((Quaternion)arg1) → Vector3

Real
alias of float

class Vector2
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2(1,0)

Ones = Vector2(1,1)

static Random() → Vector2 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2

UnitX = Vector2(1,0)

2.4. Yade modules reference 965

Yade Documentation, Release 3rd ed.

UnitY = Vector2(0,1)

Zero = Vector2(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (float)x, (float)y) -> None

asDiagonal((Vector2)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2)arg1) → int :
Number of columns.

dot((Vector2)arg1, (Vector2)other) → float :
Dot product with other.

isApprox((Vector2)arg1, (Vector2)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector2)arg1) → float :
Maximum value over all elements.

mean((Vector2)arg1) → float :
Mean value over all elements.

minCoeff((Vector2)arg1) → float :
Minimum value over all elements.

norm((Vector2)arg1) → float :
Euclidean norm.

normalize((Vector2)arg1) → None :
Normalize this object in-place.

normalized((Vector2)arg1) → Vector2 :
Return normalized copy of this object

outer((Vector2)arg1, (Vector2)other) → object :
Outer product with other.

prod((Vector2)arg1) → float :
Product of all elements.

pruned((Vector2)arg1[, (float)absTol=1e-06]) → Vector2 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2)arg1) → int :
Number of rows.

squaredNorm((Vector2)arg1) → float :
Square of the Euclidean norm.

sum((Vector2)arg1) → float :
Sum of all elements.

class Vector2c
/TODO/

966 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Vector2c(1,0)

Ones = Vector2c(1,1)

static Random() → Vector2c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2c

UnitX = Vector2c(1,0)

UnitY = Vector2c(0,1)

Zero = Vector2c(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2c)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (complex)x, (complex)y) -> None

asDiagonal((Vector2c)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2c)arg1) → int :
Number of columns.

dot((Vector2c)arg1, (Vector2c)other) → complex :
Dot product with other.

isApprox((Vector2c)arg1, (Vector2c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector2c)arg1) → complex :
Mean value over all elements.

norm((Vector2c)arg1) → float :
Euclidean norm.

normalize((Vector2c)arg1) → None :
Normalize this object in-place.

normalized((Vector2c)arg1) → Vector2c :
Return normalized copy of this object

outer((Vector2c)arg1, (Vector2c)other) → object :
Outer product with other.

prod((Vector2c)arg1) → complex :
Product of all elements.

pruned((Vector2c)arg1[, (float)absTol=1e-06]) → Vector2c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2c)arg1) → int :
Number of rows.

squaredNorm((Vector2c)arg1) → float :
Square of the Euclidean norm.

2.4. Yade modules reference 967

Yade Documentation, Release 3rd ed.

sum((Vector2c)arg1) → complex :
Sum of all elements.

class Vector2i
2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)

Ones = Vector2i(1,1)

static Random() → Vector2i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2i

UnitX = Vector2i(1,0)

UnitY = Vector2i(0,1)

Zero = Vector2i(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2i)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (int)x, (int)y) -> None

asDiagonal((Vector2i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2i)arg1) → int :
Number of columns.

dot((Vector2i)arg1, (Vector2i)other) → int :
Dot product with other.

isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector2i)arg1) → int :
Maximum value over all elements.

mean((Vector2i)arg1) → int :
Mean value over all elements.

minCoeff((Vector2i)arg1) → int :
Minimum value over all elements.

outer((Vector2i)arg1, (Vector2i)other) → object :
Outer product with other.

prod((Vector2i)arg1) → int :
Product of all elements.

968 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

rows((Vector2i)arg1) → int :
Number of rows.

sum((Vector2i)arg1) → int :
Sum of all elements.

class Vector3
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, …) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3(1,0,0)

Ones = Vector3(1,1,1)

static Random() → Vector3 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3

UnitX = Vector3(1,0,0)

UnitY = Vector3(0,1,0)

UnitZ = Vector3(0,0,1)

Zero = Vector3(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (float)x=0.0 [, (float)y=0.0 [, (float)z=0.0]]]) -> None

asDiagonal((Vector3)arg1) → Matrix3 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3)arg1) → int :
Number of columns.

cross((Vector3)arg1, (Vector3)arg2) → Vector3

dot((Vector3)arg1, (Vector3)other) → float :
Dot product with other.

isApprox((Vector3)arg1, (Vector3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector3)arg1) → float :
Maximum value over all elements.

mean((Vector3)arg1) → float :
Mean value over all elements.

minCoeff((Vector3)arg1) → float :
Minimum value over all elements.

2.4. Yade modules reference 969

Yade Documentation, Release 3rd ed.

norm((Vector3)arg1) → float :
Euclidean norm.

normalize((Vector3)arg1) → None :
Normalize this object in-place.

normalized((Vector3)arg1) → Vector3 :
Return normalized copy of this object

outer((Vector3)arg1, (Vector3)other) → Matrix3 :
Outer product with other.

prod((Vector3)arg1) → float :
Product of all elements.

pruned((Vector3)arg1[, (float)absTol=1e-06]) → Vector3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3)arg1) → int :
Number of rows.

squaredNorm((Vector3)arg1) → float :
Square of the Euclidean norm.

sum((Vector3)arg1) → float :
Sum of all elements.

xy((Vector3)arg1) → Vector2

xz((Vector3)arg1) → Vector2

yx((Vector3)arg1) → Vector2

yz((Vector3)arg1) → Vector2

zx((Vector3)arg1) → Vector2

zy((Vector3)arg1) → Vector2

class Vector3c
/TODO/

Identity = Vector3c(1,0,0)

Ones = Vector3c(1,1,1)

static Random() → Vector3c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3c

UnitX = Vector3c(1,0,0)

UnitY = Vector3c(0,1,0)

UnitZ = Vector3c(0,0,1)

Zero = Vector3c(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3c)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (complex)x=0j [, (complex)y=0j [, (complex)z=0j]]]) -> None

970 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

asDiagonal((Vector3c)arg1) → Matrix3c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3c)arg1) → int :
Number of columns.

cross((Vector3c)arg1, (Vector3c)arg2) → Vector3c

dot((Vector3c)arg1, (Vector3c)other) → complex :
Dot product with other.

isApprox((Vector3c)arg1, (Vector3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector3c)arg1) → complex :
Mean value over all elements.

norm((Vector3c)arg1) → float :
Euclidean norm.

normalize((Vector3c)arg1) → None :
Normalize this object in-place.

normalized((Vector3c)arg1) → Vector3c :
Return normalized copy of this object

outer((Vector3c)arg1, (Vector3c)other) → Matrix3c :
Outer product with other.

prod((Vector3c)arg1) → complex :
Product of all elements.

pruned((Vector3c)arg1[, (float)absTol=1e-06]) → Vector3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3c)arg1) → int :
Number of rows.

squaredNorm((Vector3c)arg1) → float :
Square of the Euclidean norm.

sum((Vector3c)arg1) → complex :
Sum of all elements.

xy((Vector3c)arg1) → Vector2c

xz((Vector3c)arg1) → Vector2c

yx((Vector3c)arg1) → Vector2c

yz((Vector3c)arg1) → Vector2c

zx((Vector3c)arg1) → Vector2c

zy((Vector3c)arg1) → Vector2c

2.4. Yade modules reference 971

Yade Documentation, Release 3rd ed.

class Vector3i
3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3i(1,0,0)

Ones = Vector3i(1,1,1)

static Random() → Vector3i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3i

UnitX = Vector3i(1,0,0)

UnitY = Vector3i(0,1,0)

UnitZ = Vector3i(0,0,1)

Zero = Vector3i(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3i)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (int)x=0 [, (int)y=0 [, (int)z=0]]]) -> None

asDiagonal((Vector3i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3i)arg1) → int :
Number of columns.

cross((Vector3i)arg1, (Vector3i)arg2) → Vector3i

dot((Vector3i)arg1, (Vector3i)other) → int :
Dot product with other.

isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector3i)arg1) → int :
Maximum value over all elements.

mean((Vector3i)arg1) → int :
Mean value over all elements.

minCoeff((Vector3i)arg1) → int :
Minimum value over all elements.

outer((Vector3i)arg1, (Vector3i)other) → object :
Outer product with other.

prod((Vector3i)arg1) → int :
Product of all elements.

972 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

rows((Vector3i)arg1) → int :
Number of rows.

sum((Vector3i)arg1) → int :
Sum of all elements.

xy((Vector3i)arg1) → Vector2i

xz((Vector3i)arg1) → Vector2i

yx((Vector3i)arg1) → Vector2i

yz((Vector3i)arg1) → Vector2i

zx((Vector3i)arg1) → Vector2i

zy((Vector3i)arg1) → Vector2i

class Vector4
4-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 4 floats.

Static attributes: Zero, Ones.

Identity = Vector4(1,0,0, 0)

Ones = Vector4(1,1,1, 1)

static Random() → Vector4 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector4

Zero = Vector4(0,0,0, 0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector4)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3) -> None

asDiagonal((Vector4)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector4)arg1) → int :
Number of columns.

dot((Vector4)arg1, (Vector4)other) → float :
Dot product with other.

isApprox((Vector4)arg1, (Vector4)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector4)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector4)arg1) → float :
Maximum value over all elements.

mean((Vector4)arg1) → float :
Mean value over all elements.

2.4. Yade modules reference 973

Yade Documentation, Release 3rd ed.

minCoeff((Vector4)arg1) → float :
Minimum value over all elements.

norm((Vector4)arg1) → float :
Euclidean norm.

normalize((Vector4)arg1) → None :
Normalize this object in-place.

normalized((Vector4)arg1) → Vector4 :
Return normalized copy of this object

outer((Vector4)arg1, (Vector4)other) → object :
Outer product with other.

prod((Vector4)arg1) → float :
Product of all elements.

pruned((Vector4)arg1[, (float)absTol=1e-06]) → Vector4 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector4)arg1) → int :
Number of rows.

squaredNorm((Vector4)arg1) → float :
Square of the Euclidean norm.

sum((Vector4)arg1) → float :
Sum of all elements.

class Vector6
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6(1,0,0, 0,0,0)

Ones = Vector6(1,1,1, 1,1,1)

static Random() → Vector6 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6

Zero = Vector6(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6)other) -> None

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3, (float)v4, (float)v5) ->
object

__init__((object)arg1, (Vector3)head, (Vector3)tail) -> object

asDiagonal((Vector6)arg1) → Matrix6 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6)arg1) → int :
Number of columns.

974 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dot((Vector6)arg1, (Vector6)other) → float :
Dot product with other.

head((Vector6)arg1) → Vector3

isApprox((Vector6)arg1, (Vector6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector6)arg1) → float :
Maximum value over all elements.

mean((Vector6)arg1) → float :
Mean value over all elements.

minCoeff((Vector6)arg1) → float :
Minimum value over all elements.

norm((Vector6)arg1) → float :
Euclidean norm.

normalize((Vector6)arg1) → None :
Normalize this object in-place.

normalized((Vector6)arg1) → Vector6 :
Return normalized copy of this object

outer((Vector6)arg1, (Vector6)other) → Matrix6 :
Outer product with other.

prod((Vector6)arg1) → float :
Product of all elements.

pruned((Vector6)arg1[, (float)absTol=1e-06]) → Vector6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6)arg1) → int :
Number of rows.

squaredNorm((Vector6)arg1) → float :
Square of the Euclidean norm.

sum((Vector6)arg1) → float :
Sum of all elements.

tail((Vector6)arg1) → Vector3

class Vector6c
/TODO/

Identity = Vector6c(1,0,0, 0,0,0)

Ones = Vector6c(1,1,1, 1,1,1)

static Random() → Vector6c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6c

Zero = Vector6c(0,0,0, 0,0,0)

2.4. Yade modules reference 975

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (Vector6c)other) -> None

__init__((object)arg1, (complex)v0, (complex)v1, (complex)v2, (complex)v3, (com-
plex)v4, (complex)v5) -> object

__init__((object)arg1, (Vector3c)head, (Vector3c)tail) -> object

asDiagonal((Vector6c)arg1) → Matrix6c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6c)arg1) → int :
Number of columns.

dot((Vector6c)arg1, (Vector6c)other) → complex :
Dot product with other.

head((Vector6c)arg1) → Vector3c

isApprox((Vector6c)arg1, (Vector6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector6c)arg1) → complex :
Mean value over all elements.

norm((Vector6c)arg1) → float :
Euclidean norm.

normalize((Vector6c)arg1) → None :
Normalize this object in-place.

normalized((Vector6c)arg1) → Vector6c :
Return normalized copy of this object

outer((Vector6c)arg1, (Vector6c)other) → Matrix6c :
Outer product with other.

prod((Vector6c)arg1) → complex :
Product of all elements.

pruned((Vector6c)arg1[, (float)absTol=1e-06]) → Vector6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6c)arg1) → int :
Number of rows.

squaredNorm((Vector6c)arg1) → float :
Square of the Euclidean norm.

sum((Vector6c)arg1) → complex :
Sum of all elements.

tail((Vector6c)arg1) → Vector3c

class Vector6i
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 ints.

Static attributes: Zero, Ones.

976 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Vector6i(1,0,0, 0,0,0)

Ones = Vector6i(1,1,1, 1,1,1)

static Random() → Vector6i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6i

Zero = Vector6i(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6i)other) -> None

__init__((object)arg1, (int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) -> object

__init__((object)arg1, (Vector3i)head, (Vector3i)tail) -> object

asDiagonal((Vector6i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6i)arg1) → int :
Number of columns.

dot((Vector6i)arg1, (Vector6i)other) → int :
Dot product with other.

head((Vector6i)arg1) → Vector3i

isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector6i)arg1) → int :
Maximum value over all elements.

mean((Vector6i)arg1) → int :
Mean value over all elements.

minCoeff((Vector6i)arg1) → int :
Minimum value over all elements.

outer((Vector6i)arg1, (Vector6i)other) → object :
Outer product with other.

prod((Vector6i)arg1) → int :
Product of all elements.

rows((Vector6i)arg1) → int :
Number of rows.

sum((Vector6i)arg1) → int :
Sum of all elements.

tail((Vector6i)arg1) → Vector3i

class VectorX
Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of X floats.

2.4. Yade modules reference 977

Yade Documentation, Release 3rd ed.

static Ones((int)arg1) → VectorX

static Random((int)len) → VectorX :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorX

static Zero((int)arg1) → VectorX

__init__((object)arg1) → None
__init__((object)arg1, (VectorX)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorX)arg1) → MatrixX :
Return diagonal matrix with this vector on the diagonal.

cols((VectorX)arg1) → int :
Number of columns.

dot((VectorX)arg1, (VectorX)other) → float :
Dot product with other.

isApprox((VectorX)arg1, (VectorX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((VectorX)arg1) → float :
Maximum value over all elements.

mean((VectorX)arg1) → float :
Mean value over all elements.

minCoeff((VectorX)arg1) → float :
Minimum value over all elements.

norm((VectorX)arg1) → float :
Euclidean norm.

normalize((VectorX)arg1) → None :
Normalize this object in-place.

normalized((VectorX)arg1) → VectorX :
Return normalized copy of this object

outer((VectorX)arg1, (VectorX)other) → MatrixX :
Outer product with other.

prod((VectorX)arg1) → float :
Product of all elements.

pruned((VectorX)arg1[, (float)absTol=1e-06]) → VectorX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorX)arg1, (int)arg2) → None

rows((VectorX)arg1) → int :
Number of rows.

squaredNorm((VectorX)arg1) → float :
Square of the Euclidean norm.

978 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

sum((VectorX)arg1) → float :
Sum of all elements.

class VectorXc
/TODO/

static Ones((int)arg1) → VectorXc

static Random((int)len) → VectorXc :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorXc

static Zero((int)arg1) → VectorXc

__init__((object)arg1) → None
__init__((object)arg1, (VectorXc)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorXc)arg1) → MatrixXc :
Return diagonal matrix with this vector on the diagonal.

cols((VectorXc)arg1) → int :
Number of columns.

dot((VectorXc)arg1, (VectorXc)other) → complex :
Dot product with other.

isApprox((VectorXc)arg1, (VectorXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorXc)arg1) → float :
Maximum absolute value over all elements.

mean((VectorXc)arg1) → complex :
Mean value over all elements.

norm((VectorXc)arg1) → float :
Euclidean norm.

normalize((VectorXc)arg1) → None :
Normalize this object in-place.

normalized((VectorXc)arg1) → VectorXc :
Return normalized copy of this object

outer((VectorXc)arg1, (VectorXc)other) → MatrixXc :
Outer product with other.

prod((VectorXc)arg1) → complex :
Product of all elements.

pruned((VectorXc)arg1[, (float)absTol=1e-06]) → VectorXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorXc)arg1, (int)arg2) → None

rows((VectorXc)arg1) → int :
Number of rows.

squaredNorm((VectorXc)arg1) → float :
Square of the Euclidean norm.

2.4. Yade modules reference 979

Yade Documentation, Release 3rd ed.

sum((VectorXc)arg1) → complex :
Sum of all elements.

vectorize = False

class yade.plot.HP2

class AlignedBox2
Axis-aligned box object in 2d, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox2)other) -> None

__init__((object)arg1, (Vector2)min, (Vector2)max) -> None

center((AlignedBox2)arg1) → Vector2

clamp((AlignedBox2)arg1, (AlignedBox2)arg2) → None

contains((AlignedBox2)arg1, (Vector2)arg2) → bool
contains((AlignedBox2)arg1, (AlignedBox2)arg2) -> bool

empty((AlignedBox2)arg1) → bool

extend((AlignedBox2)arg1, (Vector2)arg2) → None
extend((AlignedBox2)arg1, (AlignedBox2)arg2) -> None

intersection((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property max

merged((AlignedBox2)arg1, (AlignedBox2)arg2) → AlignedBox2

property min

sizes((AlignedBox2)arg1) → Vector2

volume((AlignedBox2)arg1) → Real

class AlignedBox3
Axis-aligned box object, defined by its minimum and maximum corners

__init__((object)arg1) → None
__init__((object)arg1, (AlignedBox3)other) -> None

__init__((object)arg1, (Vector3)min, (Vector3)max) -> None

center((AlignedBox3)arg1) → Vector3

clamp((AlignedBox3)arg1, (AlignedBox3)arg2) → None

contains((AlignedBox3)arg1, (Vector3)arg2) → bool
contains((AlignedBox3)arg1, (AlignedBox3)arg2) -> bool

empty((AlignedBox3)arg1) → bool

extend((AlignedBox3)arg1, (Vector3)arg2) → None
extend((AlignedBox3)arg1, (AlignedBox3)arg2) -> None

intersection((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

property max

merged((AlignedBox3)arg1, (AlignedBox3)arg2) → AlignedBox3

980 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property min

sizes((AlignedBox3)arg1) → Vector3

volume((AlignedBox3)arg1) → Real

class Complex
The Complex type.

__init__((object)arg1) → None
__init__((object)arg1, (object)obj) -> object

__init__((object)arg1, (complex)z) -> object

__init__((object)arg1, (float)d) -> object

__init__((object)arg1, (int)i) -> object

__init__((object)arg1, (str)str) -> object

__init__((object)arg1, (object)re, (object)im) -> object

__init__((object)arg1, (float)a, (float)b) -> object

__init__((object)arg1, (int)i, (int)j) -> object

__init__((object)arg1, (str)str1, (str)str2) -> object

property imag

levelComplexHPMethod((Complex)arg1) → int

property levelHP

property real

class Matrix3
3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3("1","0","0", "0","1","0", "0","0","1")

Ones = Matrix3("1","1","1", "1","1","1", "1","1","1")

static Random() → Matrix3 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3("0","0","0", "0","0","0", "0","0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Quaternion)q) -> None

__init__((object)arg1, (Matrix3)other) -> None

__init__((object)arg1, (Vector3)diag) -> object

__init__((object)arg1, (Real)m00, (Real)m01, (Real)m02, (Real)m10, (Real)m11,
(Real)m12, (Real)m20, (Real)m21, (Real)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) ->
object

2.4. Yade modules reference 981

Yade Documentation, Release 3rd ed.

col((Matrix3)arg1, (int)col) → Vector3 :
Return column as vector.

cols((Matrix3)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix3)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix3)arg1) → Real :
Return matrix determinant.

diagonal((Matrix3)arg1) → Vector3 :
Return diagonal as vector.

inverse((Matrix3)arg1) → Matrix3 :
Return inverted matrix.

isApprox((Matrix3)arg1, (Matrix3)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

jacobiSVD((Matrix3)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((Matrix3)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Matrix3)arg1) → Real :
Maximum value over all elements.

mean((Matrix3)arg1) → Real :
Mean value over all elements.

minCoeff((Matrix3)arg1) → Real :
Minimum value over all elements.

norm((Matrix3)arg1) → Real :
Euclidean norm.

normalize((Matrix3)arg1) → None :
Normalize this object in-place.

normalized((Matrix3)arg1) → Matrix3 :
Return normalized copy of this object

polarDecomposition((Matrix3)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix3)arg1) → Real :
Product of all elements.

pruned((Matrix3)arg1[, (float)absTol=1e-06]) → Matrix3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3)arg1, (int)row) → Vector3 :
Return row as vector.

rows((Matrix3)arg1) → int :
Number of rows.

982 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

selfAdjointEigenDecomposition((Matrix3)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix3)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix3)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix3)arg1) → Real :
Sum of all elements.

svd((Matrix3)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix3)arg1) → Real :
Return sum of diagonal elements.

transpose((Matrix3)arg1) → Matrix3 :
Return transposed matrix.

class Matrix3c
/TODO/

Identity = Matrix3c(Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("1","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("1","0"))

Ones = Matrix3c(Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0"))

static Random() → Matrix3c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix3c)other) -> None

__init__((object)arg1, (Vector3c)diag) -> object

__init__((object)arg1, (Complex)m00, (Complex)m01, (Complex)m02, (Complex)m10,
(Complex)m11, (Complex)m12, (Complex)m20, (Complex)m21, (Complex)m22) -> ob-
ject

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False])
-> object

col((Matrix3c)arg1, (int)col) → Vector3c :
Return column as vector.

cols((Matrix3c)arg1) → int :
Number of columns.

2.4. Yade modules reference 983

Yade Documentation, Release 3rd ed.

determinant((Matrix3c)arg1) → Complex :
Return matrix determinant.

diagonal((Matrix3c)arg1) → Vector3c :
Return diagonal as vector.

inverse((Matrix3c)arg1) → Matrix3c :
Return inverted matrix.

isApprox((Matrix3c)arg1, (Matrix3c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Matrix3c)arg1) → Real :
Maximum absolute value over all elements.

mean((Matrix3c)arg1) → Complex :
Mean value over all elements.

norm((Matrix3c)arg1) → Real :
Euclidean norm.

normalize((Matrix3c)arg1) → None :
Normalize this object in-place.

normalized((Matrix3c)arg1) → Matrix3c :
Return normalized copy of this object

prod((Matrix3c)arg1) → Complex :
Product of all elements.

pruned((Matrix3c)arg1[, (float)absTol=1e-06]) → Matrix3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3c)arg1, (int)row) → Vector3c :
Return row as vector.

rows((Matrix3c)arg1) → int :
Number of rows.

squaredNorm((Matrix3c)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix3c)arg1) → Complex :
Sum of all elements.

trace((Matrix3c)arg1) → Complex :
Return sum of diagonal elements.

transpose((Matrix3c)arg1) → Matrix3c :
Return transposed matrix.

class Matrix6
6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

984 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Matrix6(("1","0","0","0","0","0"), ("0","1","0","0","0","0"),
("0","0","1","0","0","0"), ("0","0","0","1","0","0"),
("0","0","0","0","1","0"), ("0","0","0","0","0","1"))

Ones = Matrix6(("1","1","1","1","1","1"), ("1","1","1","1","1","1"),
("1","1","1","1","1","1"), ("1","1","1","1","1","1"),
("1","1","1","1","1","1"), ("1","1","1","1","1","1"))

static Random() → Matrix6 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6(("0","0","0","0","0","0"), ("0","0","0","0","0","0"),
("0","0","0","0","0","0"), ("0","0","0","0","0","0"),
("0","0","0","0","0","0"), ("0","0","0","0","0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6)other) -> None

__init__((object)arg1, (Vector6)diag) -> object

__init__((object)arg1, (Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) -> object

__init__((object)arg1, (Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4,
(Vector6)l5 [, (bool)cols=False]) -> object

col((Matrix6)arg1, (int)col) → Vector6 :
Return column as vector.

cols((Matrix6)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix6)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((Matrix6)arg1) → Real :
Return matrix determinant.

diagonal((Matrix6)arg1) → Vector6 :
Return diagonal as vector.

inverse((Matrix6)arg1) → Matrix6 :
Return inverted matrix.

isApprox((Matrix6)arg1, (Matrix6)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

jacobiSVD((Matrix6)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

ll((Matrix6)arg1) → Matrix3 :
Return lower-left 3x3 block

lr((Matrix6)arg1) → Matrix3 :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Matrix6)arg1) → Real :
Maximum value over all elements.

2.4. Yade modules reference 985

Yade Documentation, Release 3rd ed.

mean((Matrix6)arg1) → Real :
Mean value over all elements.

minCoeff((Matrix6)arg1) → Real :
Minimum value over all elements.

norm((Matrix6)arg1) → Real :
Euclidean norm.

normalize((Matrix6)arg1) → None :
Normalize this object in-place.

normalized((Matrix6)arg1) → Matrix6 :
Return normalized copy of this object

polarDecomposition((Matrix6)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix6)arg1) → Real :
Product of all elements.

pruned((Matrix6)arg1[, (float)absTol=1e-06]) → Matrix6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6)arg1, (int)row) → Vector6 :
Return row as vector.

rows((Matrix6)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix6)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix6)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix6)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix6)arg1) → Real :
Sum of all elements.

svd((Matrix6)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix6)arg1) → Real :
Return sum of diagonal elements.

transpose((Matrix6)arg1) → Matrix6 :
Return transposed matrix.

ul((Matrix6)arg1) → Matrix3 :
Return upper-left 3x3 block

ur((Matrix6)arg1) → Matrix3 :
Return upper-right 3x3 block

class Matrix6c
/TODO/

986 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Matrix6c((Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("1","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("1","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("1","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("1","0")))

Ones = Matrix6c((Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")),
(Complex("1","0"),Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0")))

static Random() → Matrix6c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6c((Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")),
(Complex("0","0"),Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0")))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6c)other) -> None

__init__((object)arg1, (Vector6c)diag) -> object

__init__((object)arg1, (Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) -> ob-
ject

__init__((object)arg1, (Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vec-
tor6c)l4, (Vector6c)l5 [, (bool)cols=False]) -> object

col((Matrix6c)arg1, (int)col) → Vector6c :
Return column as vector.

cols((Matrix6c)arg1) → int :
Number of columns.

determinant((Matrix6c)arg1) → Complex :
Return matrix determinant.

2.4. Yade modules reference 987

Yade Documentation, Release 3rd ed.

diagonal((Matrix6c)arg1) → Vector6c :
Return diagonal as vector.

inverse((Matrix6c)arg1) → Matrix6c :
Return inverted matrix.

isApprox((Matrix6c)arg1, (Matrix6c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

ll((Matrix6c)arg1) → Matrix3c :
Return lower-left 3x3 block

lr((Matrix6c)arg1) → Matrix3c :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6c)arg1) → Real :
Maximum absolute value over all elements.

mean((Matrix6c)arg1) → Complex :
Mean value over all elements.

norm((Matrix6c)arg1) → Real :
Euclidean norm.

normalize((Matrix6c)arg1) → None :
Normalize this object in-place.

normalized((Matrix6c)arg1) → Matrix6c :
Return normalized copy of this object

prod((Matrix6c)arg1) → Complex :
Product of all elements.

pruned((Matrix6c)arg1[, (float)absTol=1e-06]) → Matrix6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6c)arg1, (int)row) → Vector6c :
Return row as vector.

rows((Matrix6c)arg1) → int :
Number of rows.

squaredNorm((Matrix6c)arg1) → Real :
Square of the Euclidean norm.

sum((Matrix6c)arg1) → Complex :
Sum of all elements.

trace((Matrix6c)arg1) → Complex :
Return sum of diagonal elements.

transpose((Matrix6c)arg1) → Matrix6c :
Return transposed matrix.

ul((Matrix6c)arg1) → Matrix3c :
Return upper-left 3x3 block

ur((Matrix6c)arg1) → Matrix3c :
Return upper-right 3x3 block

988 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class MatrixX
XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m,
m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

static Identity((int)arg1, (int)rank) → MatrixX :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixX :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixX :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixX :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixX)other) -> None

__init__((object)arg1, (VectorX)diag) -> object

__init__((object)arg1 [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (Vec-
torX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (Vec-
torX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (Vec-
torX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixX)arg1, (int)col) → VectorX :
Return column as vector.

cols((MatrixX)arg1) → int :
Number of columns.

computeUnitaryPositive((MatrixX)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric
matrix P such that self=U*P).

determinant((MatrixX)arg1) → Real :
Return matrix determinant.

diagonal((MatrixX)arg1) → VectorX :
Return diagonal as vector.

inverse((MatrixX)arg1) → MatrixX :
Return inverted matrix.

isApprox((MatrixX)arg1, (MatrixX)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

jacobiSVD((MatrixX)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((MatrixX)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((MatrixX)arg1) → Real :
Maximum value over all elements.

2.4. Yade modules reference 989

Yade Documentation, Release 3rd ed.

mean((MatrixX)arg1) → Real :
Mean value over all elements.

minCoeff((MatrixX)arg1) → Real :
Minimum value over all elements.

norm((MatrixX)arg1) → Real :
Euclidean norm.

normalize((MatrixX)arg1) → None :
Normalize this object in-place.

normalized((MatrixX)arg1) → MatrixX :
Return normalized copy of this object

polarDecomposition((MatrixX)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((MatrixX)arg1) → Real :
Product of all elements.

pruned((MatrixX)arg1[, (float)absTol=1e-06]) → MatrixX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixX)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixX)arg1, (int)row) → VectorX :
Return row as vector.

rows((MatrixX)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((MatrixX)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((MatrixX)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((MatrixX)arg1) → Real :
Square of the Euclidean norm.

sum((MatrixX)arg1) → Real :
Sum of all elements.

svd((MatrixX)arg1) → tuple :
Alias for jacobiSVD.

trace((MatrixX)arg1) → Real :
Return sum of diagonal elements.

transpose((MatrixX)arg1) → MatrixX :
Return transposed matrix.

class MatrixXc
/TODO/

static Identity((int)arg1, (int)rank) → MatrixXc :
Create identity matrix with given rank (square).

990 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Ones((int)rows, (int)cols) → MatrixXc :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixXc :
Create matrix with given dimensions where all elements are set to number between 0 and
1 (uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixXc :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixXc)other) -> None

__init__((object)arg1, (VectorXc)diag) -> object

__init__((object)arg1 [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (Vec-
torXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (Vec-
torXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (Vec-
torXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixXc)arg1, (int)col) → VectorXc :
Return column as vector.

cols((MatrixXc)arg1) → int :
Number of columns.

determinant((MatrixXc)arg1) → Complex :
Return matrix determinant.

diagonal((MatrixXc)arg1) → VectorXc :
Return diagonal as vector.

inverse((MatrixXc)arg1) → MatrixXc :
Return inverted matrix.

isApprox((MatrixXc)arg1, (MatrixXc)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((MatrixXc)arg1) → Real :
Maximum absolute value over all elements.

mean((MatrixXc)arg1) → Complex :
Mean value over all elements.

norm((MatrixXc)arg1) → Real :
Euclidean norm.

normalize((MatrixXc)arg1) → None :
Normalize this object in-place.

normalized((MatrixXc)arg1) → MatrixXc :
Return normalized copy of this object

prod((MatrixXc)arg1) → Complex :
Product of all elements.

pruned((MatrixXc)arg1[, (float)absTol=1e-06]) → MatrixXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

2.4. Yade modules reference 991

Yade Documentation, Release 3rd ed.

resize((MatrixXc)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixXc)arg1, (int)row) → VectorXc :
Return row as vector.

rows((MatrixXc)arg1) → int :
Number of rows.

squaredNorm((MatrixXc)arg1) → Real :
Square of the Euclidean norm.

sum((MatrixXc)arg1) → Complex :
Sum of all elements.

trace((MatrixXc)arg1) → Complex :
Return sum of diagonal elements.

transpose((MatrixXc)arg1) → MatrixXc :
Return transposed matrix.

class Quaternion
Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q,
q*v (rotating v by q), q==q, q!=q.

Static attributes: Identity.

Note: Quaternion is represented as axis-angle when printed (e.g. Identity is
Quaternion((1,0,0),0), and can also be constructed from the axis-angle representation.
This is however different from the data stored inside, which can be accessed by indices
[0] (x), [1] (y), [2] (z), [3] (w). To obtain axis-angle programatically, use Quaternion.
toAxisAngle which returns the tuple.

Identity = Quaternion(("1","0","0"),"0")

Rotate((Quaternion)arg1, (Vector3)v) → Vector3

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)axis, (object)angle) -> object

__init__((object)arg1, (Vector3)axis, (Real)angle) -> object

__init__((object)arg1, (object)angle, (Vector3)axis) -> object

__init__((object)arg1, (Real)angle, (Vector3)axis) -> object

__init__((object)arg1, (tuple)axis, (str)angle) -> object

__init__((object)arg1, (tuple)tuple) -> object

__init__((object)arg1, (Vector3)u, (Vector3)v) -> object

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object
__init__((object)arg1, (Real)w, (Real)x, (Real)y, (Real)z) -> None :

Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((object)arg1, (Matrix3)rotMatrix) -> None

__init__((object)arg1, (Quaternion)other) -> None

992 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (float)w, (float)x, (float)y, (float)z) -> None :
Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

angularDistance((Quaternion)arg1, (Quaternion)arg2) → Real

conjugate((Quaternion)arg1) → Quaternion

inverse((Quaternion)arg1) → Quaternion

norm((Quaternion)arg1) → Real

normalize((Quaternion)arg1) → None

normalized((Quaternion)arg1) → Quaternion

setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) → None

slerp((Quaternion)arg1, (Real)t, (Quaternion)other) → Quaternion

toAngleAxis((Quaternion)arg1) → tuple

toAxisAngle((Quaternion)arg1) → tuple

toRotationMatrix((Quaternion)arg1) → Matrix3

toRotationVector((Quaternion)arg1) → Vector3

class Real
The Real type.

__init__((object)arg1) → None
__init__((object)arg1, (object)obj) -> object

__init__((object)arg1, (float)d) -> object

__init__((object)arg1, (int)i) -> object

__init__((object)arg1, (str)str) -> object

property imag

property levelHP

levelRealHPMethod((Real)arg1) → int

property real

sqrt((Real)arg1) → Real

class Vector2
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2("1","0")

Ones = Vector2("1","1")

2.4. Yade modules reference 993

Yade Documentation, Release 3rd ed.

static Random() → Vector2 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2

UnitX = Vector2("1","0")

UnitY = Vector2("0","1")

Zero = Vector2("0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector2)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (Real)x, (Real)y) -> None

asDiagonal((Vector2)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2)arg1) → int :
Number of columns.

dot((Vector2)arg1, (Vector2)other) → Real :
Dot product with other.

isApprox((Vector2)arg1, (Vector2)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector2)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector2)arg1) → Real :
Maximum value over all elements.

mean((Vector2)arg1) → Real :
Mean value over all elements.

minCoeff((Vector2)arg1) → Real :
Minimum value over all elements.

norm((Vector2)arg1) → Real :
Euclidean norm.

normalize((Vector2)arg1) → None :
Normalize this object in-place.

normalized((Vector2)arg1) → Vector2 :
Return normalized copy of this object

outer((Vector2)arg1, (Vector2)other) → object :
Outer product with other.

prod((Vector2)arg1) → Real :
Product of all elements.

pruned((Vector2)arg1[, (float)absTol=1e-06]) → Vector2 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2)arg1) → int :
Number of rows.

994 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

squaredNorm((Vector2)arg1) → Real :
Square of the Euclidean norm.

sum((Vector2)arg1) → Real :
Sum of all elements.

class Vector2c
/TODO/

Identity = Vector2c(Complex("1","0"),Complex("0","0"))

Ones = Vector2c(Complex("1","0"),Complex("1","0"))

static Random() → Vector2c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2c

UnitX = Vector2c(Complex("1","0"),Complex("0","0"))

UnitY = Vector2c(Complex("0","0"),Complex("1","0"))

Zero = Vector2c(Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Vector2c)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (Complex)x, (Complex)y) -> None

asDiagonal((Vector2c)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2c)arg1) → int :
Number of columns.

dot((Vector2c)arg1, (Vector2c)other) → Complex :
Dot product with other.

isApprox((Vector2c)arg1, (Vector2c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector2c)arg1) → Real :
Maximum absolute value over all elements.

mean((Vector2c)arg1) → Complex :
Mean value over all elements.

norm((Vector2c)arg1) → Real :
Euclidean norm.

normalize((Vector2c)arg1) → None :
Normalize this object in-place.

normalized((Vector2c)arg1) → Vector2c :
Return normalized copy of this object

outer((Vector2c)arg1, (Vector2c)other) → object :
Outer product with other.

2.4. Yade modules reference 995

Yade Documentation, Release 3rd ed.

prod((Vector2c)arg1) → Complex :
Product of all elements.

pruned((Vector2c)arg1[, (float)absTol=1e-06]) → Vector2c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2c)arg1) → int :
Number of rows.

squaredNorm((Vector2c)arg1) → Real :
Square of the Euclidean norm.

sum((Vector2c)arg1) → Complex :
Sum of all elements.

class Vector2i
2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)

Ones = Vector2i(1,1)

static Random() → Vector2i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2i

UnitX = Vector2i(1,0)

UnitY = Vector2i(0,1)

Zero = Vector2i(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2i)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (int)x, (int)y) -> None

asDiagonal((Vector2i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2i)arg1) → int :
Number of columns.

dot((Vector2i)arg1, (Vector2i)other) → int :
Dot product with other.

isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector2i)arg1) → int :
Maximum value over all elements.

996 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mean((Vector2i)arg1) → int :
Mean value over all elements.

minCoeff((Vector2i)arg1) → int :
Minimum value over all elements.

outer((Vector2i)arg1, (Vector2i)other) → object :
Outer product with other.

prod((Vector2i)arg1) → int :
Product of all elements.

rows((Vector2i)arg1) → int :
Number of rows.

sum((Vector2i)arg1) → int :
Sum of all elements.

class Vector3
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, …) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3("1","0","0")

Ones = Vector3("1","1","1")

static Random() → Vector3 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3

UnitX = Vector3("1","0","0")

UnitY = Vector3("0","1","0")

UnitZ = Vector3("0","0","1")

Zero = Vector3("0","0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (Real)x=Real(“0”) [, (Real)y=Real(“0”) [,
(Real)z=Real(“0”)]]]) -> None

asDiagonal((Vector3)arg1) → Matrix3 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3)arg1) → int :
Number of columns.

cross((Vector3)arg1, (Vector3)arg2) → Vector3

dot((Vector3)arg1, (Vector3)other) → Real :
Dot product with other.

2.4. Yade modules reference 997

Yade Documentation, Release 3rd ed.

isApprox((Vector3)arg1, (Vector3)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector3)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector3)arg1) → Real :
Maximum value over all elements.

mean((Vector3)arg1) → Real :
Mean value over all elements.

minCoeff((Vector3)arg1) → Real :
Minimum value over all elements.

norm((Vector3)arg1) → Real :
Euclidean norm.

normalize((Vector3)arg1) → None :
Normalize this object in-place.

normalized((Vector3)arg1) → Vector3 :
Return normalized copy of this object

outer((Vector3)arg1, (Vector3)other) → Matrix3 :
Outer product with other.

prod((Vector3)arg1) → Real :
Product of all elements.

pruned((Vector3)arg1[, (float)absTol=1e-06]) → Vector3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3)arg1) → int :
Number of rows.

squaredNorm((Vector3)arg1) → Real :
Square of the Euclidean norm.

sum((Vector3)arg1) → Real :
Sum of all elements.

xy((Vector3)arg1) → Vector2

xz((Vector3)arg1) → Vector2

yx((Vector3)arg1) → Vector2

yz((Vector3)arg1) → Vector2

zx((Vector3)arg1) → Vector2

zy((Vector3)arg1) → Vector2

class Vector3c
/TODO/

Identity = Vector3c(Complex("1","0"),Complex("0","0"),Complex("0","0"))

Ones = Vector3c(Complex("1","0"),Complex("1","0"),Complex("1","0"))

998 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Random() → Vector3c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3c

UnitX = Vector3c(Complex("1","0"),Complex("0","0"),Complex("0","0"))

UnitY = Vector3c(Complex("0","0"),Complex("1","0"),Complex("0","0"))

UnitZ = Vector3c(Complex("0","0"),Complex("0","0"),Complex("1","0"))

Zero = Vector3c(Complex("0","0"),Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Vector3c)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (Complex)x=Complex(“0”,”0”) [, (Com-
plex)y=Complex(“0”,”0”) [, (Complex)z=Complex(“0”,”0”)]]]) -> None

asDiagonal((Vector3c)arg1) → Matrix3c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3c)arg1) → int :
Number of columns.

cross((Vector3c)arg1, (Vector3c)arg2) → Vector3c

dot((Vector3c)arg1, (Vector3c)other) → Complex :
Dot product with other.

isApprox((Vector3c)arg1, (Vector3c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector3c)arg1) → Real :
Maximum absolute value over all elements.

mean((Vector3c)arg1) → Complex :
Mean value over all elements.

norm((Vector3c)arg1) → Real :
Euclidean norm.

normalize((Vector3c)arg1) → None :
Normalize this object in-place.

normalized((Vector3c)arg1) → Vector3c :
Return normalized copy of this object

outer((Vector3c)arg1, (Vector3c)other) → Matrix3c :
Outer product with other.

prod((Vector3c)arg1) → Complex :
Product of all elements.

pruned((Vector3c)arg1[, (float)absTol=1e-06]) → Vector3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3c)arg1) → int :
Number of rows.

2.4. Yade modules reference 999

Yade Documentation, Release 3rd ed.

squaredNorm((Vector3c)arg1) → Real :
Square of the Euclidean norm.

sum((Vector3c)arg1) → Complex :
Sum of all elements.

xy((Vector3c)arg1) → Vector2c

xz((Vector3c)arg1) → Vector2c

yx((Vector3c)arg1) → Vector2c

yz((Vector3c)arg1) → Vector2c

zx((Vector3c)arg1) → Vector2c

zy((Vector3c)arg1) → Vector2c

class Vector3i
3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i,
v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3i(1,0,0)

Ones = Vector3i(1,1,1)

static Random() → Vector3i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3i

UnitX = Vector3i(1,0,0)

UnitY = Vector3i(0,1,0)

UnitZ = Vector3i(0,0,1)

Zero = Vector3i(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3i)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (int)x=0 [, (int)y=0 [, (int)z=0]]]) -> None

asDiagonal((Vector3i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3i)arg1) → int :
Number of columns.

cross((Vector3i)arg1, (Vector3i)arg2) → Vector3i

dot((Vector3i)arg1, (Vector3i)other) → int :
Dot product with other.

isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

1000 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

maxAbsCoeff((Vector3i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector3i)arg1) → int :
Maximum value over all elements.

mean((Vector3i)arg1) → int :
Mean value over all elements.

minCoeff((Vector3i)arg1) → int :
Minimum value over all elements.

outer((Vector3i)arg1, (Vector3i)other) → object :
Outer product with other.

prod((Vector3i)arg1) → int :
Product of all elements.

rows((Vector3i)arg1) → int :
Number of rows.

sum((Vector3i)arg1) → int :
Sum of all elements.

xy((Vector3i)arg1) → Vector2i

xz((Vector3i)arg1) → Vector2i

yx((Vector3i)arg1) → Vector2i

yz((Vector3i)arg1) → Vector2i

zx((Vector3i)arg1) → Vector2i

zy((Vector3i)arg1) → Vector2i

class Vector4
4-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 4 floats.

Static attributes: Zero, Ones.

Identity = Vector4("1","0","0", "0")

Ones = Vector4("1","1","1", "1")

static Random() → Vector4 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector4

Zero = Vector4("0","0","0", "0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector4)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (Real)v0, (Real)v1, (Real)v2, (Real)v3) -> None

asDiagonal((Vector4)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

2.4. Yade modules reference 1001

Yade Documentation, Release 3rd ed.

cols((Vector4)arg1) → int :
Number of columns.

dot((Vector4)arg1, (Vector4)other) → Real :
Dot product with other.

isApprox((Vector4)arg1, (Vector4)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector4)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector4)arg1) → Real :
Maximum value over all elements.

mean((Vector4)arg1) → Real :
Mean value over all elements.

minCoeff((Vector4)arg1) → Real :
Minimum value over all elements.

norm((Vector4)arg1) → Real :
Euclidean norm.

normalize((Vector4)arg1) → None :
Normalize this object in-place.

normalized((Vector4)arg1) → Vector4 :
Return normalized copy of this object

outer((Vector4)arg1, (Vector4)other) → object :
Outer product with other.

prod((Vector4)arg1) → Real :
Product of all elements.

pruned((Vector4)arg1[, (float)absTol=1e-06]) → Vector4 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector4)arg1) → int :
Number of rows.

squaredNorm((Vector4)arg1) → Real :
Square of the Euclidean norm.

sum((Vector4)arg1) → Real :
Sum of all elements.

class Vector6
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6("1","0","0", "0","0","0")

Ones = Vector6("1","1","1", "1","1","1")

1002 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Random() → Vector6 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6

Zero = Vector6("0","0","0", "0","0","0")

__init__((object)arg1) → None
__init__((object)arg1, (Vector6)other) -> None

__init__((object)arg1, (Real)v0, (Real)v1, (Real)v2, (Real)v3, (Real)v4, (Real)v5) ->
object

__init__((object)arg1, (Vector3)head, (Vector3)tail) -> object

asDiagonal((Vector6)arg1) → Matrix6 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6)arg1) → int :
Number of columns.

dot((Vector6)arg1, (Vector6)other) → Real :
Dot product with other.

head((Vector6)arg1) → Vector3

isApprox((Vector6)arg1, (Vector6)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector6)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((Vector6)arg1) → Real :
Maximum value over all elements.

mean((Vector6)arg1) → Real :
Mean value over all elements.

minCoeff((Vector6)arg1) → Real :
Minimum value over all elements.

norm((Vector6)arg1) → Real :
Euclidean norm.

normalize((Vector6)arg1) → None :
Normalize this object in-place.

normalized((Vector6)arg1) → Vector6 :
Return normalized copy of this object

outer((Vector6)arg1, (Vector6)other) → Matrix6 :
Outer product with other.

prod((Vector6)arg1) → Real :
Product of all elements.

pruned((Vector6)arg1[, (float)absTol=1e-06]) → Vector6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6)arg1) → int :
Number of rows.

2.4. Yade modules reference 1003

Yade Documentation, Release 3rd ed.

squaredNorm((Vector6)arg1) → Real :
Square of the Euclidean norm.

sum((Vector6)arg1) → Real :
Sum of all elements.

tail((Vector6)arg1) → Vector3

class Vector6c
/TODO/

Identity = Vector6c(Complex("1","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"))

Ones = Vector6c(Complex("1","0"),Complex("1","0"),Complex("1","0"),
Complex("1","0"),Complex("1","0"),Complex("1","0"))

static Random() → Vector6c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6c

Zero = Vector6c(Complex("0","0"),Complex("0","0"),Complex("0","0"),
Complex("0","0"),Complex("0","0"),Complex("0","0"))

__init__((object)arg1) → None
__init__((object)arg1, (Vector6c)other) -> None

__init__((object)arg1, (Complex)v0, (Complex)v1, (Complex)v2, (Complex)v3, (Com-
plex)v4, (Complex)v5) -> object

__init__((object)arg1, (Vector3c)head, (Vector3c)tail) -> object

asDiagonal((Vector6c)arg1) → Matrix6c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6c)arg1) → int :
Number of columns.

dot((Vector6c)arg1, (Vector6c)other) → Complex :
Dot product with other.

head((Vector6c)arg1) → Vector3c

isApprox((Vector6c)arg1, (Vector6c)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((Vector6c)arg1) → Real :
Maximum absolute value over all elements.

mean((Vector6c)arg1) → Complex :
Mean value over all elements.

norm((Vector6c)arg1) → Real :
Euclidean norm.

normalize((Vector6c)arg1) → None :
Normalize this object in-place.

normalized((Vector6c)arg1) → Vector6c :
Return normalized copy of this object

1004 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

outer((Vector6c)arg1, (Vector6c)other) → Matrix6c :
Outer product with other.

prod((Vector6c)arg1) → Complex :
Product of all elements.

pruned((Vector6c)arg1[, (float)absTol=1e-06]) → Vector6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6c)arg1) → int :
Number of rows.

squaredNorm((Vector6c)arg1) → Real :
Square of the Euclidean norm.

sum((Vector6c)arg1) → Complex :
Sum of all elements.

tail((Vector6c)arg1) → Vector3c

class Vector6i
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 ints.

Static attributes: Zero, Ones.

Identity = Vector6i(1,0,0, 0,0,0)

Ones = Vector6i(1,1,1, 1,1,1)

static Random() → Vector6i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6i

Zero = Vector6i(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6i)other) -> None

__init__((object)arg1, (int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) -> object

__init__((object)arg1, (Vector3i)head, (Vector3i)tail) -> object

asDiagonal((Vector6i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6i)arg1) → int :
Number of columns.

dot((Vector6i)arg1, (Vector6i)other) → int :
Dot product with other.

head((Vector6i)arg1) → Vector3i

isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6i)arg1) → int :
Maximum absolute value over all elements.

2.4. Yade modules reference 1005

Yade Documentation, Release 3rd ed.

maxCoeff((Vector6i)arg1) → int :
Maximum value over all elements.

mean((Vector6i)arg1) → int :
Mean value over all elements.

minCoeff((Vector6i)arg1) → int :
Minimum value over all elements.

outer((Vector6i)arg1, (Vector6i)other) → object :
Outer product with other.

prod((Vector6i)arg1) → int :
Product of all elements.

rows((Vector6i)arg1) → int :
Number of rows.

sum((Vector6i)arg1) → int :
Sum of all elements.

tail((Vector6i)arg1) → Vector3i

class VectorX
Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v,
v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of X floats.

static Ones((int)arg1) → VectorX

static Random((int)len) → VectorX :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorX

static Zero((int)arg1) → VectorX

__init__((object)arg1) → None
__init__((object)arg1, (VectorX)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorX)arg1) → MatrixX :
Return diagonal matrix with this vector on the diagonal.

cols((VectorX)arg1) → int :
Number of columns.

dot((VectorX)arg1, (VectorX)other) → Real :
Dot product with other.

isApprox((VectorX)arg1, (VectorX)other[,
(Real)prec=Real(”3.842735439305961756982896186698285364e-31”)]) → bool :

Approximate comparison with precision prec.

maxAbsCoeff((VectorX)arg1) → Real :
Maximum absolute value over all elements.

maxCoeff((VectorX)arg1) → Real :
Maximum value over all elements.

1006 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mean((VectorX)arg1) → Real :
Mean value over all elements.

minCoeff((VectorX)arg1) → Real :
Minimum value over all elements.

norm((VectorX)arg1) → Real :
Euclidean norm.

normalize((VectorX)arg1) → None :
Normalize this object in-place.

normalized((VectorX)arg1) → VectorX :
Return normalized copy of this object

outer((VectorX)arg1, (VectorX)other) → MatrixX :
Outer product with other.

prod((VectorX)arg1) → Real :
Product of all elements.

pruned((VectorX)arg1[, (float)absTol=1e-06]) → VectorX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorX)arg1, (int)arg2) → None

rows((VectorX)arg1) → int :
Number of rows.

squaredNorm((VectorX)arg1) → Real :
Square of the Euclidean norm.

sum((VectorX)arg1) → Real :
Sum of all elements.

class VectorXc
/TODO/

static Ones((int)arg1) → VectorXc

static Random((int)len) → VectorXc :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorXc

static Zero((int)arg1) → VectorXc

__init__((object)arg1) → None
__init__((object)arg1, (VectorXc)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorXc)arg1) → MatrixXc :
Return diagonal matrix with this vector on the diagonal.

cols((VectorXc)arg1) → int :
Number of columns.

dot((VectorXc)arg1, (VectorXc)other) → Complex :
Dot product with other.

2.4. Yade modules reference 1007

Yade Documentation, Release 3rd ed.

isApprox((VectorXc)arg1, (VectorXc)other[,
(Real)prec=Complex(”3.842735439305961756982896186698285364e-31”, ”0”)])→ bool :

Approximate comparison with precision prec.

maxAbsCoeff((VectorXc)arg1) → Real :
Maximum absolute value over all elements.

mean((VectorXc)arg1) → Complex :
Mean value over all elements.

norm((VectorXc)arg1) → Real :
Euclidean norm.

normalize((VectorXc)arg1) → None :
Normalize this object in-place.

normalized((VectorXc)arg1) → VectorXc :
Return normalized copy of this object

outer((VectorXc)arg1, (VectorXc)other) → MatrixXc :
Outer product with other.

prod((VectorXc)arg1) → Complex :
Product of all elements.

pruned((VectorXc)arg1[, (float)absTol=1e-06]) → VectorXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorXc)arg1, (int)arg2) → None

rows((VectorXc)arg1) → int :
Number of rows.

squaredNorm((VectorXc)arg1) → Real :
Square of the Euclidean norm.

sum((VectorXc)arg1) → Complex :
Sum of all elements.

vectorize = False

class yade.plot.HarmonicForceEngine(inherits PartialEngine → Engine → Serializable)
This engine adds a harmonic (sinusoidal) force to a set of bodies. It is identical to Harmonic-
MotionEngine except a force amplitude is prescribed instead of motion, see also the dynamics of
harmonic motion

property A
Amplitude [N]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1008 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f
Frequency [hertz]

property fi
Initial phase [radians]. By default, the phase is zero such that the force starts at zero.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.HarmonicMotionEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

This engine implements the harmonic oscillation of bodies. See also HarmonicForceEngine that
applies a harmonic force, see also the dynamics of harmonic motion

property A
Amplitude [m]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f
Frequency [hertz]

property fi
Initial phase [radians]. By default, the body oscillates around initial position.

property ids
Ids list of bodies affected by this PartialEngine.

2.4. Yade modules reference 1009

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.HarmonicRotationEngine(inherits RotationEngine → KinematicEngine →
PartialEngine → Engine → Serializable)

This engine implements the harmonic-rotation oscillation of bodies, see also the dynamics of har-
monic motion ; please, set dynamic=False for bodies, droven by this engine, otherwise amplitude
will be 2x more, than awaited.

property A
Amplitude [rad]

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f
Frequency [hertz]

property fi
Initial phase [radians]. By default, the body oscillates around initial position.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1010 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.plot.HdapsGravityEngine(inherits GravityEngine → FieldApplier → GlobalEngine →
Engine → Serializable)

Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-
tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.

property accel
reading from the sysfs file

property calibrate
Zero position; if NaN, will be read from the hdapsDir / calibrate.

property calibrated
Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property gravity
Acceleration [kgms�2]

property hdapsDir
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

2.4. Yade modules reference 1011

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/hdaps.py

Yade Documentation, Release 3rd ed.

property msecUpdate
How often to update the reading.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateThreshold
Minimum difference of reading from the file before updating gravity, to avoid jitter.

property warnOnce
For deprecation warning once.

property zeroGravity
Gravity if the accelerometer is in flat (zero) position.

class yade.plot.HelixEngine(inherits RotationEngine → KinematicEngine → PartialEngine →
Engine → Serializable)

Engine applying both rotation and translation, along the same axis, whence the name HelixEngine

property angleTurned
How much have we turned so far. (auto-updated) [rad]

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property linearVelocity
Linear velocity [m/s]

1012 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.plot.HydroForceEngine(inherits PartialEngine → Engine → Serializable)

Engine performing a coupling of the DEM with a volume-averaged 1D fluid
resolution to simulate steady uniform unidirectional fluid flow. It has been
developed and used to model steady uniform gravity-driven turbulent bedload
transport [Maurin2015b] [Maurin2016] [Maurin2018], but can be also used in its
current state for laminar or pressure-driven configurations. The fundamentals of the
model can be found in [Maurin2015b] and [Maurin2015PhD], and in more details in
[Maurin2018_VANSbasis], [Maurin2018_VANSfluidResol] and
[Maurin2018_VANSvalidations].

The engine can be decomposed in three different parts: (i) It applies the fluid force on the
particles imposed by the fluid velocity profiles and fluid properties, (ii) It evaluates averaged
solid depth profiles necessary for the fluid force application and for the fluid resolution, (iii)
It solve the volume-averaged 1D fluid momentum balance.

The three different functions are detailed below:

(i) Fluid force on particles Apply to each particles, buoyancy, drag and lift force due to
a 1D fluid flow and can apply lubrication force between two particles. The applied drag
force reads

Fd = 1
2
CdAρf|vf − v|vf − v

where ρ is the fluid density (densFluid), v is particle’s velocity, vf is the velocity of the
fluid at the particle center (taken from the fluid velocity profile vxFluid), A = πd2/4

is particle projected area (disc), Cd is the drag coefficient. The formulation of the
drag coefficient depends on the local particle reynolds number and the solid volume
fraction. The formulation of the drag is [Dallavalle1948] [RevilBaudard2013] with a
correction of Richardson-Zaki [Richardson1954] to take into account the hindrance ef-
fect. This law is classical in sediment transport. The possibly activated lubrica-
tion force (with parameter:yref:lubrication<HydroForceEngine.lubrication> put to True)
reads: Flubrication = 6πηfvrel

n

δn+εr
, with ηf the fluid dynamic viscosity viscoDyn, vreln the

normal relative velocity of the two particles, δn the distance between the two particles
surface, and εr the roughness scale of the particle (roughnessPartScale).

2.4. Yade modules reference 1013

Yade Documentation, Release 3rd ed.

It is possible to activate a fluctuation of the drag force for each particle which
account for the turbulent fluctuation of the fluid velocity (velFluct). Three simple
discrete random walk model have been implemented for the turbulent velocity
fluctuation. The main one (turbulentFluctuations) takes as input the Reynolds
stress tensor Rf

xz as a function of the depth, and allows to recover the main property
of the fluctuations by imposing < u ′

xu
′
z > (z) =< Rf

xz > (z)/ρf. It requires as input
< Rf

xz > (z) called ReynoldStresses in the code.
The formulation of the lift is taken from [Wiberg1985] and is such that :

FL = 1
2
CLAρf((vf − v)2top − (vf − v)2bottom)

Where the subscript top and bottom means evaluated at the top (respectively the bottom)
of the sphere considered. This formulation of the lift account for the difference of pressure
at the top and the bottom of the particle inside a turbulent shear flow. As this formulation
is controversial when approaching the threshold of motion [Schmeeckle2007] it is possible to
desactivate it with the variable lift. The buoyancy is taken into account through the buoyant
weight :

Fbuoyancy = −ρfVpg

, where g is the gravity vector along the vertical, and Vp is the volume of the particle. In the case
where the fluid flow is steady and uniform, the buoyancy reduces to its wall-normal component
(see [Maurin2018] for a full explanation), and one should put steadyFlow to true in order to kill
the streamwise component.

(ii) Averaged solid depth profiles The function averageProfile evaluates the volume av-
eraged depth profiles (1D) of particle velocity, particle solid volume fraction and par-
ticle drag force. It uses a volume-weighting average following [Maurin2015PhD]_[Mau-
rin2015b]_, i.e. the average of a variable Ap associated to particles at a given discretized
wall-normal position z is given by:

⟨A⟩s (z) =

∑
p|zp∈[z−dz/2,z+dz/2]

Ap(t)Vp
z∑

p|zp∈[z−dz/2,z+dz/2]

Vp
z

Where the sums are over the particles contained inside the slice between the wall-normal
position z − dz/2 and z + dz/2, and Vp represents the part of the volume of the given
particle effectively contained inside the slice. For more details, see [Maurin2015PhD].

(iii) 1D volume-average fluid resolution The fluid resolution is based on the resolution
of the 1D volume-averaged fluid momentum balance. It assumes by definition (uni-
directional) that the fluid flow is steady and uniform. It is the same fluid resolution
as [RevilBaudard2013]. Details can be found in this paper and in [Maurin2015PhD]
[Maurin2015b].

The three different component can be used independently, e.g. applying a fluid force due
to an imposed fluid profile or solving the fluid momentum balance for a given concentra-
tion of particles.

property Cl
Value of the lift coefficient taken from [Wiberg1985]

property ReynoldStresses
Vector of size equal to nCell containing the Reynolds stresses as a function of the depth.
ReynoldStresses(z) = ρf < u ′

xu
′
z > (z)2

property averageDrag
Discretized average drag depth profile. No role in the engine, output parameter. For practical
reason, it can be evaluated directly inside the engine, calling from python the averageProfile()
method of the engine

1014 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property averageDrag1
Discretized average drag depth profile of particles of type 1. Evaluated when twoSize is set to
True.

property averageDrag2
Discretized average drag depth profile of particles of type 2. Evaluated when twoSize is set to
True.

averageProfile((HydroForceEngine)arg1) → None :
Compute and store the particle velocity (vxPart, vyPart, vzPart) and solid volume fraction
(phiPart) depth profile. For each defined cell z, the k component of the average particle
velocity reads:

< vk >z=
∑

p Vpv
p
k/

∑
p Vp,

where the sum is made over the particles contained in the cell, vpk is the k component of the
velocity associated to particle p, and Vp is the part of the volume of the particle p contained
inside the cell. This definition allows to smooth the averaging, and is equivalent to taking
into account the center of the particles only when there is a lot of particles in each cell. As
for the solid volume fraction, it is evaluated in the same way: for each defined cell z, it reads:

< φ >z= 1
Vcell

∑
p Vp, where Vcell is the volume of the cell considered, and Vp is the volume

of particle p contained in cell z. This function gives depth profiles of average velocity and solid
volume fraction, returning the average quantities in each cell of height dz, from the reference
horizontal plane at elevation zRef (input parameter) until the plane of elevation zRef plus
nCell times deltaZ (input parameters). When the option twoSize is set to True, evaluate
in addition the average drag (averageDrag1 and averageDrag2) and solid volume fraction
(phiPart1 and phiPart2) depth profiles considering only the particles of radius respectively
radiusPart1 and radiusPart2 in the averaging.

property bedElevation
Elevation of the bed above which the fluid flow is turbulent and the particles undergo turbulent
velocity fluctuation.

property channelWidth
Fluid resolution: Channel width for the evaluation of the fluid wall friction inside the fluid
resolution.

property compatibilityOldVersion
Option to make HydroForceEngine compatible with former scripts. Slow down slightly the
calculation and will eventually be removed.

computeRadiusParts((HydroForceEngine)arg1) → None :
compute the different class of radius present in the simulation.

property convAcc
Convective acceleration, depth dependent

property convAccOption
To activate the convective acceleration option in order to account for a convective acceleration
term inside the momentum balance.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property deltaZ
Height of the discretization cell.

property densFluid
Density of the fluid, by default - density of water

2.4. Yade modules reference 1015

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property dpdx
pressure gradient along streamwise direction

property dtFluct
Execution time step of the turbulent fluctuation model.

property enableMultiClassAverage
Enables specific averaging for all the different particle size. Uses a lot of memory if using a
lots of different particle size

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property expoRZ
Value of the Richardson-Zaki exponent, for the drag correction due to hindrance

property fluctTime
Vector containing the time of life of the fluctuations associated to each particles.

property fluidFrictionCoef
Fluid resolution: fitting coefficient for the fluid wall friction

fluidResolution((HydroForceEngine)arg1, (float)arg2, (float)arg3) → None :
Solve the 1D volume-averaged fluid momentum balance on the de-
fined mesh (nCell, deltaZ) from the volume-averaged solid profiles
(phiPart,:yref:vxPart<HydroForceEngine.vxPart>,:yref:averageDrag<HydroForceEngine.averageDrag>),
which can be evaluated with the averageProfile function.

property fluidWallFriction
Fluid resolution: if set to true, introduce a sink term to account for the fluid friction at the
wall, see [Maurin2015] for details. Requires to set the width of the channel. It might slow
down significantly the calculation.

property gravity
Gravity vector

property ids
Ids list of bodies affected by this PartialEngine.

property ilm
Fluid resolution: type of mixing length resolution applied: 0: classical Prandtl mixing length,
1: Prandtl mixing length with free-surface effects, 2: Damp turbulence accounting for the
presence of particles [Li1995], see [RevilBaudard2013] for more details.

initialization((HydroForceEngine)arg1) → None :
Initialize the necessary parameters to make HydroForceEngine run. Necessary to execute
before any simulation run, otherwise it crashes

property irheolf
Fluid resolution: effective fluid viscosity option: 0: pure fluid viscosity, 1: Einstein viscosity.

property iturbu
Fluid resolution: activate the turbulence resolution, 1, or not, 0

1016 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property iusl
Fluid resolution: option to set the boundary condition at the top of the fluid, 0: Dirichlet,
fixed (u = uTop en z = h), 1:Neumann, free-surface (du/dz = 0 en z = h).

property kappa
Fluid resolution: Von Karman constant. Can be tuned to account for the effect of particles
on the fluid turbulence, see e.g. [RevilBaudard2015]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lift
Option to activate or not the evaluation of the lift

property lubrication
Condition to activate the calculation of the lubrication force.

property multiDragPart
Spatial-averaged mean drag force for each class of particle. Un-used ? Or just for debug.

property multiPhiPart
Spatial-averaged solid volume fraction for each class of particle.

property multiVxPart
Spatial-averaged velocity in x direction for each class of particle.

property multiVyPart
Spatial-averaged velocity in y direction for each class of particle.

property multiVzPart
Spatial-averaged velocity in z direction for each class of particle.

property nCell
Number of cell in the depth

property nbAverageT
If >0, perform a time-averaging (in addition to the spatial averaging) over nbAverage steps.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property phiBed
Turbulence modelling parameter. Associated with mixing length modelling ilm = 5.

property phiMax
Fluid resolution: maximum solid volume fraction.

property phiPart
Discretized solid volume fraction depth profile. Can be taken as input parameter or evaluated
directly inside the engine, calling from python the averageProfile() function

property phiPart1
Discretized solid volume fraction depth profile of particles of type 1. Evaluated when twoSize
is set to True.

2.4. Yade modules reference 1017

Yade Documentation, Release 3rd ed.

property phiPart2
Discretized solid volume fraction depth profile of particles of type 2. Evaluated when twoSize
is set to True.

property pointParticleAverage
Evaluate the averaged with a point particle method. If False, consider the particle extent and
weigth the averaged by the volume contained in each averaging cell.

property radiusPart
Reference particle radius

property radiusPart1
Radius of the particles of type 1. Useful only when twoSize is set to True.

property radiusPart2
Radius of the particles of type 2. Useful only when twoSize is set to True.

property radiusParts
Variables containing the number of different radius of particles in the simulation. Allow to
perform class averaging by particle size.

property roughnessPartScale
Roughness length scale of the particle. In practice, the lubrication force is cut off when the
two particles are at a distance roughnessPartScale.

property steadyFlow
Condition to modify the buoyancy force according to the physical difference between a fluid
at rest and a steady fluid flow. For more details see [Maurin2018]

property taufsi
Fluid Resolution: Create Taufsi/rhof = dragTerm/(rhof(vf-vxp)) to transmit to the fluid code

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

turbulentFluctuation((HydroForceEngine)arg1) → None :
Apply a discrete random walk model to the evaluation of the drag force to account for the
fluid velocity turbulent fluctuations. Very simple model applying fluctuations from the values
of the Reynolds stresses in order to recover the property < u ′

xu
′
z > (z) =< Rf

xz > (z)/ρf. The
random fluctuations are modified over a time scale given by the eddy turn over time.

turbulentFluctuationZDep((HydroForceEngine)arg1) → None :
Apply turbulent fluctuation to the problem similarly to turbulentFluctuation but with an
update of the fluctuation depending on the particle position.

property turbulentViscosity
Fluid Resolution: turbulent viscocity as a function of the depth

property twoSize
Not maintained anymore. Option to activate when considering two particle size in the simu-
lation. When activated evaluate the average solid volume fraction and drag force for the two
type of particles of diameter diameterPart1 and diameterPart2 independently.

property uTop
Fluid resolution: fluid velocity at the top boundary when iusl = 0

property unCorrelatedFluctuations
Condition to generate uncorrelated fluid fluctuations. Default case represent in free-surface
flows, for which the vertical and streamwise fluid velocity fluctuations are correlated (see e.g.
reference book of Nezu & Nagakawa 1992, turbulence in open channel flows).

1018 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vCell
Volume of averaging cell

property vFluctX
Vector associating a streamwise fluid velocity fluctuation to each particle. Fluctuation calcu-
lated in the C++ code from the discrete random walk model

property vFluctY
Vector associating a spanwise fluid velocity fluctuation to each particle. Fluctuation calculated
in the C++ code from the discrete random walk model

property vFluctZ
Vector associating a normal fluid velocity fluctuation to each particle. Fluctuation calculated
in the C++ code from the discrete random walk model

property vPart
Discretized streamwise solid velocity depth profile, in x, y and z direction. Only the x direction
measurement is taken into account in the 1D fluid coupling resolution. The two other can be
used as output parameters. The x component can be taken as input parameter, or evaluated
directly inside the engine, calling from python the averageProfile() function

property velFluct
If true, activate the determination of turbulent fluid velocity fluctuation for the next time
step only at the position of each particle, using a simple discrete random walk (DRW) model
based on the Reynolds stresses profile (ReynoldStresses)

property viscoDyn
Dynamic viscosity of the fluid, by default - viscosity of water

property viscousSubLayer
Fluid resolution: solve the viscous sublayer close to the bottom boundary if set to 1

property vxFluid
Discretized streamwise fluid velocity depth profile at t

property vxPart
Discretized streamwise solid velocity depth profile. Can be taken as input parameter, or
evaluated directly inside the engine, calling from python the averageProfile() function

property vxPart1
Discretized solid streamwise velocity depth profile of particles of type 1. Evaluated when
twoSize is set to True.

property vxPart2
Discretized solid streamwise velocity depth profile of particles of type 2. Evaluated when
twoSize is set to True.

property vyPart
Discretized spanwise solid velocity depth profile. Can be taken as input parameter, or evalu-
ated directly inside the engine, calling from python the averageProfile() function

property vyPart1
Discretized solid spanwise velocity depth profile of particles of type 1. Evaluated when twoSize
is set to True.

property vyPart2
Discretized solid spanwise velocity depth profile of particles of type 2. Evaluated when twoSize
is set to True.

2.4. Yade modules reference 1019

Yade Documentation, Release 3rd ed.

property vzPart
Discretized wall-normal solid velocity depth profile. Can be taken as input parameter, or
evaluated directly inside the engine, calling from python the averageProfile() function

property vzPart1
Discretized solid wall-normal velocity depth profile of particles of type 1. Evaluated when
twoSize is set to True.

property vzPart2
Discretized solid wall-normal velocity depth profile of particles of type 2. Evaluated when
twoSize is set to True.

property wallFrictionModel
Model used to compute the wall friction factor f. 0: Blasius (1913) explicit for-
mula f = 0.3164/Re1/4 (faster), 1: Graf and Altinakar (1998) implicit formula f =
(2 log10(Re

√
fold/4) + 0.32)−2.

property zRef
Position of the reference point which correspond to the first value of the fluid velocity, i.e. to
the ground.

class yade.plot.HydrodynamicsLawLBM(inherits GlobalEngine → Engine → Serializable)
Engine to simulate fluid flow (with the lattice Boltzmann method) with a coupling with the discrete
element method. If you use this Engine, please cite and refer to F. Lominé et al. International
Journal For Numerical and Analytical Method in Geomechanics, 2012, doi: 10.1002/nag.1109

property ConvergenceThreshold

property CstBodyForce
A constant body force (=that does not vary in time or space, otherwise the implementation
introduces errors)

property DemIterLbmIterRatio
Ratio between DEM and LBM iterations for subcycling

property EndTime
the time to stop the simulation

property EngineIsActivated
To activate (or not) the engine

property IterMax
This variable can be used to do several LBM iterations during one DEM iteration.

property IterPrint
Print info on screen every IterPrint iterations

property IterSave
Data are saved every IterSave LBM iteration (or see TimeSave)

property IterSubCyclingStart
Iteration number when the subcycling process starts

property LBMSavedData
a list of data that will be saved. Can use veloc-
ity,velXY,forces,rho,bodies,nodeBD,newNode,observedptc,observednode,contacts,spheres,bz2

property Nu
Fluid kinematic viscosity

property Nx
The number of grid division in x direction

1020 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ObservedNode
The identifier of the node that will be observed (-1 means none)

property ObservedPtc
The identifier of the particle that will be observed (-1 means the first one)

property RadFactor
The radius of DEM particules seen by the LBM is the real radius of particules*RadFactor

property Rho
Fluid density

property SaveGridRatio
Grid data are saved every SaveGridRatio * IterSave LBM iteration (with SaveMode=1)

property SaveMode
Save Mode (1-> default, 2-> in time (not yet implemented)

property TimeSave
Data are saved at constant time interval (or see IterSave)

property VbCutOff
the minimum boundary velocity that is taken into account

property VelocityThreshold
Velocity threshold when removingCriterion=2

property WallXm_id
Identifier of the X- wall

property WallXp_id
Identifier of the X+ wall

property WallYm_id
Identifier of the Y- wall

property WallYp_id
Identifier of the Y+ wall

property WallZm_id
Identifier of the Z- wall

property WallZp_id
Identifier of the Z+ wall

property XmBCType
Boundary condition for the wall in Xm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property XmBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property XmBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property XmYmZmBCType
Boundary condition for the corner node XmYmZm (not used with d2q9, -1: unused, 1: pres-
sure condition, 2: velocity condition).

property XmYmZpBCType
Boundary condition for the corner node XmYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

2.4. Yade modules reference 1021

Yade Documentation, Release 3rd ed.

property XmYpZmBCType
Boundary condition for the corner node XmYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

property XmYpZpBCType
Boundary condition for the corner node XmYpZp (-1: unused, 1: pressure condition, 2:
velocity condition).

property XpBCType
Boundary condition for the wall in Xp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property XpBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property XpBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property XpYmZmBCType
Boundary condition for the corner node XpYmZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

property XpYmZpBCType
Boundary condition for the corner node XpYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

property XpYpZmBCType
Boundary condition for the corner node XpYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

property XpYpZpBCType
Boundary condition for the corner node XpYpZp (-1: unused, 1: pressure condition, 2: velocity
condition).

property YmBCType
Boundary condition for the wall in Ym (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property YmBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property YmBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property YpBCType
Boundary condition for the wall in Yp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property YpBcRho
(!!! not fully implemented !!) The density imposed at the boundary

property YpBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property ZmBCType
Boundary condition for the wall in Zm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property ZmBcRho
(!!! not fully implemented !!) The density imposed at the boundary

1022 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ZmBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property ZpBCType
Boundary condition for the wall in Zp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

property ZpBcVel
(!!! not fully implemented !!) The velocity imposed at the boundary

property applyForcesAndTorques
Switch to apply forces and torques

property bc
Boundary condition

property dP
Pressure difference between input and output

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property defaultLbmInitMode
Switch between the two initialisation methods

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property model
The LB model. Until now only d2q9 is implemented

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property periodicity
periodicity

property removingCriterion
Criterion to remove a sphere (1->based on particle position, 2->based on particle velocity

property tau
Relaxation time

2.4. Yade modules reference 1023

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useWallXm
Set true if you want that the LBM see the wall in Xm

property useWallXp
Set true if you want that the LBM see the wall in Xp

property useWallYm
Set true if you want that the LBM see the wall in Ym

property useWallYp
Set true if you want that the LBM see the wall in Yp

property useWallZm
Set true if you want that the LBM see the wall in Zm

property useWallZp
Set true if you want that the LBM see the wall in Zp

property zpBcRho
(!!! not fully implemented !!) The density imposed at the boundary

class yade.plot.IGeom(inherits Serializable)
Geometrical configuration of interaction

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.IGeomDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((IGeomDispatcher)arg1, (Shape)arg2, (Shape)arg3) → IGeomFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((IGeomDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

1024 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.IGeomFunctor(inherits Functor → Serializable)
Functor for creating/updating Interaction::geom objects.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.IPhys(inherits Serializable)
Physical (material) properties of interaction.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

2.4. Yade modules reference 1025

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.IPhysDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((IPhysDispatcher)arg1, (Material)arg2, (Material)arg3) → IPhysFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((IPhysDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.IPhysFunctor(inherits Functor → Serializable)
Functor for creating/updating Interaction::phys objects from bodies’ material properties.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1026 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.If2_2xLin4NodeTetra_LinCohesiveStiffPropDampElastMat(inherits Internal-
ForceFunctor →
Functor →
Serializable)

Apply internal forces of the tetrahedral element using lumped mass theory

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.If2_Lin4NodeTetra_LinIsoRayleighDampElast(inherits InternalForceFunctor →
Functor → Serializable)

Apply internal forces of the tetrahedral element using lumped mass theory

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Box_LevelSet_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Creates or updates a ScGeom instance representing the intersection of one LevelSet body with
one Box body. Normal is given by the box geometry while overlap and contact points are defined
likewise to Ig2_LevelSet_LevelSet_ScGeom. Restricted to the case of Boxes for which local and
global axes coincide, and with non zero thickness, and assuming the center of the level set body
never enters into the box (ie excluding big overlaps). You may prefer using Ig2_Wall_LevelSet_-
ScGeom.

property bases
Ordered list of types (as strings) this functor accepts.

2.4. Yade modules reference 1027

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Box_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create an interaction geometry ScGeom from Box and Sphere, representing the box with a projected
virtual sphere of same radius.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Box (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian theory, where it is infinite). Both are equal if False

property interactionDetectionFactor
Enlarge sphere radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad) > distance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Box_Sphere_ScGeom6D(inherits Ig2_Box_Sphere_ScGeom → IGeomFunctor→ Functor → Serializable)
Create an interaction geometry ScGeom6D from Box and Sphere, representing the box with a
projected virtual sphere of same radius.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Box (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian theory, where it is infinite). Both are equal if False

1028 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property interactionDetectionFactor
Enlarge sphere radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad) > distance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D(inherits IGeomFunctor →
Functor → Serializable)

Create/update a ScGeom instance representing connexion between chained cylinders.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property halfLengthContacts
If True, Cylinders nodes interact like spheres of radius 0.5*length, else one node has size length
while the other has size 0. The difference is mainly the locus of rotation definition.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Facet_Polyhedra_PolyhedraGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between Facet and Polyhedra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.4. Yade modules reference 1029

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Facet_Sphere_L3Geom(inherits Ig2_Sphere_Sphere_L3Geom →
IGeomFunctor → Functor → Serializable)

Incrementally compute L3Geom for contact between Facet and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Facet_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update a ScGeom instance representing intersection of Facet and Sphere. Denoting un the
corresponding overlap, C the contact point and n the contact normal while S stands for sphere’s
center, H for its projection into the facet plane, and R for the sphere’s radius, we have:

• un = R− ||HS||

1030 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• n =
HS

||HS||

when H strictly belongs to the Facet surface (different expressions otherwise) and

• C = S− (||HS||− un/2)n

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Facet (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
twice the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multiplied by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Facet_Sphere_ScGeom6D(inherits Ig2_Facet_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create an interaction geometry ScGeom6D from Facet and Sphere, representing the Facet with a
projected virtual sphere of same radius.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Facet (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
twice the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multiplied by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

2.4. Yade modules reference 1031

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_GridConnection_GridConnection_GridCoGridCoGeom(inherits IGeomFunctor→ Functor →
Serializable)

Create/update a GridCoGridCoGeom instance representing the geometry of a contact point be-
tween two GridConnection , including relative rotations.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_GridConnection_PFacet_ScGeom(inherits Ig2_Sphere_GridConnection_-
ScGridCoGeom → IGeomFunctor →
Functor → Serializable)

Create/update a ScGeom instance representing intersection of Facet and GridConnection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1032 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.Ig2_GridNode_GridNode_GridNodeGeom6D(inherits Ig2_Sphere_Sphere_ScGeom→ IGeomFunctor → Functor →
Serializable)

Create/update a GridNodeGeom6D instance representing the geometry of a contact point between
two GridNode, including relative rotations.

property avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom).

Short explanation of what we want to avoid :

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1. translation dx in the normal direction

2. rotation a

3. translation -dx (back to the initial position)

4. rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

property bases
Ordered list of types (as strings) this functor accepts.

property creep
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

2.4. Yade modules reference 1033

Yade Documentation, Release 3rd ed.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateRotations
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.plot.Ig2_LevelSet_LevelSet_MultiScGeom(inherits Ig2_LevelSet_LevelSet_ScGeom→ IGeomFunctor → Functor →
Serializable)

Multiple contact points version of Ig2_LevelSet_LevelSet_ScGeom for a MultiScGeom description
of a contact between two (non-convex typically) LevelSet-shaped bodies (with a ScGeom interaction
at each contacting surface node). Does not support periodic boundary conditions at the moment.
It is designed to be used in combination with MultiFrictPhys for what concerns the interaction
physics (which is here also touched by that Ig2 in some contrast with general YADE design, from
a developer point of view) [Duriez2023].

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_LevelSet_LevelSet_ScGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a ScGeom instance representing the contact of two (convex) LevelSet-
shaped bodies after executing a master-slave algorithm that combines distance function φ (Lev-
elSet.distField) with surface nodes N (LevelSet.surfNodes) [Duriez2021a] [Duriez2021b]. Denoting
S, resp. B, the smallest, resp. biggest, contacting body, Nc the surface node of S with the greatest
penetration depth into B (its current position), un the corresponding overlap, C the contact point
and n the contact normal, we have:

• un = −φB(Nc)

• n = ±∇φS(Nc) chosen to be oriented from 1 to 2

1034 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• C = Nc −
un

2
n

Note: in case the two LevelSet grids no longer overlap for a previously existing interaction,
the above workflow does not apply and un is assigned an infinite tensile value that should insure
interaction removal in the same DEM iteration (for sure with Law2_ScGeom_FrictPhys_Cundall-
Strack).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_LevelSet_LevelSet_VolumeGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a VolumeGeom instance representing the contact of two LevelSet bodies of
arbitrary shape. An algorithm is used that recursively evaluates the signed distance function φ

(LevelSet.distField) at increasingly finer mesh sizes to compute the overlap volume V . Surface
nodes are obsolete if this functor is used. Denoting un as the overlap, C the contact point and n

the contact normal, we have:

• un = Vn =
∑

i Vi(xi)

• n =
∑

i Vi∇φ1(xi)−
∑

i Vi∇φ2(xi)

2Vn
chosen to be oriented from 1 to 2

• C = 1
Vn

∑
i xi ∗ Vi(xi)

Note: Because this functor expresses the particle overlap un as a volume, care needs to be taken
that only volume-based contact laws are used. Current contact laws in YADE mainly use the
overlap distance to determine the force.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property nRefineOctree
The number of refinements performed by the Octree algorithm used to compute the overlap
volume between two particles. Default is 5. Note: (nr of layers, effective nr of integration
elements): (1,1), (2,8), (3,64), (4,512), (5,4096), (n,8^(n-1)).

2.4. Yade modules reference 1035

Yade Documentation, Release 3rd ed.

property smearCoeffOctree
Smearing coefficient for the smeared Heaviside step function in the overlap volume integra-
tion. The transition width, or smearing width, is equal to half the diagonal of the smallest
integration cell divided by the smearing coefficient.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useAABE
If true, use the provided (locally) axis-aligned bounding ellipsoid (AABE) to reduce the poten-
tial overlap volume between the particles. Increases accuracy of the Octree algrithm because
the smallest integration cells will be smaller.

class yade.plot.Ig2_PB_PB_ScGeom(inherits IGeomFunctor → Functor → Serializable)
PB

property accuracyTol
accuracy desired, tolerance criteria for SOCP

property bases
Ordered list of types (as strings) this functor accepts.

property calContactArea
Whether to calculate jointLength for 2-D contacts and contactArea for 2-D and 3-D contacts

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twoDdir
Direction of 2D

property twoDimension
Whether the contact is 2-D

property unitWidth2D
Unit width in 2D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_PFacet_PFacet_ScGeom(inherits Ig2_Sphere_PFacet_ScGridCoGeom →
Ig2_Sphere_GridConnection_ScGridCoGeom →
IGeomFunctor → Functor → Serializable)

Create/update a ScGridCoGeom instance representing intersection of Facet and Sphere.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1036 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_PP_PP_ScGeom(inherits IGeomFunctor → Functor → Serializable)
EXPERIMENTAL. IGeom functor for PotentialParticle - PotentialParticle pair

property accuracyTol
accuracy desired, tolerance criteria for SOCP

property areaStep
Angular step (degrees) to calculate KnKsPhys.contactArea. Must be a divisor of 360, e.g.
1,2,3,4,5,6,8,9 and so on, to form a closed loop. Must be smaller than 90 degrees. Smaller
angles lead to more accurate calculations but are more expensive

property bases
Ordered list of types (as strings) this functor accepts.

property calContactArea
Whether to calculate jointLength for 2-D contacts and contactArea for 2-D and 3-D contacts

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twoDdir
Direction of 2D

property twoDimension
Whether the contact is 2-D

property unitWidth2D
Unit width in 2D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1037

Yade Documentation, Release 3rd ed.

class yade.plot.Ig2_Polyhedra_Polyhedra_PolyhedraGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between 2 Polyhedras

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
see Ig2_Sphere_Sphere_ScGeom.interactionDetectionFactor

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Polyhedra_Polyhedra_PolyhedraGeomOrScGeom(inherits IGeomFunctor →
Functor → Serializable)

EXPERIMENTAL. A hacky helper Ig2 functor combining two Polyhedra shapes to give, according
to the settings, either ScGeom or PolyhedraGeom, through appropriate use of either Ig2_Polyhe-
dra_Polyhedra_ScGeom (through ig2scGeom attribute) or Ig2_Polyhedra_Polyhedra_Polyhedra-
Geom (ig2polyhedraGeom attribute).

property bases
Ordered list of types (as strings) this functor accepts.

property createScGeom
When true (resp. false), new contacts’ IGeom are created as ScGeom (resp. PolyhedraGeom).
Existing contacts are dealt with according to their present IGeom instance.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property ig2polyhedraGeom
Helper Ig2 functor responsible for handling PolyhedraGeom.

property ig2scGeom
Helper Ig2 functor responsible for handling ScGeom.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Polyhedra_Polyhedra_ScGeom(inherits IGeomFunctor → Functor →
Serializable)

EXPERIMENTAL. Ig2 functor creating ScGeom from two Polyhedra shapes. The radii are com-
puted as a distance of contact point (computed using Ig2_Polyhedra_Polyhedra_PolyhedraGeom)
and center of particle. Tested only for face-face contacts (like brick wall).

1038 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
see Ig2_Sphere_Sphere_ScGeom.interactionDetectionFactor

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_ChainedCylinder_CylScGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update a ScGeom instance representing intersection of two Spheres.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_ChainedCylinder_CylScGeom6D(inherits Ig2_Sphere_-
ChainedCylinder_CylScGeom →
IGeomFunctor → Functor →
Serializable)

Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.

property bases
Ordered list of types (as strings) this functor accepts.

property creep
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1039

Yade Documentation, Release 3rd ed.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateRotations
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.plot.Ig2_Sphere_GridConnection_ScGridCoGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update a ScGridCoGeom6D instance representing the geometry of a contact point between
a GricConnection and a Sphere including relative rotations.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_LevelSet_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Creates or updates a ScGeom instance representing the intersection of one LevelSet-shaped body
with one Sphere-shaped body, where overlap is always chosen to occur inside the level set body
(i.e. spheres will always be expelled). Contact normal n is given by the level set normal at the
centre of the sphere c while overlap is given by R−φ with R the radius and φ the level set value.
And contact points is defined as c − φn. This functionality does not require the level set to have
surface nodes. Approximations for φ outside the level set may become inaccurate if the spheres
are of similar size or larger than the level set body. Accuracy is guaranteed it the largest sphere is
around the same size, or smaller than, the smallest grid cell in the level set.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1040 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_PFacet_ScGridCoGeom(inherits
Ig2_Sphere_GridConnection_ScGridCoGeom→ IGeomFunctor → Functor → Serializable)

Create/update a ScGridCoGeom instance representing intersection of PFacet and Sphere.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property shrinkFactor
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_Polyhedra_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update geometry of collision between Sphere and Polyhedra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property edgeCoeff
multiplier of penetrationDepth when sphere contacts edge (simulating smaller volume of actual
intersection or when several polyhedrons has common edge)

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.4. Yade modules reference 1041

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertexCoeff
multiplier of penetrationDepth when sphere contacts vertex (simulating smaller volume of
actual intersection or when several polyhedrons has common vertex)

class yade.plot.Ig2_Sphere_Sphere_L3Geom(inherits IGeomFunctor → Functor → Serializable)
Functor for computing incrementally configuration of 2 Spheres stored in L3Geom; the configuration
is positioned in global space by local origin c (contact point) and rotation matrix T (orthonormal
transformation matrix), and its degrees of freedom are local displacement u (in one normal and
two shear directions); with Ig2_Sphere_Sphere_L6Geom and L6Geom, there is additionally φ.
The first row of T , i.e. local x-axis, is the contact normal noted n for brevity. Additionally, quasi-
constant values of u0 (and φ0) are stored as shifted origins of u (and φ); therefore, current value
of displacement is always u◦ − u0.

Suppose two spheres with radii ri, positions xi, velocities vi, angular velocities ωi.

When there is not yet contact, it will be created if uN = |x◦2 − x◦1| − |fd|(r1 + r2) < 0, where fd is
distFactor (sometimes also called ‘‘interaction radius’’). If fd > 0, then u0x will be initalized to
uN, otherwise to 0. In another words, contact will be created if spheres enlarged by |fd| touch, and
the ‘‘equilibrium distance’’ (where ux − u − 0x is zero) will be set to the current distance if fd is
positive, and to the geometrically-touching distance if negative.

Local axes (rows of T) are initially defined as follows:

• local x-axis is n = xl = ̂x2 − x1;

• local y-axis positioned arbitrarily, but in a deterministic manner: aligned with the xz plane
(if ny < nz) or xy plane (otherwise);

• local z-axis zl = xl × yl.

If there has already been contact between the two spheres, it is updated to keep track of rigid
motion of the contact (one that does not change mutual configuration of spheres) and mutual
configuration changes. Rigid motion transforms local coordinate system and can be decomposed
in rigid translation (affecting c), and rigid rotation (affecting T), which can be split in rotation or

perpendicular to the normal and rotation ot (‘‘twist’’) parallel with the normal:

o⊖
r = n− × n◦.

Since velocities are known at previous midstep (t− ∆t/2), we consider mid-step normal

n⊖ =
n− + n◦

2
.

For the sake of numerical stability, n⊖ is re-normalized after being computed, unless prohibited by
approxMask. If approxMask has the appropriate bit set, the mid-normal is not compute, and we
simply use n⊖ ≈ n−.

Rigid rotation parallel with the normal is

o⊖
t = n⊖

(
n⊖ ·

ω⊖
1 +ω⊖

2

2

)
∆t.

1042 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Branch vectors b1, b2 (connecting x◦1, x◦2 with c◦ are computed depending on noRatch (see here).

b1 =

{
r1n

◦ with noRatch
c◦ − x◦1 otherwise

b2 =

{
−r2n

◦ with noRatch
c◦ − x◦2 otherwise

Relative velocity at c◦ can be computed as

v⊖r = (ṽ⊖2 +ω2 × b2) − (v1 +ω1 × b1)

where ṽ2 is v2 without mean-field velocity gradient in periodic boundary conditions (see
Cell.homoDeform). In the numerial implementation, the normal part of incident velocity is re-
moved (since it is computed directly) with v⊖r2 = v⊖r − (n⊖ · v⊖r)n⊖.

Any vector a expressed in global coordinates transforms during one timestep as

a◦ = a− + v⊖r ∆t− a− × o⊖
r − a− × t⊖r

where the increments have the meaning of relative shear, rigid rotation normal to n and rigid
rotation parallel with n. Local coordinate system orientation, rotation matrix T , is updated by
rows, i.e.

T◦ =

 n◦
x n◦

y n◦
z

T−
1,• − T−

1,• × o⊖
r − T−

1,• × o⊖
t

T−
2,• − T−

2,• × o⊖
r − T−

,• × o⊖
t


This matrix is re-normalized (unless prevented by approxMask) and mid-step transformation is
computed using quaternion spherical interpolation as

T⊖ = Slerp
(
T−; T◦; t = 1/2

)
.

Depending on approxMask, this computation can be avoided by approximating T⊖ = T−.

Finally, current displacement is evaluated as

u◦ = u− + T⊖v⊖r ∆t.

For the normal component, non-incremental evaluation is preferred, giving

u◦
x = |x◦2 − x◦1|− (r1 + r2)

If this functor is called for L6Geom, local rotation is updated as

φ◦ = φ− + T⊖∆t(ω2 −ω1)

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

2.4. Yade modules reference 1043

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_Sphere_L6Geom(inherits Ig2_Sphere_Sphere_L3Geom →
IGeomFunctor → Functor → Serializable)

Incrementally compute L6Geom for contact of 2 spheres.

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1044 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update a ScGeom instance representing the geometry of a contact point between two
Spheres s.

property avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom).

Short explanation of what we want to avoid :

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1. translation dx in the normal direction

2. rotation a

3. translation -dx (back to the initial position)

4. rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1045

Yade Documentation, Release 3rd ed.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Sphere_Sphere_ScGeom6D(inherits Ig2_Sphere_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.

property avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom).

Short explanation of what we want to avoid :

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1. translation dx in the normal direction

2. rotation a

3. translation -dx (back to the initial position)

4. rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

1046 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

property creep
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateRotations
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.plot.Ig2_Tetra_Tetra_TTetraGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update geometry of collision between 2 tetrahedra (TTetraGeom instance)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1047

Yade Documentation, Release 3rd ed.

class yade.plot.Ig2_Tetra_Tetra_TTetraSimpleGeom(inherits IGeomFunctor → Functor →
Serializable)

EXPERIMANTAL. Create/update geometry of collision between 2 tetrahedra (TTetraSimpleGeom
instance)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Wall_LevelSet_MultiScGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a MultiScGeom instance representing the multiple contact points interaction
kinematics of one LevelSet body with one Wall body, extending Ig2_Wall_LevelSet_ScGeom to
non-convex LevelSet-shaped bodies. Relative orientation of wall wrt global axes is again not sup-
ported. TODO: time cost could / should be improved (wrt Ig2_LevelSet_LevelSet_MultiScGeom;
jduriez note see aor8* and aor9*)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Wall_LevelSet_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Creates or updates a ScGeom instance representing the intersection of one LevelSet-shaped body
with one Wall-shaped body, where overlap is chosen to occur on the opposite wall side than the
LevelSet body’s center. Contact normal is given by the wall normal (relative orientation of wall
wrt global axes is not supported) while overlap and contact points are defined likewise to Ig2_-
LevelSet_LevelSet_ScGeom.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1048 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Wall_LevelSet_VolumeGeom(inherits IGeomFunctor → Functor →
Serializable)

Creates or updates a VolumeGeom instance representing the intersection of one LevelSet body with
one Wall body, where overlap is chosen to occur on the opposite wall side than the LevelSet body’s
center. Contact normal is given by the wall normal while overlap and contact points are defined
likewise to Ig2_LevelSet_LevelSet_VolumeGeom.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property nRefineOctree
The number of refinements performed by the Octree algorithm used to compute the overlap
volume between two particles. Default is 5.

property smearCoeffOctree
Smearing coefficient for the smeared Heaviside step function in the overlap volume integra-
tion. The transition width, or smearing width, is equal to half the diagonal of the smallest
integration cell divided by the smearing coefficient.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useAABE
If true, use the provided (locally) axis-aligned bounding ellipsoid (AABE) to reduce the poten-
tial overlap volume between the particles. Increases accuracy of the Octree algrithm because
the smallest integration cells will be smaller.

class yade.plot.Ig2_Wall_PFacet_ScGeom(inherits Ig2_Wall_Sphere_ScGeom → IGeomFunctor→ Functor → Serializable)
Create/update a ScGeom instance representing intersection of Wall and PFacet.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1049

Yade Documentation, Release 3rd ed.

property hertzian
If True, the equivalent radius for the Wall (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
Avoid granular ratcheting

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Wall_Polyhedra_PolyhedraGeom(inherits IGeomFunctor → Functor →
Serializable)

Create/update geometry of collision between Wall and Polyhedra

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Wall_Sphere_L3Geom(inherits Ig2_Sphere_Sphere_L3Geom → IGeomFunctor→ Functor → Serializable)
Incrementally compute L3Geom for contact between Wall and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.

property approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

property bases
Ordered list of types (as strings) this functor accepts.

1050 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property distFactor
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero’’
one).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property trsfRenorm
How often to renormalize trsf ; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ig2_Wall_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create/update a ScGeom instance representing intersection of Wall and Sphere.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property hertzian
If True, the equivalent radius for the Wall (ScGeom.refR1) is chosen as 1e8 times the Sphere’s
radius (closer to Hertzian therory, where it is infinite). Otherwise, it is chosen to be equal to
the Sphere’s radius.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noRatch
Avoid granular ratcheting

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.InelastCohFrictMat(inherits FrictMat → ElastMat → Material → Serializable)

property alphaKr
Dimensionless coefficient used for the rolling stiffness.

property alphaKtw
Dimensionless coefficient used for the twist stiffness.

2.4. Yade modules reference 1051

Yade Documentation, Release 3rd ed.

property compressionModulus
Compresion elasticity modulus

property creepBending
Bending creeping coefficient. Usual values between 0 and 1.

property creepTension
Tension/compression creeping coefficient. Usual values between 0 and 1.

property creepTwist
Twist creeping coefficient. Usual values between 0 and 1.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property epsilonMaxCompression
Maximal plastic strain compression

property epsilonMaxTension
Maximal plastic strain tension

property etaMaxBending
Maximal plastic bending strain

property etaMaxTwist
Maximal plastic twist strain

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property nuBending
Bending elastic stress limit

property nuTwist
Twist elastic stress limit

1052 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property shearCohesion
Shear elastic stress limit

property shearModulus
shear elasticity modulus

property sigmaCompression
Compression elastic stress limit

property sigmaTension
Tension elastic stress limit

property tensionModulus
Tension elasticity modulus

property unloadBending
Bending plastic unload coefficient. Usual values between 0 and +infinity.

property unloadTension
Tension/compression plastic unload coefficient. Usual values between 0 and +infinity.

property unloadTwist
Twist plastic unload coefficient. Usual values between 0 and +infinity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.InelastCohFrictPhys(inherits RotStiffFrictPhys → FrictPhys → NormShearPhys→ NormPhys → IPhys → Serializable)

property cohesionBroken
is cohesion active? will be set false when a fragile contact is broken

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property isBroken
true if compression plastic fracture achieved

property kDam
Damage coefficient on bending, computed from maximum bending moment reached and pure
creep behaviour. Its values will vary between InelastCohFrictPhys::kr and InelastCohFrict-
Phys::kRCrp .

property kRCrp
Bending creep stiffness

2.4. Yade modules reference 1053

Yade Documentation, Release 3rd ed.

property kRUnld
Bending plastic unload stiffness

property kTCrp
Tension/compression creep stiffness

property kTUnld
Tension/compression plastic unload stiffness

property kTwCrp
Twist creep stiffness

property kTwUnld
Twist plastic unload stiffness

property kn
Normal stiffness

property knC
compression stiffness

property knT
tension stiffness

property kr
rotational stiffness [N.m/rad]

property ks
shear stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendMom
Plastic failure bending moment.

property maxContract
Plastic failure contraction (shrinkage).

property maxCrpRchdB
maximal bending moment reached on plastic deformation.

property maxCrpRchdC
maximal compression reached on plastic deformation. maxCrpRchdC[0] stores un and max-
CrpRchdC[1] stores Fn.

property maxCrpRchdT
maximal extension reached on plastic deformation. maxCrpRchdT[0] stores un and maxCr-
pRchdT[1] stores Fn.

property maxCrpRchdTw
maximal twist reached on plastic deformation. maxCrpRchdTw[0] stores twist angle and
maxCrpRchdTw[1] stores twist moment.

property maxElB
Maximum bending elastic moment.

property maxElC
Maximum compression elastic force.

property maxElT
Maximum tension elastic force.

1054 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxElTw
Maximum twist elastic moment.

property maxExten
Plastic failure extension (stretching).

property maxTwist
Plastic failure twist angle

property moment_bending
Bending moment

property moment_twist
Twist moment

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property onPlastB
true if plasticity achieved on bending

property onPlastC
true if plasticity achieved on compression

property onPlastT
true if plasticity achieved on traction

property onPlastTw
true if plasticity achieved on twisting

property pureCreep
Pure creep curve, used for comparison in calculation.

property shearAdhesion
Maximum elastic shear force (cohesion).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

property twp
plastic twist penetration depth describing the equilibrium state.

property unp
plastic normal penetration depth describing the equilibrium state.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.InsertionSortCollider(inherits Collider → GlobalEngine → Engine →
Serializable)

Collider with O(n log(n)) complexity, using Aabb for bounds.

At the initial step, Bodies’ bounds (along sortAxis) are first std::sort’ed along this (sortAxis)
axis, then collided. The initial sort has O(n2) complexity, see Colliders’ performance for some
information (There are scripts in examples/collider-perf for measurements).

Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).

2.4. Yade modules reference 1055

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 3rd ed.

Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.

This collider handles periodic boundary conditions. There are some limitations, notably:

1. No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception if it does and gets in interaction. One way to explicitly by-pass this restriction is
offered by allowBiggerThanPeriod, which can be turned on to insert a floor in the form of a
very large box for instance (see examples/periodicSandPile.py).

2. No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their displacements and only re-run if they might have gone out of that bounds (see Verlet
list for brief description and background) . This requires cooperation from NewtonIntegrator as
well as BoundDispatcher, which will be found among engines automatically (exception is thrown if
they are not found).

If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 × typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.

If targetInterv is >1, not all particles will have their bound enlarged by verletDist; instead,
they will have bounds increased by a length in order to trigger a new colliding after targetInterv
iteration, assuming they move at almost constant velocity. Ideally in this method, all particles
would reach their bounds at the sime iteration. This is of course not the case as soon as velocities
fluctuate in time. Bound::sweepLength is tuned on the basis of the displacement recorded between
the last two runs of the collider. In this situation, verletDist defines the maximum sweep length.

property allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doSort
Do forced resorting of interactions.

dumpBounds((InsertionSortCollider)arg1) → tuple :
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

• coordinate (float)

• body id (int), but negated for negative bounds

1056 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Verlet_list

Yade Documentation, Release 3rd ed.

• period numer (int), if the collider is in the periodic regime.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fastestBodyMaxDist
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

isActivated((InsertionSortCollider)arg1) → bool :
Return true if collider needs execution at next iteration.

property keepListsShort
if true remove bounds of non-existent or unbounded bodies from the lists (auto-updated);
turned true automatically in MPI mode and if bodies are erased with BodyCon-
tainer.enableRedirection‘=True. :ydefault:‘false

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property minSweepDistFactor
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

property newton
reference to active Newton integrator. (auto-updated)

property numAction
Cummulative number of collision detection.

property numReinit
Cummulative number of bound array re-initialization.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property overlapTolerance
Tolerance on determining overlap. In rare cases different parts of the code can inconsistently
lead to different results in terms of overlap, with false negative by spatialOverlapPeri possibly
leading to nasty bugs in contact detection (false positive are harmless). This tolerance is to
avoid false negative, the value can be understood as relative to 1 (i.e. independent of particle
size or any other reference length). The default should be ok.

property periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

property smartInsertErase
Use an algorithm optimized for heavy insert/delete (avoid initSort) - experimental.

property sortAxis
Axis for the initial contact detection.

2.4. Yade modules reference 1057

Yade Documentation, Release 3rd ed.

property sortThenCollide
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

property strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

property targetInterv
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatingDispFactor
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

property verletDist
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.plot.Integrator(inherits TimeStepper → GlobalEngine → Engine → Serializable)
Integration Engine Interface.

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property integrationsteps
all integrationsteps count as all succesfull substeps

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

1058 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxVelocitySq
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

property timeStepUpdateInterval
dt update interval

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Interaction(inherits Serializable)
Interaction between pair of bodies.

property cellDist
Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by
this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have the period information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property geom
Geometry part of the interaction.

property id1
Id of the first body in this interaction.

property id2
Id of the second body in this interaction.

property isActive
True if this interaction is active. Otherwise the forces from this interaction will not be taken
into account. True by default.

property isReal
True if this interaction has both geom and phys; False otherwise.

2.4. Yade modules reference 1059

Yade Documentation, Release 3rd ed.

property iterBorn
Step number at which the interaction was added to simulation.

property iterMadeReal
Step number at which the interaction was fully (in the sense of geom and phys) created.
(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

property phys
Physical (material) part of the interaction.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.InteractionContainer
Access to interactions of simulation, by using

1. id’s of both Bodies of the interactions, e.g. O.interactions[23,65]

2. iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are virtual i.e. not real.

__init__((object)arg1, (InteractionContainer)arg2) → None

all((InteractionContainer)arg1[, (bool)onlyReal=False]) → list :
Return list of all interactions. Virtual interaction are filtered out if onlyReal=True, else
(default) it dumps the full content.

clear((InteractionContainer)arg1) → None :
Remove all interactions, and invalidate persistent collider data (if the collider supports it).

countReal((InteractionContainer)arg1) → int :
Return number of interactions that are real.

erase((InteractionContainer)arg1, (int)arg2, (int)arg3) → None :
Erase one interaction, given by id1, id2 (internally, requestErase is called – the interaction
might still exist as potential, if the Collider decides so).

eraseNonReal((InteractionContainer)arg1) → None :
Erase all interactions that are not real .

has((InteractionContainer)arg1, (int)id1, (int)id2[, (bool)onlyReal=False]) → bool :
Tell if a pair of ids id1, id2 corresponds to an existing interaction (real or not depending on
onlyReal)

nth((InteractionContainer)arg1, (int)arg2) → Interaction :
Return n-th interaction from the container (usable for picking random interaction). The
virtual interactions are not reached.

property serializeSorted

withBody((InteractionContainer)arg1, (int)arg2) → list :
Return list of real interactions of given body.

withBodyAll((InteractionContainer)arg1, (int)arg2) → list :
Return list of all (real as well as non-real) interactions of given body.

1060 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.InteractionIterator

__init__((object)arg1, (InteractionIterator)arg2) → None

next()
__next__((InteractionIterator)arg1) -> Interaction

class yade.plot.InteractionLoop(inherits GlobalEngine → Engine → Serializable)
Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.

Special constructor

Constructs from 3 lists of Ig2, Ip2, Law2 functors respectively; they will be passed to internal dis-
patchers, which you might retrieve as geomDispatcher, physDispatcher, lawDispatcher respectively.

property callbacks
Callbacks which will be called for every Interaction, if activated.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property geomDispatcher
IGeomDispatcher object that is used for dispatch.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lawDispatcher
LawDispatcher object used for dispatch.

property loopOnSortedInteractions
If true, the main interaction loop will occur on a sorted list of interactions. This is SLOW
but useful to workaround floating point force addition non reproducibility when debugging
parallel implementations of yade.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property physDispatcher
IPhysDispatcher object used for dispatch.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.4. Yade modules reference 1061

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.InternalForceDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((InternalForceDispatcher)arg1, (Shape)arg2, (Material)arg3) →
InternalForceFunctor :

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((InternalForceDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.InternalForceFunctor(inherits Functor → Serializable)
Functor for creating/updating Body::bound.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1062 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.InterpolatingDirectedForceEngine(inherits ForceEngine → PartialEngine →
Engine → Serializable)

Engine for applying force of varying magnitude but constant direction on subscribed bodies. times
and magnitudes must have the same length, direction (normalized automatically) gives the orien-
tation.

As usual with interpolating engines: the first magnitude is used before the first time point, last
magnitude is used after the last time point. Wrap specifies whether time wraps around the last
time point to the first time point.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property direction
Contact force direction (normalized automatically)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property force
Force to apply.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property magnitudes
Force magnitudes readings [N]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property times
Time readings [s]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.4. Yade modules reference 1063

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wrap
wrap to the beginning of the sequence if beyond the last time point

class yade.plot.InterpolatingHelixEngine(inherits HelixEngine → RotationEngine →
KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying spiral motion, finding current angular velocity by linearly interpolating in times
and velocities and translation by using slope parameter.

The interpolation assumes the margin value before the first time point and last value after the last
time point. If wrap is specified, time will wrap around the last times value to the first one (note
that no interpolation between last and first values is done).

property angleTurned
How much have we turned so far. (auto-updated) [rad]

property angularVelocities
List of angular velocities; manadatorily of same length as times. [rad/s]

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property linearVelocity
Linear velocity [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

1064 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property slope
Axial translation per radian turn (can be negative) [m/rad]

property times
List of time points at which velocities are given; must be increasing [s]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wrap
Wrap t if t>times_n, i.e. t_wrapped=t-N*(times_n-times_0)

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.plot.IntrCallback(inherits Serializable)
Abstract callback object which will be called for every (real) Interaction after the interaction has
been processed by InteractionLoop.

At the beginning of the interaction loop, stepInit is called, initializing the object; it returns either
NULL (to deactivate the callback during this time step) or pointer to function, which will then be
passed (1) pointer to the callback object itself and (2) pointer to Interaction.

Note: (NOT YET DONE) This functionality is accessible from python by passing 4th argument
to InteractionLoop constructor, or by appending the callback object to InteractionLoop::callbacks.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_2xInelastCohFrictMat_InelastCohFrictPhys(inherits IPhysFunctor →
Functor → Serializable)

Generates cohesive-frictional interactions with moments. Used in the contact law Law2_Sc-
Geom6D_InelastCohFrictPhys_CohesionMoment.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_BubbleMat_BubbleMat_BubblePhys(inherits IPhysFunctor → Functor →
Serializable)

Generates bubble interactions.Used in the contact law Law2_ScGeom_BubblePhys_Bubble.

2.4. Yade modules reference 1065

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(inherits IPhysFunctor → Functor→ Serializable)
Generates cohesive-frictional interactions with moments, used in the contact law Law2_Sc-
Geom6D_CohFrictPhys_CohesionMoment. The normal/shear stiffness and friction definitions are
the same as in Ip2_FrictMat_FrictMat_FrictPhys, check the documentation there for details.

Adhesions related to the normal and the shear components are calculated from CohFrict-
Mat::normalCohesion (Cn) and CohFrictMat::shearCohesion (Cs). For particles of size R1,R2 the
adhesion will be ai = Cimin(R1, R2)

2, i = n, s.

Twist and rolling stiffnesses are proportional to the shear stiffness through dimensionless fac-
tors alphaKtw and alphaKr, such that the rotational stiffnesses are defined by ksαiR1R2,
i = tw, r.Theadhesivecontributionstorollingandtwistingresistancearebydefault‘ Cr =
Cn

4
min(R1, R2)

3 : math : and ‘C_{tw}=frac{C_s}{2} min(R_1,R_2)^3$ (inspired by the case
of beams).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property normalCohesion
Instance of MatchMaker determining tensile strength

property rollingCohesion
Instance of MatchMaker determining cohesive part of the rolling strength (a frictional term
might be added depending on CohFrictPhys::cohesionDisablesFriction). The default is r

4
Rt

with Rt the shear strength (inspired by stress in beams with circular cross-section).

setCohesion((Ip2_CohFrictMat_CohFrictMat_CohFrictPhys)arg1, (Interaction)interaction,
(bool)cohesive, (bool)resetDisp) → None :

Bond or un-bond an interaction with cohesion.

When True, the resulting state is the same as what is obtained by executing an
InteractionLoop with the functor’s setCohesionNow or the interaction’s CohFrict-
Phys::initCohesion True. It will use the matchmakers if defined. The only difference

1066 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

is that calling this function explicitly will make the contact cohesive even if not both
materials have CohFrictMat::isCohesive‘=‘‘True‘.

When False, the resulting state is the same as after breaking a fragile interaction. If resetDisp
is True, the current distance is taken as the reference for computing normal displacement and
normal force.

property setCohesionNow
If true, assign cohesion to all existing contacts in current time-step. The flag is turned false
automatically, so that assignment is done in the current timestep only.

property setCohesionOnNewContacts
If true, assign cohesion at all new contacts. If false, only existing contacts can be cohesive (also
see Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow), and new contacts are
only frictional.

property shearCohesion
Instance of MatchMaker determining cohesive part of the shear strength (a frictional term
might be added depending on CohFrictPhys::cohesionDisablesFriction)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twistingCohesion
Instance of MatchMaker determining cohesive part of the twisting strength (a frictional term
might be added depending on CohFrictPhys::cohesionDisablesFriction). The default is r

2
Rs

with Rs the shear strength (inspired by stress in beams with circular cross-section).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_CpmMat_CpmMat_CpmPhys(inherits IPhysFunctor → Functor → Serializable)
Convert 2 CpmMat instances to CpmPhys with corresponding parameters. Uses simple (arithmetic)
averages if material are different. Simple copy of parameters is performed if the material is shared
between both particles. See cpm-model for detals.

property E
Instance of MatchMaker determining how to compute interaction’s normal modulus. If None,
average value is used.

property bases
Ordered list of types (as strings) this functor accepts.

property cohesiveThresholdIter
Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
0, they will never be. If negative, they will always be created as cohesive (10 by default).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1067

Yade Documentation, Release 3rd ed.

class yade.plot.Ip2_ElastMat_ElastMat_NormPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a NormPhys from two ElastMats. TODO. EXPERIMENTAL

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_ElastMat_ElastMat_NormShearPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a NormShearPhys from two ElastMats. TODO. EXPERIMENTAL

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM(inherits IPhysFunctor →
Functor → Serializable)

Create a MindlinPhysCDM from two FrictMatCDMsExts.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1068 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_CpmMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

Convert CpmMat instance and FrictMat instance to FrictPhys with corresponding parameters
(young, poisson, frictionAngle). Uses simple (arithmetic) averages if material parameters are dif-
ferent.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
See Ip2_FrictMat_FrictMat_FrictPhys.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM(inherits IPhysFunctor → Functor→ Serializable)
Create a MindlinPhysCDM from one FrictMat and one FrictMatCDM instance.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMat_CapillaryMindlinPhysDelaunay(inherits
Ip2_FrictMat_-
FrictMat_MindlinPhys→ IPhysFunctor →
Functor →
Serializable)

2.4. Yade modules reference 1069

Yade Documentation, Release 3rd ed.

Variant of Ip2_(matType)_(matType)_(iPhysType) to be used with CapillarityEngine.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

property computeDefault
bool to assign the default value of computeBridge.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property frictAngle
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vn
Impact velocity corresponding to the en value to calculate the dissipative constant An used
in the viscous damping model of [Mueller2011].

class yade.plot.Ip2_FrictMat_FrictMat_CapillaryPhys(inherits IPhysFunctor → Functor →
Serializable)

RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity.

In these RelationShips all the interaction attributes are computed.

1070 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMat_CapillaryPhysDelaunay(inherits Ip2_FrictMat_-
FrictMat_FrictPhys →
IPhysFunctor → Functor →
Serializable)

Variant of Ip2_FrictMat_FrictMat_FrictPhys to be used with CapillarityEngine.

property bases
Ordered list of types (as strings) this functor accepts.

property computeDefault
bool to assign the default value of computeBridge.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kn
Instance of MatchMaker determining how to compute interaction’s normal stiffness. If None,
harmonic average is used.

property ks
Instance of MatchMaker determining how to compute interaction’s shear stiffness. If None,
harmonic average is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1071

Yade Documentation, Release 3rd ed.

class yade.plot.Ip2_FrictMat_FrictMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a FrictPhys from two FrictMats. The compliance of one sphere under point load is defined
here as 1/(E.D), with E the stiffness of the sphere and D its diameter. The compliance of the
contact itself is taken as the sum of compliances from each sphere, i.e. 1/(E1.D1) + 1/(E2.D2)
in the general case, or 2/(E.D) in the special case of equal sizes and equal stiffness. Note that
summing compliances is equivalent to summing the harmonic average of stiffnesses. This reasoning
is applied in both the normal and the tangential directions (as in e.g. [Scholtes2009a]), hence the
general form of the contact stiffness:

k = E1D1∗E2D2

E1D1+E2D2
= k1∗k2

k1+k2
, with ki = EiDi.

In the above equation Ei is taken equal to FrictMat::young of sphere i for the normal stiffness,
and FrictMat::young × ElastMat::poisson for the shear stiffness. In the case of a contact between
a ViscElMat and a FrictMat, be sure to set FrictMat::young and FrictMat::poisson, otherwise the
default value will be used.

The contact friction is defined according to Ip2_FrictMat_FrictMat_FrictPhys::frictAngle (mini-
mum of the two materials by default).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kn
Instance of MatchMaker determining how to compute interaction’s normal stiffness. If None,
harmonic average is used.

property ks
Instance of MatchMaker determining how to compute interaction’s shear stiffness. If None,
harmonic average is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMat_KnKsPBPhys(inherits IPhysFunctor → Functor →
Serializable)

EXPERIMENTAL. Ip2 functor for KnKsPBPhys

property Knormal
Volumetric stiffness in the contact normal direction (units: stress/length)

property Kshear
Volumetric stiffness in the contact shear direction (units: stress/length)

property bases
Ordered list of types (as strings) this functor accepts.

1072 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property cohesion
Cohesion (stress units)

property cohesionBroken
Whether cohesion is already broken

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property intactRock
Whether to consider cohesive force in the Mohr-Coulomb criterion, if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw.allowBreakage=False and cohesionBroken=False

property kn_i
Volumetric stiffness in the contact normal direction (units: stress/length) when isBound-
ary=True for one of the PBs

property ks_i
Volumetric stiffness in the contact shear direction (units: stress/length) when isBound-
ary=True for one of the PBs

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property phi_b
Basic friction angle (degrees)

property tension
Tension (stress units)

property tensionBroken
Whether tension is already broken

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping

class yade.plot.Ip2_FrictMat_FrictMat_KnKsPhys(inherits IPhysFunctor → Functor →
Serializable)

EXPERIMENTAL. Ip2 functor for KnKsPhys

property Knormal
Volumetric stiffness in the contact normal direction (units: stress/length)

property Kshear
Volumetric stiffness in the contact shear direction (units: stress/length)

property bases
Ordered list of types (as strings) this functor accepts.

property brittleLength
Shear length for degradation

2.4. Yade modules reference 1073

Yade Documentation, Release 3rd ed.

property cohesion
Cohesion

property cohesionBroken
Whether cohesion is already broken

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property kn_i
Currently, we assume kn_i and Knormal are adopting the same value in Ip2 initialisation

property ks_i
Currently, we assume ks_i and Kshear are adopting the same value in Ip2 initialisation

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property maxClosure
not fully in use

property phi_b
Basic friction angle

property tension
Tension

property tensionBroken
Whether tension is already broken

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping ratio βn, see Ip2_FrictMat_FrictMat_MindlinPhys documentation

class yade.plot.Ip2_FrictMat_FrictMat_LubricationPhys(inherits IPhysFunctor → Functor →
Serializable)

Ip2 creating LubricationPhys from two Material instances.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property eps
Roughness: fraction of radius enlargement for contact asperities

property eta
Fluid viscosity [Pa.s]

1074 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property keps
Dimensionless stiffness coefficient of the asperities, relative to the stiffness of the surface (the
final stiffness will be keps*kn). Only used with resolution method=0, with resolution>0 it is
always equal to 1. [-]

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMat_MindlinCapillaryPhys(inherits IPhysFunctor →
Functor → Serializable)

RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.4. Yade modules reference 1075

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMat_MindlinPhys(inherits IPhysFunctor → Functor →
Serializable)

Calculate physical parameters needed to obtain the normal and shear stiffness values according to
the Hertz-Mindlin formulation (no slip solution).\

There are two available viscous damping models for (1) constant and (2) velocity-dependent co-
efficient of restitution. In both cases, the viscous forces are calculated as Fn,viscous = cn · vn
(Fs,viscous = cs ·vs), where cn (cs) the normal (shear) viscous damping coefficient and vn (vs) the
normal (shear) component of the relative velocity.\

(1) Constant coefficient of restitution: The normal (shear) viscous damping coefficient is given by
cn = 2 · βn ·

√
mbar · kn (cs = 2 · βs ·

√
mbar · ks), where mbar the effective mass, βn (βs)

normal (shear) viscous damping ratios, and kn = 2 · E∗ ·
√
R∗ · N (ks = 8 · G∗ ·

√
R · uN) the

normal (shear) tangential stiffness values, according to the formulations of Hertz and Mindlin,
respectively, and R∗, E∗, G∗ the effective radius, elastic and shear moduli of the interacting
particles.

The normal (shear) viscous damping coefficient cn (cs) can be specified either by providing the
normal (shear) viscous damping ratio βn (βs), which is then assigned directly to MindlinPhys.betan
(MindlinPhys.betas), or by defining the normal (shear) coefficient of restitution en (es) in which case
the viscous damping ratios are computed using formula (B6) of [Thornton2013], written specifically
for the Hertz-Mindlin model (no-slip solution) where the end of contact is considered to take place
once the normal force is zero and not once the overlap is zero, thus not allowing attractive elastic
forces for non-adhesive contacts, as also discussed in [Schwager2007].

(2) Velocity-dependent coefficient of restitution: The viscous damping coefficients are given by
cn = cs = A · kn, where A a dissipative constant. To calculate this constant, the user has to
provide a coefficient of restitution (en) and an impact velocity (vn) corresponding to this en,
as described in [Mueller2011].

The following rules apply: # It is an error to specify both en and βn (es and βs) or both vn and
βn.

If neither en nor βn is given, then MindlinPhys.betan will be zero and no viscous damping will
be considered.

If neither es nor βs is given, the value of Ip2_FrictMat_FrictMat_MindlinPhys.en is used for
Ip2_FrictMat_FrictMat_MindlinPhys.es and the value of MindlinPhys.betan is used for Mindlin-
Phys.betas, respectively.

The en, βn, es, βs, vn are MatchMaker objects; they can be constructed from float values to
always return constant values.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1076 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property frictAngle
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vn
Impact velocity corresponding to the en value to calculate the dissipative constant An used
in the viscous damping model of [Mueller2011].

class yade.plot.Ip2_FrictMat_FrictMat_MultiFrictPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a MultiFrictPhys from two FrictMats. Mother contact stiffnesses (MultiFrictPhys.kn and
MultiFrictPhys.ks) are directly assigned from below attributes, independent of FrictMat properties.
Global friction angle (MultiFrictPhys.frictAngle) is taken as the minimum of the 2 material friction
angles (FrictMat.frictionAngle).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property kn
Chosen value for MultiFrictPhys.kn

property ks
Chosen value for MultiFrictPhys.ks

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.4. Yade modules reference 1077

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictMat_ViscoFrictPhys(inherits
Ip2_FrictMat_FrictMat_FrictPhys →
IPhysFunctor → Functor →
Serializable)

Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads
is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,
or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2_FrictMat_-
FrictMat_FrictPhys functor.

The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kn
Instance of MatchMaker determining how to compute interaction’s normal stiffness. If None,
harmonic average is used.

property ks
Instance of MatchMaker determining how to compute interaction’s shear stiffness. If None,
harmonic average is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_FrictViscoMat_FrictViscoPhys(inherits IPhysFunctor → Functor→ Serializable)
Converts a FrictMat and FrictViscoMat instance to FrictViscoPhys with corresponding parameters.
Basically this functor corresponds to Ip2_FrictMat_FrictMat_FrictPhys with the only difference
that damping in normal direction can be considered.

property bases
Ordered list of types (as strings) this functor accepts.

1078 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kRatio
Instance of MatchMaker determining how to compute interaction’s shear contact stiffnesses.
If this value is not given the elastic properties (i.e. poisson) of the two colliding materials are
used to calculate the stiffness.

property kn
Instance of MatchMaker determining how to compute interaction’s normal contact stiffnesses.
If this value is not given the elastic properties (i.e. young) of the two colliding materials are
used to calculate the stiffness.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictMat_PolyhedraMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_FrictViscoMat_FrictViscoMat_FrictViscoPhys(inherits IPhysFunctor →
Functor → Serializable)

Converts 2 FrictViscoMat instances to FrictViscoPhys with corresponding parameters. Basically
this functor corresponds to Ip2_FrictMat_FrictMat_FrictPhys with the only difference that damp-
ing in normal direction can be considered.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1079

Yade Documentation, Release 3rd ed.

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property kRatio
Instance of MatchMaker determining how to compute interaction’s shear contact stiffnesses.
If this value is not given the elastic properties (i.e. poisson) of the two colliding materials are
used to calculate the stiffness.

property kn
Instance of MatchMaker determining how to compute interaction’s normal contact stiffnesses.
If this value is not given the elastic properties (i.e. young) of the two colliding materials are
used to calculate the stiffness.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_JCFpmMat_JCFpmMat_JCFpmPhys(inherits IPhysFunctor → Functor →
Serializable)

Converts 2 JCFpmMat instances to one JCFpmPhys instance, with corresponding parameters. See
JCFpmMat and [Duriez2016] for details

property bases
Ordered list of types (as strings) this functor accepts.

property cohesiveTresholdIteration
should new contacts be cohesive? If strictly negativ, they will in any case. If positiv, they
will before this iter, they won’t afterward.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property weibullCutOffMax
Factor that cuts off the largest values of the weibull distributed interaction areas.

property weibullCutOffMin
Factor that cuts off the smallest values of the weibull distributed interaction areas.

property xSectionWeibullScaleParameter
Scale parameter used to generate interaction radii for the crosssectional areas (changing
strength criteria only) according to Weibull distribution. Activated for any value other than
0. Needs to be combined with a shape parameter

1080 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property xSectionWeibullShapeParameter
Shape parameter used to generate interaction radii for the crossSectional areas (changing
strength criteria only) according to Weibull distribution. Activated for any value other than
0. Needs to be combined with a scale parameter)

class yade.plot.Ip2_LudingMat_LudingMat_LudingPhys(inherits IPhysFunctor → Functor →
Serializable)

Convert 2 instances of LudingMat to LudingPhys using the rule of consecutive connection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_MortarMat_MortarMat_MortarPhys(inherits IPhysFunctor → Functor →
Serializable)

Ip2 creating MortarPhys from two MortarMat instances.

property bases
Ordered list of types (as strings) this functor accepts.

property cohesiveThresholdIter
Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
<=0, they will never be.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_PartialSatMat_PartialSatMat_MindlinPhys(inherits IPhysFunctor →
Functor → Serializable)

PartialSat variant of HertzMindlin

Calculate some physical parameters needed to obtain the normal and shear stiffnesses
according to the Hertz-Mindlin formulation (as implemented in PFC).

Viscous parameters can be specified either using coefficients of restitution (en, es) or viscous
damping ratio (βn, βs). The following rules apply: #. If the βn (βs) ratio is given, it is assigned to
MindlinPhys.betan (MindlinPhys.betas) directly. #. If en is given, MindlinPhys.betan is computed
using βn = −(log en)/

√
π2 + (log en)2. The same applies to es, MindlinPhys.betas. #. It is an

2.4. Yade modules reference 1081

Yade Documentation, Release 3rd ed.

error (exception) to specify both en and βn (es and βs). #. If neither en nor βn is given, zero
value for MindlinPhys.betan is used; there will be no viscous effects. #.If neither es nor βs is given,
the value of MindlinPhys.betan is used for MindlinPhys.betas as well.

The en, βn, es, βs are MatchMaker objects; they can be constructed from float values to always
return constant value.

See scripts/test/shots.py for an example of specifying en based on combination of parameters.

property bases
Ordered list of types (as strings) this functor accepts.

property betan
Normal viscous damping ratio βn.

property betas
Shear viscous damping ratio βs.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Normal coefficient of restitution en.

property es
Shear coefficient of restitution es.

property eta
Coefficient to determine the plastic bending moment

property frictAngle
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

property gamma
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

property krot
Rotational stiffness for moment contact law

property ktwist
Torsional stiffness for moment contact law

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys(inherits IPhysFunctor →
Functor → Serializable)

Computes the interaction properties from the material properties of the two interacting bodies 1,2.
Contact friction angle is taken as the minimum of the two frictionAngle, and contact stiffnesses kn
and ks obey 1/kn = 1/Y1+1/Y2 and 1/ks = 1/(Y1P1)+1/(Y2P2), with Yi and Pi corresponding to
young and poisson for 1 and 2. The unit system to interpret these equations and quantities depend
on Law2_PolyhedraGeom_PolyhedraPhys_Volumetric.volumePower.

1082 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/shots.py

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_ViscElCapMat_ViscElCapMat_ViscElCapPhys(inherits Ip2_ViscElMat_-
ViscElMat_ViscElPhys →
IPhysFunctor → Functor →
Serializable)

Convert 2 instances of ViscElCapMat to ViscElCapPhys using the rule of consecutive connection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property en
Instance of MatchMaker determining restitution coefficient in normal direction

property et
Instance of MatchMaker determining restitution coefficient in tangential direction

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property tc
Instance of MatchMaker determining contact time

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_ViscElMat_ViscElMat_ViscElPhys(inherits IPhysFunctor → Functor →
Serializable)

Convert 2 instances of ViscElMat to ViscElPhys using the rule of consecutive connection.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1083

Yade Documentation, Release 3rd ed.

property en
Instance of MatchMaker determining restitution coefficient in normal direction

property et
Instance of MatchMaker determining restitution coefficient in tangential direction

property frictAngle
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property tc
Instance of MatchMaker determining contact time

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Ip2_WireMat_WireMat_WirePhys(inherits IPhysFunctor → Functor → Serializable)
Converts 2 WireMat instances to WirePhys with corresponding parameters.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property linkThresholdIteration
Iteration to create the link.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.JCFpmMat(inherits FrictMat → ElastMat → Material → Serializable)
Possibly jointed, cohesive frictional material, for use with other JCFpm classes

property cohesion
Defines the maximum admissible tangential force in shear, for Fn=0, in the matrix (FsMax
= cohesion * crossSection). [Pa]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1084 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property jointCohesion
Defines the maximum admissible tangential force in shear, for Fn=0, on the joint surface. [Pa]

property jointDilationAngle
Defines the dilatancy of the joint surface (only valid for smooth contact logic). [rad]

property jointFrictionAngle
Defines Coulomb friction on the joint surface. [rad]

property jointNormalStiffness
Defines the normal stiffness on the joint surface. [Pa/m]

property jointShearStiffness
Defines the shear stiffness on the joint surface. [Pa/m]

property jointTensileStrength
Defines the maximum admissible normal force in traction on the joint surface. [Pa]

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property residualFrictionAngle
Defines the residual friction angle (when contacts are not cohesive). residualFrictionAn-
gle=frictionAngle if not specified. [rad]

property tensileStrength
Defines the maximum admissible normal force in traction in the matrix (FnMax = ten-
sileStrength * crossSection). [Pa]

property type
If particles of two different types interact, it will be with friction only (no cohesion).[-]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1085

Yade Documentation, Release 3rd ed.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.JCFpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the JCFpm type, storage for relevant parameters

property FnMax
positiv value computed from tensile strength (or joint variant) to define the maximum admis-
sible normal force in traction: Fn >= -FnMax. [N]

property FsMax
computed from cohesion (or jointCohesion) to define the maximum admissible tangential force
in shear, for Fn=0. [N]

property checkedForCluster
Have we checked if this int belongs in cluster?

property clusterInts
vector of pointers to the broken interactions nearby constituting a cluster

property clusteredEvent
is this interaction part of a cluster?

property computedCentroid
Flag for moment calculation

property crackJointAperture
Relative displacement between 2 spheres (in case of a crack it is equivalent of the crack
aperture)

property crossSection
crossSection=pi*Rmin^2. [m2]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property dilation
defines the normal displacement in the joint after sliding treshold. [m]

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elapsedIter
number of elapsed iterations for moment calculation

property eventBeginTime
The time at which event initiated

property eventNumber
cluster event number

property firstMomentCalc
Flag for moment calculation (auto-updated)

property initD
equilibrium distance for interacting particles. Computed as the interparticular distance at
first contact detection.

1086 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property interactionsAdded
have we added the ints associated with this event?

property isBroken
flag for broken interactions

property isCohesive
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensile strength (or their jointed variants).

property isOnJoint
defined as true when both interacting particles are on joint and are in opposite sides of the
joint surface. In this case, mechanical parameters of the interaction are derived from the
‘’joint…’’ material properties of the particles. Furthermore, the normal of the interaction may
be re-oriented (see Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM.smoothJoint).

property isOnSlot
defined as true when interaction is located in the perforation slot (surface).

property jointCumulativeSliding
sliding distance for particles interacting on a joint. Used, when is true, to take into account
dilatancy due to shearing. [-]

property jointNormal
normal direction to the joint, deduced from e.g. .

property kineticEnergy
kinetic energy of the two spheres participating in the interaction (easiest to store this value
with interaction instead of spheres since we are using this information for moment magnitude
estimations and associated interaction searches)

property kn
Normal stiffness

property ks
Shear stiffness

property momentBroken
Flag for moment calculation

property momentCalculated
Flag for moment calculation to avoid repeating twice the operations (auto-updated)

property momentCentroid
centroid of the AE event (avg location of clustered breaks)

property momentEnergy
reference strain (or kinetic) energy of surrounding interactions (particles)

property momentEnergyChange
storage of the maximum strain (or kinetic) energy change for surrounding interactions (par-
ticles)

property momentMagnitude
Moment magnitude of a failed interaction

property more
specifies if the interaction is crossed by more than 3 joints. If true, interaction is deleted
(temporary solution).

property nearbyFound
Count used to debug moment calc

2.4. Yade modules reference 1087

Yade Documentation, Release 3rd ed.

property nearbyInts
vector of pointers to the nearby ints used for moment calc

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property originalClusterEvent
the original AE event for a cluster

property originalEvent
pointer to the original interaction of a cluster

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property strainEnergy
strain energy of interaction

property tanDilationAngle
tangent of the angle defining the dilatancy of the joint surface (auto. computed from JCFp-
mMat.jointDilationAngle). [-]

property tanFrictionAngle
tangent of Coulomb friction angle for this interaction (auto. computed). [-]

property temporalWindow
temporal window for the clustering algorithm

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.JCFpmState(inherits ThermalState → State → Serializable)
JCFpm state information about each body.

property Cp
Heat capacity of the body

property Tcondition
indicates if particle is assigned dirichlet (constant temp) condition

property alpha
coefficient of thermal expansion

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property boundaryId
identifies if a particle is associated with constant temperature thrermal boundary condition

property damageIndex
Ratio of broken bonds over initial bonds. [-]

1088 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property delRadius
radius change due to thermal expansion

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isCavity
flag used for unbounding cavity bodies

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property joint
Indicates the number of joint surfaces to which the particle belongs (0-> no joint, 1->1 joint,
etc..). [-]

property jointNormal1
Specifies the normal direction to the joint plane 1. Rk: the ideal here would be to create a
vector of vector wich size is defined by the joint integer (as much joint normals as joints).
However, it needs to make the pushback function works with python since joint detection is
done through a python script. lines 272 to 312 of cpp file should therefore be adapted. [-]

property jointNormal2
Specifies the normal direction to the joint plane 2. [-]

property jointNormal3
Specifies the normal direction to the joint plane 3. [-]

property k
thermal conductivity of the body

property mass
Mass of this body

property nbBrokenBonds
Number of broken bonds. [-]

property nbInitBonds
Number of initial bonds. [-]

property oldTemp
change of temp (for thermal expansion)

2.4. Yade modules reference 1089

Yade Documentation, Release 3rd ed.

property onJoint
Identifies if the particle is on a joint surface.

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property stabilityCoefficient
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

property stepFlux
flux during current step

property temp
temperature of the body

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.plot.KinemCNDEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a Constant Normal Displacement (CND) shear for a parallelogram box

This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows one to perform a constant normal displacement shear, by translat-
ing horizontally the upper plate, while the lateral ones rotate so that they always keep contact
with the lower and upper walls.

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1090 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property gamma
the current value of the tangential displacement

property gamma_save
vector with the values of gamma at which a save of the simulation is performed [m]

property gammalim
the value of the tangential displacement at wich the displacement is stopped [m]

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shearSpeed
the speed at which the shear is performed : speed of the upper plate [m/s]

2.4. Yade modules reference 1091

Yade Documentation, Release 3rd ed.

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.plot.KinemCNLEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram
box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)

This engine allows one to translate horizontally the upper plate while the lateral ones rotate so
that they always keep contact with the lower and upper walls.

In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)

The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)

The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.

Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

1092 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property gamma
current value of tangential displacement [m]

property gamma_save
vector with the values of gamma at which a save of the simulation is performed [m]

property gammalim
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

2.4. Yade modules reference 1093

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shearSpeed
the speed at wich the shearing is performed : speed of the upper plate [m/s]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.plot.KinemCNSEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)

This engine, useable in simulations implying one deformable parallelepipedic box, allows one to
translate horizontally the upper plate while the lateral ones rotate so that they always keep contact
with the lower and upper walls. The upper plate can move not only horizontally but also vertically,
so that the normal rigidity defined by DeltaF(upper plate)/DeltaU(upper plate) = constant (= KnC
defined by the user).

The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.

Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

property Key
string to add at the names of the saved files

property KnC
the normal rigidity chosen by the user [MPa/mm] - the conversion in Pa/m will be made

property LOG
boolean controling the output of messages on the screen

1094 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property gamma
current value of tangential displacement [m]

property gammalim
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

2.4. Yade modules reference 1095

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property shearSpeed
the speed at wich the shearing is performed : speed of the upper plate [m/s]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.plot.KinemCTDEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To compress a simple shear sample by moving the upper box in a vertical way only, so that the
tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (targetSigma). Moreover
saves are executed at each value of stresses stored in the vector sigma_save, and at targetSigma

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property compSpeed
(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1096 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sigma_save
vector with the values of sigma at which a save of the simulation should be performed [kPa]

property targetSigma
the value of sigma at which the compression should stop [kPa]

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.4. Yade modules reference 1097

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.plot.KinemSimpleShearBox(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

This class is supposed to be a mother class for all Engines performing loadings on the simple shear
box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.

property Key
string to add at the names of the saved files

property LOG
boolean controling the output of messages on the screen

property alpha
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property f0
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

property firstRun
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

property id_boxback
the id of the wall at the back of the sample

property id_boxbas
the id of the lower wall

property id_boxfront
the id of the wall in front of the sample

1098 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property id_boxleft
the id of the left wall

property id_boxright
the id of the right wall

property id_topbox
the id of the upper wall

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property max_vel
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property temoin_save
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wallDamping
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

property y0
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.plot.KinematicEngine(inherits PartialEngine → Engine → Serializable)
Abstract engine for applying prescribed displacement.

Note: Derived classes should override the apply with given list of ids (not action with Par-
tialEngine.ids), so that they work when combined together; velocity and angular velocity of all
subscribed bodies is reset before the apply method is called, it should therefore only increment
those quantities.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1099

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.KnKsPBPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

EXPERIMENTAL. IPhys for PotentialBlock.

property cohesion
Cohesion (stress units)

property cohesionBroken
Whether cohesion is already broken. Considered true for particles with isBoundary=True

property contactArea
Contact area (auto-updated)

property cumulative_us
Cumulative translation

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property effective_phi
Friction angle in clay after displacement

property frictionAngle
Friction angle

1100 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property initialShearDir
Initial shear direction

property intactRock
Whether to consider cohesive force in the Mohr-Coulomb criterion, if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw.allowBreakage=False and cohesionBroken=False

property isSliding
Check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property jointLength
Approximated contact length

property jointType
jointType

property kn
Normal stiffness

property knVol
Volumetric normal stiffness = Knormal

property kn_i
initial normal stiffness, user must provide input during initialisation

property ks
Shear stiffness

property ksVol
Volumetric shear stiffness = Kshear

property ks_i
initial shear stiffness, user must provide input during initialisation

property mobilizedShear
Percentage of mobilized shear force as the ratio of the current shear force to the current
frictional limit. Represents a quantified measure of the isSliding parameter

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Viscous normal force

property phi_b
Basic friction angle (degrees)

property phi_r
Residual friction angle (degrees)

property prevNormal
Previous contact normal

property prevSigma
Previous normal stress

property ptOnP1
Point on particle 1

property ptOnP2
Point on particle 2

2.4. Yade modules reference 1101

Yade Documentation, Release 3rd ed.

property shearDir
Shear direction

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearIncrementForCD
toSeeWhether it is necessary to update contactArea

property shearViscous
Viscous shear force (assumed zero at the moment)

property smallerID
id of particle with smaller plane

property tangensOfFrictionAngle
tan of angle of friction

property tension
Tension (stress units)

property tensionBroken
Whether tension is already broken. Considered true for particles with isBoundary=True

property u_cumulative
Cumulative translation

property u_elastic
Elastic shear displacement, not fully in use

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping

property warmstart
Warmstart for SOCP, not fully in use

class yade.plot.KnKsPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

EXPERIMENTAL. IPhys for PotentialParticle.

property brittleLength
Shear length where strength degrades, not fully in use

property cohesion
Cohesion

property cohesionBroken
Whether cohesion is already broken. Considered true for particles with isBoundary=True

property contactArea
Contact area (auto-updated)

property cumulative_us
Cumulative shear translation (not fully in use)

1102 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property effective_phi
Friction angle in clay after displacement

property frictionAngle
Friction angle

property initialShearDir
Initial shear direction

property intactRock
Whether to consider cohesive force in the Mohr-Coulomb criterion, if allowBreakage=False
and cohesionBroken=False.

property isSliding
Check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property jointLength
Approximated contact length

property jointType
jointType

property kn
Normal stiffness

property knVol
Volumetric normal stiffness = Knormal

property kn_i
Currently, we assume kn_i and Knormal are adopting the same value in Ip2 initialisation

property ks
Shear stiffness

property ksVol
Volumetric shear stiffness = Kshear

property ks_i
Currently, we assume ks_i and Kshear are adopting the same value in Ip2 initialisation

property maxClosure
not fully in use, vmi

property mobilizedShear
Percentage of mobilized shear force as the ratio of the current shear force to the current
frictional limit. Represents a quantified measure of the isSliding parameter

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.4. Yade modules reference 1103

Yade Documentation, Release 3rd ed.

property normalViscous
Viscous normal force

property phi_b
Basic friction angle (degrees)

property phi_r
Residual friction angle (degrees)

property prevNormal
Previous normal

property prevSigma
Previous normal stress

property ptOnP1
Point on particle 1

property ptOnP2
Point on particle 2

property shearDir
Shear direction

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearIncrementForCD
toSeeWhether it is necessary to update contactArea

property shearViscous
Viscous shear force (assumed zero at the moment)

property tangensOfFrictionAngle
tan of angle of friction

property tension
Tension

property tensionBroken
Whether tension is already broken. Considered true for particles with isBoundary=True

property u_cumulative
Cumulative translation

property u_elastic
Elastic shear displacement, not fully in use

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useFaceProperties
Whether to get face properties from the intersecting particles

property viscousDamping
Viscous damping ratio, taken equal to Ip2_FrictMat_FrictMat_KnKsPhys.viscousDamping

property warmstart
Warmstart for SOCP, not fully in use

1104 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.L3Geom(inherits GenericSpheresContact → IGeom → Serializable)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]

property F
Applied force in local coordinates [debugging only, will be removed]

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

property trsf
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

property u
Displacement components, in local coordinates. (auto-updated)

property u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1. by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2. by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3. by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.L6Geom(inherits L3Geom → GenericSpheresContact → IGeom → Serializable)
Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]

2.4. Yade modules reference 1105

Yade Documentation, Release 3rd ed.

property F
Applied force in local coordinates [debugging only, will be removed]

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property phi
Rotation components, in local coordinates. (auto-updated)

property phi0
Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

property trsf
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

property u
Displacement components, in local coordinates. (auto-updated)

property u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1. by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2. by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3. by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1106 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.LBMbody(inherits Serializable)
Body class for Lattice Boltzmann Method

property AVel
Angular velocity of body

property Fh
Hydrodynamical force on body

property Mh
Hydrodynamical momentum on body

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fm
Hydrodynamic force (LB unit) at t-0.5dt

property force
Hydrodynamic force, need to be reinitialized (LB unit)

property fp
Hydrodynamic force (LB unit) at t+0.5dt

property isEroded
Hydrodynamical force on body

property mm
Hydrodynamic momentum (LB unit) at t-0.5dt

property momentum
Hydrodynamic momentum,need to be reinitialized (LB unit)

property mp
Hydrodynamic momentum (LB unit) at t+0.5dt

property pos
Position of body

property radius
Radius of body (for sphere)

property saveProperties
To save properties of the body

property type

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Velocity of body

class yade.plot.LBMlink(inherits Serializable)
Link class for Lattice Boltzmann Method

property DistMid
Distance between middle of the link and mass center of body

property PointingOutside
True if it is a link pointing outside to the system (from a fluid or solid node)

2.4. Yade modules reference 1107

Yade Documentation, Release 3rd ed.

property VbMid
Velocity of boundary at midpoint

property ct
Coupling term in modified bounce back rule

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property fid
Fluid node identifier

property i
direction index of the link

property idx_sigma_i
sigma_i direction index (Fluid->Solid)

property isBd
True if it is a boundary link

property nid1
fixed node identifier

property nid2
fixed node identifier or -1 if node points outside

property sid
Solid node identifier

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.LBMnode(inherits Serializable)
Node class for Lattice Boltzmann Method

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor →
Functor → Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

property always_use_moment_law
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

1108 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property bases
Ordered list of types (as strings) this functor accepts.

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys…

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useIncrementalForm
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.plot.Law2_CylScGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor →
Functor → Serializable)

This law generalises Law2_CylScGeom_FrictPhys_CundallStrack by adding cohesion and mo-
ments at contact.

property always_use_moment_law
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

property bases
Ordered list of types (as strings) this functor accepts.

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys…

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

2.4. Yade modules reference 1109

Yade Documentation, Release 3rd ed.

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useIncrementalForm
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.plot.Law2_CylScGeom_FrictPhys_CundallStrack(inherits LawFunctor → Functor →
Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law uses ScGeom.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_GridCoGridCoGeom_FrictPhys_CundallStrack(inherits Law2_ScGeom_-
FrictPhys_CundallStrack →
LawFunctor → Functor →
Serializable)

1110 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Frictional elastic contact law between two gridConnection . See Law2_ScGeom_FrictPhys_Cun-
dallStrack for more details.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_L3Geom_FrictPhys_ElPerfPl(inherits LawFunctor → Functor →
Serializable)

Basic law for testing L3Geom; it bears no cohesion (unless noBreak is True), and plastic slip obeys
the Mohr-Coulomb criterion (unless noSlip is True).

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noBreak
Do not break contacts when particles separate.

2.4. Yade modules reference 1111

Yade Documentation, Release 3rd ed.

property noSlip
No plastic slipping.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_L6Geom_FrictPhys_Linear(inherits Law2_L3Geom_FrictPhys_ElPerfPl →
LawFunctor → Functor → Serializable)

Basic law for testing L6Geom – linear in both normal and shear sense, without slip or breakage.

property bases
Ordered list of types (as strings) this functor accepts.

property charLen
Characteristic length with the meaning of the stiffness ratios bending/shear and tor-
sion/normal.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property noBreak
Do not break contacts when particles separate.

property noSlip
No plastic slipping.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_MultiScGeom_MultiFrictPhys_CundallStrack(inherits Law2_ScGeom_-
FrictPhys_CundallStrack →
LawFunctor → Functor →
Serializable)

Applies Law2_ScGeom_FrictPhys_CundallStrack at each contact point of a
(yref:MultiScGeom;yref:MultiFrictPhys) contact [Duriez2023].

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

1112 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_PolyhedraGeom_PolyhedraPhys_Volumetric(inherits LawFunctor →
Functor → Serializable)

Calculate physical response of 2 Polyhedra in interaction, based on penetration configuration given
by PolyhedraGeom. Normal force is proportional to the volume of intersection

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_PolyhedraGeom_PolyhedraPhys_Volumetric)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_PolyhedraGeom_PolyhedraPhys_Volumetric)arg1,
(float)arg2) → None :

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

plasticDissipation((Law2_PolyhedraGeom_PolyhedraPhys_Volumetric)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
PolyhedraGeom_PolyhedraPhys_Volumetric::traceEnergy is true.

property shearForce
Shear force from last step of the interaction that has just been handled by InteractionLoop
(for debugging 2 bodies simulations, mostly)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.4. Yade modules reference 1113

Yade Documentation, Release 3rd ed.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property volumePower
Power of volume used in evaluation of normal force. Default is 1.0 - normal force is linearly
proportional to volume. 1.0/3.0 would mean that normal force is proportional to the cube
root of volume, approximation of penetration depth.

class yade.plot.Law2_SCG_KnKsPBPhys_KnKsPBLaw(inherits LawFunctor → Functor → Serializable)
Law for linear compression, without cohesion and Mohr-Coulomb plasticity surface.

Note: This law uses ScGeom; there is also functionally equivalent Law2_Dem3DofGeom_-
FrictPhys_Basic, which uses Dem3DofGeom (sphere-box interactions are not implemented for the
latest).

property Talesnick
Use contact law developed for validation against model test

property allowBreakage
Allow cohesion to break. Once broken, cohesion = 0

property allowViscousAttraction
Whether to allow attractive forces due to viscous damping

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts. Computed only if
Law2_SCG_KnKsPBPhys_KnKsPBLaw::traceEnergy is true.

initPlasticDissipation((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property initialOverlapDistance
Initial overlap distance, defining the offset distance for tension overlap, i.e. negative overlap.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normDampDissip((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Total energy dissipated in normal viscous damping. Computed only if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw::traceEnergy is true.

plasticDissipation((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
SCG_KnKsPBPhys_KnKsPBLaw::traceEnergy is true.

1114 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property preventGranularRatcheting
bool to avoid granular ratcheting

ratioSlidingContacts((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip((Law2_SCG_KnKsPBPhys_KnKsPBLaw)arg1) → float :
Total energy dissipated in shear viscous damping. Computed only if Law2_SCG_KnKsPB-
Phys_KnKsPBLaw::traceEnergy is true.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Whether to calculate energy terms (elastic potential energy (normal and shear), plastic dis-
sipation due to friction and dissipation of energy (normal and tangential) due to viscous
damping)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_SCG_KnKsPhys_KnKsLaw(inherits LawFunctor → Functor → Serializable)
Law for linear compression, without cohesion and Mohr-Coulomb plasticity surface.

Note: This law uses ScGeom; there is also functionally equivalent Law2_Dem3DofGeom_-
FrictPhys_Basic, which uses Dem3DofGeom (sphere-box interactions are not implemented for the
latest).

property Talesnick
Use contact law developed for validation against model test

property allowBreakage
Allow cohesion to break. Once broken, cohesion = 0

property allowViscousAttraction
Whether to allow attractive forces due to viscous damping

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts. Computed only if
Law2_SCG_KnKsPhys_KnKsLaw::traceEnergy is true.

initPlasticDissipation((Law2_SCG_KnKsPhys_KnKsLaw)arg1, (float)arg2) → None :
Initialize cummulated plastic dissipation to a value (0 by default).

property initialOverlapDistance
Initial overlap distance, defining the offset distance for tension overlap, i.e. negative overlap.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

2.4. Yade modules reference 1115

Yade Documentation, Release 3rd ed.

normDampDissip((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Total energy dissipated in normal viscous damping. Computed only if Law2_SCG_-
KnKsPhys_KnKsLaw::traceEnergy is true.

plasticDissipation((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
SCG_KnKsPhys_KnKsLaw::traceEnergy is true.

property preventGranularRatcheting
bool to avoid granular ratcheting

ratioSlidingContacts((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip((Law2_SCG_KnKsPhys_KnKsLaw)arg1) → float :
Total energy dissipated in shear viscous damping. Computed only if Law2_SCG_KnKsPhys_-
KnKsLaw::traceEnergy is true.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor → Functor→ Serializable)
Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb
plasticity surface. This law adds adhesion and moments to Law2_ScGeom_FrictPhys_Cundall-
Strack.

The normal force is (with the convention of positive tensile forces) Fn = min(kn ∗ (un −u
p
n), an),

with an the normal adhesion and u
p
n the plastic part of normal displacement. The shear force is

Fs = ks ∗ us, the plasticity condition defines the maximum value of the shear force, by default
Fmax
s = Fn ∗ tan(φ) + as, with φ the friction angle and as the shear adhesion. If CohFrict-

Phys::cohesionDisablesFriction is True, friction is ignored as long as adhesion is active, and the
maximum shear force is only Fmax

s = as.

If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present, the
contact is lost, else the shear strength is Fmax

s = Fn ∗ tan(φ). If CohFrictPhys::fragile =False, the
behaviour is perfectly plastic, and the shear strength is kept constant.

If Law2_ScGeom6D_CohFrictPhys_CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively kt and kr, so that
the moments are : Mb = kb ∗ Θb and Mt = kt ∗ Θt, with Θb,t the relative rotations between
interacting bodies (details can be found in [Bourrier2013]). The maximum values of the moments
depend on constant terms (CohFrictPhys::rollingAdhesion and CohFrictPhys::twistingAdhesion)
and on terms which depend on the normal force Fn through the generalized friction coefficients
CohFrictPhys::maxRollPl and CohFrictPhys::maxTwistPl; the instantaneous rolling resistance is
thus a− Fn ∗ η if a is adhesion and η is the friction coefficient.

Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus,e/dt = −Fs/νs and dΘt,e/dt = −Mt/νt.

For turning adhesion on or off during a simulation, see Ip2_CohFrictMat_CohFrictMat_Co-
hFrictPhys::setCohesion (subsequently, it is possible to modify the adhesion values directly, e.g.
i.phys.shearAdhesion=…)

1116 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property always_use_moment_law
If false, compute moments only for cohesive contacts, broken contacts will have only normal
and shear forces. If true, compute bending/twisting moments at all contacts and use the
frictional coefficients CohFrictMat::etaRoll and CohFrictMat::etaTwist to define the strength
of the broken contacts.

property bases
Ordered list of types (as strings) this functor accepts.

bendingElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute bending elastic energy.

checkConsistency((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1,
(CohFrictPhys)ip, (int)id1, (int)id2) → None :

Runs consistency checks on an interaction physics and warn if some issues are suspected (e.g.
if there is finite cohesion on the shear force and pure elasticity on bending moment). Most
inconsistencies should occur when interaction properties are modified in a script; they are
not supposed to result from the interaction loop, else please report the bug. This function is
called automatically by the law functor on the first instance of a cohesive interaction. To call
it in a script: law.checkConsistency(i.phys,i.id1,i.id2).

property creep_viscosity
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute total elastic energy.

initPlasticDissipation((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1,
(float)arg2) → None :

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute normal elastic energy.

plasticDissipation((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Total energy dissipated in plastic slips at all CohFrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

shearElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute shear elastic energy.

property shear_creep
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

2.4. Yade modules reference 1117

Yade Documentation, Release 3rd ed.

property traceEnergy
Define the total energy dissipated in plastic slips at contacts. Note that it will not reflect
any energy associated to de-bonding, as it may occur for fragile contacts, nor does it include
plastic dissipation in traction.

twistElastEnergy((Law2_ScGeom6D_CohFrictPhys_CohesionMoment)arg1) → float :
Compute twist elastic energy.

property twist_creep
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useIncrementalForm
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.plot.Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment(inherits LawFunctor →
Functor → Serializable)

This law is currently under developpement. Final version and documentation will come before the
end of 2014.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normElastEnergy((Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment)arg1) → float :
Compute normal elastic energy.

shearElastEnergy((Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment)arg1) → float :
Compute shear elastic energy.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_BubblePhys_Bubble(inherits LawFunctor → Functor → Serializable)
Constitutive law for Bubble model.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1118 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property pctMaxForce
Chan[2011] states the contact law is valid only for small interferences; therefore an exponential
force-displacement curve models the contact stiffness outside that regime (large penetration).
This artificial stiffening ensures that bubbles will not pass through eachother or completely
overlap during the simulation. The maximum force is Fmax = (2*pi*surfaceTension*rAvg).
pctMaxForce is the percentage of the maximum force dictates the separation threshold, Dmax,
for each contact. Penetrations less than Dmax calculate the reaction force from the derived
contact law, while penetrations equal to or greater than Dmax calculate the reaction force
from the artificial exponential curve.

property surfaceTension
The surface tension in the liquid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_CapillaryPhys_Capillarity(inherits GlobalEngine → Engine →
Serializable)

This engine allows one to take into account capillary forces/effects between spheres coming from
the presence of distinct interparticular liquid bridges (menisci) at existing interactions (between
particle pairs, in the so-called pendular regime). In order to allow capillary forces between distant
spheres, it is necessary to enlarge the bounding boxes using Bo1_Sphere_Aabb::aabbEnlargeFactor
and make the Ig2 define define distant interactions via interactionDetectionFactor. See also create-
DistantMeniscii. It is also necessary to disable interactions removal by the constitutive law (Law2).
The only combinations of laws supported are currently capillary law + Law2_ScGeom_FrictPhys_-
CundallStrack and capillary law + Law2_ScGeom_MindlinPhys_Mindlin (and the other variants
of Hertz-Mindlin)

The control parameter for simulating liquid bridges is the capillary pressure (or suction) Uc =
Ugas - Uliquid. Liquid bridges properties (volume V, extent over interacting grains delta1 and
delta2) are computed as a result of the defined capillary pressure and of the interacting geometry
(spheres radii and interparticular distance). For this purpose, ascii files M(r=i) with i=R1/R2
(and a possible suffix) are required, containing a set of results from the resolution of the Laplace-
Young equation for different configurations of the interacting geometry, and can be downloaded
from yade-data/capillaryFiles (direct download here) for the case of a null wetting angle. They
could also be regenerated, possibly for other conditions, by any user as per point II. in exam-
ples/capillaryLaplaceYoung/README.md.

See examples/capillaryLaplaceYoung/ folder for example scripts.

References: in english [Scholtes2009b] [Duriez2017b]; more detailed, but in french [Scholtes2009d].

property binaryFusion
If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected.
Otherwise fCap = fCap / (fusionNumber + 1) (experimental)

property capillaryPressure
Value of the capillary pressure Uc defined as Uc=Ugas-Uliquid

property createDistantMeniscii
Generate meniscii between distant spheres ? Else only maintain the existing ones. For mod-
eling a wetting path this flag should always be false. For a drying path it should be true for
one step (initialization) then false, as in the logic of [Scholtes2009c]. The engine turns it off
automatically after one execution.

2.4. Yade modules reference 1119

https://gitlab.com/yade-dev/yade-data/-/tree/main/capillaryFiles
https://gitlab.com/yade-dev/yade-data/-/archive/main/yade-data-main.zip?path=capillaryFiles
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/README.md
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/README.md
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fusionDetection
If true potential menisci overlaps are checked, computing fusionNumber for each capillary
interaction, and reducing fCap according to binaryFusion

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property suffCapFiles
Capillary files suffix: M(r=X)suffCapFiles

property surfaceTension
Value of considered surface tension

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_CpmPhys_Cpm(inherits LawFunctor → Functor → Serializable)
Constitutive law for the cpm-model.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_CpmPhys_Cpm)arg1) → float :
Compute and return the total elastic energy in all “CpmPhys” contacts

property epsSoft
Strain at which softening in compression starts (non-negative to deactivate). The default
value is such that plasticity does not occur

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1120 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property omegaThreshold
damage after which the contact disappears (<1), since omega reaches 1 only for strain →+∞

property relKnSoft
Relative rigidity of the softening branch in compression (0=perfect elastic-plastic, <0 soften-
ing, >0 hardening)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property yieldEllipseShift
horizontal scaling of the ellipse (shifts on the +x axis as interactions with +y are given)

property yieldLogSpeed
scaling in the logarithmic yield surface (should be <1 for realistic results; >=0 for meaningful
results)

yieldSigmaTMagnitude((Law2_ScGeom_CpmPhys_Cpm)arg1, (float)sigmaN , (float)omega,
(float)undamagedCohesion, (float)tanFrictionAngle) → float :

Return radius of yield surface for given material and state parameters; uses attributes of the
current instance (yieldSurfType etc), change them before calling if you need that.

property yieldSurfType
yield function: 0: mohr-coulomb (original); 1: parabolic; 2: logarithmic, 3: log+lin_tension,
4: elliptic, 5: elliptic+log

class yade.plot.Law2_ScGeom_FrictPhys_CundallStrack(inherits LawFunctor → Functor →
Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and moments
at contact.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

2.4. Yade modules reference 1121

Yade Documentation, Release 3rd ed.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_FrictViscoPhys_CundallStrackVisco(inherits LawFunctor →
Functor → Serializable)

Constitutive law for the FrictViscoPM. Corresponds to Law2_ScGeom_FrictPhys_CundallStrack
with the only difference that viscous damping in normal direction can be considered.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictViscoPhys_CundallStrackVisco)arg1) → float :
Compute and return the total elastic energy in all “FrictViscoPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictViscoPhys_CundallStrackVisco)arg1,
(float)arg2) → None :

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictViscoPhys_CundallStrackVisco)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if
:yref:Law2_ScGeom_FrictViscoPhys_CundallStrackVisco::traceEnergy‘ is true.

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

1122 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_ImplicitLubricationPhys(inherits
Law2_ScGeom_VirtualLubricationPhys→ LawFunctor → Functor →
Serializable)

Material law for lubrication and contact between two spheres, solved using implicit method. The
full description of this contact law is available in [Chevremont2020] . Several resolution methods
are available. Iterative exact, solving the 2nd order polynomia. Other resolutions methods are nu-
merical (Newton-Rafson and Dichotomy) with a variable change δ = log(u), solved in dimentionless
coordinates.

property MaxDist
Maximum distance (d/a) for the interaction

property MaxIter
Maximum iterations for numerical resolution (Dichotomy and Newton-Rafson)

property SolutionTol
Tolerance for numerical resolution (Dichotomy and Newton-Rafson)

property activateRollLubrication
Activate roll lubrication (default: true)

property activateTangencialLubrication
Activate tangencial lubrication (default: true)

property activateTwistLubrication
Activate twist lubrication (default: true)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

static getStressForEachBody() → tuple :
Get stresses tensors for each bodies: normal contact stress, shear contact stress, normal
lubrication stress, shear lubrication stress, stress from additionnal potential forces.

static getTotalStresses() → tuple :
Get total stresses tensors: normal contact stress, shear contact stress, normal lubrication
stress, shear lubrication stress, stress from additionnal potential forces.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property maxSubSteps
max recursion depth of adaptative timestepping in the theta-method, the minimal time in-
terval is thus Omega::dt/2depth. If still not converged the integrator will switch to backward
Euler.

property resolution
Change normal component resolution method, 0: Iterative exact resolution with substepping
(theta method, linear contact), 1: Newton-Rafson dimensionless resolution (theta method,

2.4. Yade modules reference 1123

Yade Documentation, Release 3rd ed.

linear contact), 2: (default) Dichotomy dimensionless resolution (theta method, linear con-
tact), 3: Exact dimensionless solution with contact prediction (theta method, linear contact).
Method 3 is better if the volumic fraction is not too high. Use 2 otherwise.

property theta
parameter of the ‘theta’-method, 1: backward Euler, 0.5: trapezoidal rule, 0: not used, 0.55:
suggested optimum)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM(inherits LawFunctor →
Functor → Serializable)

Interaction law for cohesive frictional material, e.g. rock, possibly presenting joint surfaces, that
can be mechanically described with a smooth contact logic [Ivars2011] (implemented in Yade in
[Scholtes2012]). See examples/jointedCohesiveFrictionalPM for script examples. Joint surface
definitions (through stl meshes or direct definition with gts module) are illustrated there.

property Key
string specifying the name of saved file ‘cracks___.txt’, when recordCracks is true.

property bases
Ordered list of types (as strings) this functor accepts.

property clusterMoments
computer clustered moments? (on by default

property computedCentroid
computer clustered moments?

property cracksFileExist
if true (and if recordCracks), data are appended to an existing ‘cracksKey’ text file; otherwise
its content is reset.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property eventNumber
cluster event number (used for clustering and paraview visualization of groups).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property momentFudgeFactor
Fudge factor used by Hazzard and Damjanac 2013 to improve moment size accuracy (set to
1 for no impact by default)

property momentRadiusFactor
Average particle diameter multiplier for moment magnitude calculation

property momentsFileExist
if true (and if recordCracks), data are appended to an existing ‘momentsKey’ text file; other-
wise its content is reset.

property nbShearCracks
number of shear microcracks.

1124 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property nbTensCracks
number of tensile microcracks.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene

property recordCracks
if true, data about interactions that lose their cohesive feature are stored in the text file
cracksKey.txt (see Key and cracksFileExist). It contains 9 columns: the break iteration, the
3 coordinates of the contact point, the type (1 means shear break, while 0 corresponds to
tensile break), the ‘’cross section’’ (mean radius of the 2 spheres) and the 3 coordinates of the
contact normal.

property recordMoments
Combines with :yref: Key<Law2ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM.Key>
to compute acoustic emissions according to clustered broken bond method? (off by default)

property smoothJoint
if true, interactions of particles belonging to joint surface (JCFpmPhys.isOnJoint) are handled
according to a smooth contact logic [Ivars2011], [Scholtes2012].

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property totalCracksSurface
calculate the total cracked surface.

property totalShearCracksE
calculate the overall energy dissipated by interparticle microcracking in shear.

property totalTensCracksE
calculate the overall energy dissipated by interparticle microcracking in tension.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useStrainEnergy
use strain energy for moment magnitude estimation (if false, use kinetic energy)

class yade.plot.Law2_ScGeom_LudingPhys_Basic(inherits LawFunctor → Functor → Serializable)
Linear viscoelastic model operating on ScGeom and LudingPhys. See [Luding2008] ,[Singh2013]_-
for more details.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1125

Yade Documentation, Release 3rd ed.

class yade.plot.Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM(inherits LawFunctor → Functor→ Serializable)
Hertz-Mindlin model extended: Normal direction: conical damage model from Harkness et al.
2016./ Suhr & Six 2017. Tangential direction: stress dependent interparticle friction coefficient,
Suhr & Six 2016. Both models can be switched on/off separately. In this version there is NO
damping (neither viscous nor linear), NO adhesion and NO calc_energy, NO includeMoment, NO
preventGranularRatcheting. NOT tested for periodic simulations.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

ratioSlidingContacts((Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

ratioYieldingContacts((Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM)arg1) → float
:

Return the ratio between the number of contacts yielding to the total number at a given time.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_MindlinPhys_HertzWithLinearShear(inherits LawFunctor →
Functor → Serializable)

Constitutive law for the Hertz formulation (using MindlinPhys.kno) and linear behavior in shear
(using MindlinPhys.kso for stiffness and FrictPhys.tangensOfFrictionAngle).

Note: No viscosity or damping. If you need those, look at Law2_ScGeom_MindlinPhys_Mindlin,
which also includes non-linear Mindlin shear.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

1126 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property nonLin
Shear force nonlinearity (the value determines how many features of the non-linearity are
taken in account). 1: ks as in HM 2: shearElastic increment computed as in HM 3. granular
ratcheting disabled.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_MindlinPhys_Mindlin(inherits LawFunctor → Functor →
Serializable)

Constitutive law for the Hertz-Mindlin formulation. It includes non linear elasticity in the normal
direction as predicted by Hertz for two non-conforming elastic contact bodies. In the shear direc-
tion, instead, it reseambles the simplified case without slip discussed in Mindlin’s paper, where a
linear relationship between shear force and tangential displacement is provided. Finally, the Mohr-
Coulomb criterion is employed to established the maximum friction force which can be developed
at the contact. Moreover, it is also possible to include the effect of linear viscous damping through
the definition of the parameters βn and βs.

property bases
Ordered list of types (as strings) this functor accepts.

property calcEnergy
bool to calculate energy terms (shear potential energy, dissipation of energy due to friction
and dissipation of energy due to normal and tangential damping)

contactsAdhesive((Law2_ScGeom_MindlinPhys_Mindlin)arg1) → float :
Compute total number of adhesive contacts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property frictionDissipation
Energy dissipation due to sliding

property includeAdhesion
bool to include the adhesion force following the DMT formulation. If true, also the normal
elastic energy takes into account the adhesion effect.

property includeMoment
bool to consider rolling resistance (if Ip2_FrictMat_FrictMat_MindlinPhys::eta is 0.0, no
plastic condition is applied.)

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property normDampDissip
Energy dissipated by normal damping

normElastEnergy((Law2_ScGeom_MindlinPhys_Mindlin)arg1) → float :
Compute normal elastic potential energy. It handles the DMT formulation if Law2_ScGeom_-
MindlinPhys_Mindlin::includeAdhesion is set to true.

2.4. Yade modules reference 1127

Yade Documentation, Release 3rd ed.

property nothing
dummy attribute for declaring preventGranularRatcheting deprecated

ratioSlidingContacts((Law2_ScGeom_MindlinPhys_Mindlin)arg1) → float :
Return the ratio between the number of contacts sliding to the total number at a given time.

property shearDampDissip
Energy dissipated by tangential damping

property shearEnergy
Shear elastic potential energy

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_MindlinPhys_MindlinDeresiewitz(inherits LawFunctor → Functor→ Serializable)
Hertz-Mindlin contact law with partial slip solution, as described in [Thornton1991].

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_MortarPhys_Lourenco(inherits LawFunctor → Functor →
Serializable)

Material law for mortar layer according to [Lourenco1994]. The contact behaves elastic until brittle
failure when reaching strength envelope. The envelope has three parts.

Tensile with condition σN − ft.

Shear part with Mohr-Coulomb condition |σT |+ σN tanφ− c.

Compressive part with condition σ2
N +A2σ2

T − f2c

The main idea is to begin simulation with this model and when the contact is broken, to use
standard non-cohesive Law2_PolyhedraGeom_PolyhedraPhys_Volumetric.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1128 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_PotentialLubricationPhys(inherits Law2_ScGeom_-
ImplicitLubricationPhys →
Law2_ScGeom_VirtualLubricationPhys→ LawFunctor → Functor →
Serializable)

Material law for lubrication + potential between two spheres. The potential model include contact.
This material law will solve the system with lubrication and the provided potential.

property MaxDist
Maximum distance (d/a) for the interaction

property MaxIter
Maximum iterations for numerical resolution (Dichotomy and Newton-Rafson)

property SolutionTol
Tolerance for numerical resolution (Dichotomy and Newton-Rafson)

property activateRollLubrication
Activate roll lubrication (default: true)

property activateTangencialLubrication
Activate tangencial lubrication (default: true)

property activateTwistLubrication
Activate twist lubrication (default: true)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

static getStressForEachBody() → tuple :
Get stresses tensors for each bodies: normal contact stress, shear contact stress, normal
lubrication stress, shear lubrication stress, stress from additionnal potential forces.

static getTotalStresses() → tuple :
Get total stresses tensors: normal contact stress, shear contact stress, normal lubrication
stress, shear lubrication stress, stress from additionnal potential forces.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property maxSubSteps
max recursion depth of adaptative timestepping in the theta-method, the minimal time in-
terval is thus Omega::dt/2depth. If still not converged the integrator will switch to backward
Euler.

property potential
Physical potential force between spheres.

2.4. Yade modules reference 1129

Yade Documentation, Release 3rd ed.

property resolution
Change normal component resolution method, 0: Iterative exact resolution with substepping
(theta method, linear contact), 1: Newton-Rafson dimensionless resolution (theta method,
linear contact), 2: (default) Dichotomy dimensionless resolution (theta method, linear con-
tact), 3: Exact dimensionless solution with contact prediction (theta method, linear contact).
Method 3 is better if the volumic fraction is not too high. Use 2 otherwise.

property theta
parameter of the ‘theta’-method, 1: backward Euler, 0.5: trapezoidal rule, 0: not used, 0.55:
suggested optimum)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_VirtualLubricationPhys(inherits LawFunctor → Functor →
Serializable)

Virtual class for sheared lubrication functions. This don’t do any computation and shouldn’t be
used directly!

property MaxDist
Maximum distance (d/a) for the interaction

property activateRollLubrication
Activate roll lubrication (default: true)

property activateTangencialLubrication
Activate tangencial lubrication (default: true)

property activateTwistLubrication
Activate twist lubrication (default: true)

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

static getStressForEachBody() → tuple :
Get stresses tensors for each bodies: normal contact stress, shear contact stress, normal
lubrication stress, shear lubrication stress, stress from additionnal potential forces.

static getTotalStresses() → tuple :
Get total stresses tensors: normal contact stress, shear contact stress, normal lubrication
stress, shear lubrication stress, stress from additionnal potential forces.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1130 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.Law2_ScGeom_ViscElCapPhys_Basic(inherits LawFunctor → Functor →
Serializable)

Extended version of Linear viscoelastic model with capillary parameters.

property NLiqBridg
The total number of liquid bridges

property VLiqBridg
The total volume of liquid bridges

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_ViscElPhys_Basic(inherits LawFunctor → Functor → Serializable)
Linear viscoelastic model operating on ScGeom and ViscElPhys. The contact law is visco-elastic
in the normal direction, and visco-elastic frictional in the tangential direction. The normal contact
is modelled as a spring of equivalent stiffness kn, placed in parallel with a viscous damper of
equivalent viscosity cn. As for the tangential contact, it is made of a spring-dashpot system (in
parallel with equivalent stiffness ks and viscosity cs) in serie with a slider of friction coefficient
µ = tanφ.

The friction coefficient µ = tanφ is always evaluated as tan(min(φ1, φ2)), where φ1 and φ2

are respectively the friction angle of particle 1 and 2. For the other parameters, depending on the
material input, the equivalent parameters of the contact (Kn,Cn,Ks,Cs,φ) are evaluated differently.
In the following, the quantities in parenthesis are the material constant which are precised for each
particle. They are then associated to particle 1 and 2 (e.g. kn1,kn2,cn1…), and should not be
confused with the equivalent parameters of the contact (Kn,Cn,Ks,Cs,φ).

• If contact time (tc), normal and tangential restitution coefficient (en,et) are precised, the
equivalent parameters are evaluated following the formulation of Pournin [Pournin2001].

• If normal and tangential stiffnesses (kn, ks) and damping constant (cn,cs) of each particle
are precised, the equivalent stiffnesses and damping constants of each contact made of two
particles 1 and 2 is made A = 2 a1a2

a1+a2
, where A is Kn, Ks, Cn and Cs, and 1 and 2 refer to

the value associated to particle 1 and 2.

• Alternatively it is possible to precise the Young’s modulus (young) and Poisson’s ratio (pois-
son) instead of the normal and spring constant (kn and ks). In this case, the equivalent
parameters are evaluated the same way as the previous case with knx = Exdx, ksx = vxknx,
where Ex, vx and dx are Young’s modulus, Poisson’s ratio and diameter of particle x.

• If Young’s modulus (young), Poisson’s ratio (poisson), normal and tangential restitution co-
efficient (en,et) are precised, the equivalent stiffnesses are evaluated as previously: Kn =
2 kn1kn2

kn1+kn2
, knx = Exdx, Ks = 2(ks1ks2)/(ks1 + ks2), ksx = vknx. The damping con-

stant is computed at each contact in order to fulfill the normal restitution coefficient
en = (en1 + en2)/2. This is achieved resolving numerically equation 21 of [Schwager2007]
(There is in fact a mistake in the article from equation 18 to 19, so that there is a change
in sign). Be careful in this configuration the tangential restitution coefficient is set to 1 (no

2.4. Yade modules reference 1131

Yade Documentation, Release 3rd ed.

tangential damping). This formulation imposes directly the normal restitution coefficient of
the collisions instead of the damping constant.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGeom_ViscoFrictPhys_CundallStrack(inherits Law2_ScGeom_-
FrictPhys_CundallStrack →
LawFunctor → Functor →
Serializable)

Law similar to Law2_ScGeom_FrictPhys_CundallStrack with the addition of shear creep at con-
tacts.

property bases
Ordered list of types (as strings) this functor accepts.

property creepStiffness

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

elasticEnergy((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1, (float)arg2) → None
:

Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation((Law2_ScGeom_FrictPhys_CundallStrack)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

property shearCreep

property sphericalBodies
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

1132 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscosity

class yade.plot.Law2_ScGeom_WirePhys_WirePM(inherits LawFunctor → Functor → Serializable)
Constitutive law for the wire model.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property linkThresholdIteration
Iteration to create the link.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_ScGridCoGeom_CohFrictPhys_CundallStrack(inherits LawFunctor →
Functor → Serializable)

Law between a cohesive frictional GridConnection and a cohesive frictional Sphere. Almost the
same than Law2_ScGeom6D_CohFrictPhys_CohesionMoment, but THE ROTATIONAL MO-
MENTS ARE NOT COMPUTED.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1133

Yade Documentation, Release 3rd ed.

class yade.plot.Law2_ScGridCoGeom_FrictPhys_CundallStrack(inherits LawFunctor → Functor→ Serializable)
Law between a frictional GridConnection and a frictional Sphere. Almost the same than Law2_-
ScGeom_FrictPhys_CundallStrack, but the force is divided and applied on the two GridNodes
only.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_TTetraSimpleGeom_NormPhys_Simple(inherits LawFunctor → Functor →
Serializable)

EXPERIMENTAL. TODO

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Law2_VolumeGeom_FrictPhys_Elastic(inherits LawFunctor → Functor →
Serializable)

Contact law for elasticity, scaling exponentially with the overlap volume, with Mohr-Coulomb
plastic failure without cohesion. This law implements a volumetric variant of the classical
elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]). The normal force is
Fn = min(knVa

overlap, 0) with a = 1 (linear) as the default and the convention of positive tensile
forces. The shear force is Fs = ksus, the plasticity condition defines the maximum value of the
shear force: Fmax

s = Fn tan(φ), with φ the friction angle.

property bases
Ordered list of types (as strings) this functor accepts.

1134 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

initPlasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1, (float)arg2) → None :
Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only useful if another contact law
is used as well).

plasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
VolumeGeom_FrictPhys_Elastic::traceEnergy is true.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property volumePower
The exponent a on the overlap volume within the contact law. Setting to 0.5 gives a near-linear
relationship of force with respect to penetration distance for spheres.

class yade.plot.Law2_VolumeGeom_ViscoFrictPhys_Elastic(inherits Law2_VolumeGeom_-
FrictPhys_Elastic → LawFunctor →
Functor → Serializable)

Law similar to Law2_VolumeGeom_FrictPhys_Elastic with the addition of shear creep at contacts.

property bases
Ordered list of types (as strings) this functor accepts.

property creepStiffness

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

initPlasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1, (float)arg2) → None :
Initialize cummulated plastic dissipation to a value (0 by default).

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property neverErase
Keep interactions even if particles go away from each other (only useful if another contact law
is used as well).

plasticDissipation((Law2_VolumeGeom_FrictPhys_Elastic)arg1) → float :
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
VolumeGeom_FrictPhys_Elastic::traceEnergy is true.

2.4. Yade modules reference 1135

Yade Documentation, Release 3rd ed.

property shearCreep

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

property traceEnergy
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscosity

property volumePower
The exponent a on the overlap volume within the contact law. Setting to 0.5 gives a near-linear
relationship of force with respect to penetration distance for spheres.

class yade.plot.LawDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispFunctor((LawDispatcher)arg1, (IGeom)arg2, (IPhys)arg3) → LawFunctor :
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix((LawDispatcher)arg1[, (bool)names=True]) → dict :
Return dictionary with contents of the dispatch matrix.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property functors
Functors associated with this dispatcher.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1136 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.LawFunctor(inherits Functor → Serializable)
Functor for applying constitutive laws on interactions.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.LawTester(inherits PartialEngine → Engine → Serializable)
Prescribe and apply deformations of an interaction in terms of local mutual displacements and
rotations. The loading path is specified either using path (as sequence of 6-vectors containing
generalized displacements ux, uy, uz, φx, φy, φz) or disPath (ux, uy, uz) and rotPath (φx, φy,
φz). Time function with time values (step numbers) corresponding to points on loading path is
given by pathSteps. Loading values are linearly interpolated between given loading path points,
and starting zero-value (the initial configuration) is assumed for both path and pathSteps. hooks
can specify python code to run when respective point on the path is reached; when the path is
finished, doneHook will be run.

LawTester should be placed between InteractionLoop and NewtonIntegrator in the simulation loop,
since it controls motion via setting linear/angular velocities on particles; those velocities are inte-
grated by NewtonIntegrator to yield an actual position change, which in turn causes IGeom to be
updated (and contact law applied) when InteractionLoop is executed. Constitutive law generating
forces on particles will not affect prescribed particle motion, since both particles have all DoFs
blocked when first used with LawTester.

LawTester uses, as much as possible, IGeom to provide useful data (such as local coordinate system),
but is able to compute those independently if absent in the respective IGeom:

IGeom #DoFs LawTester support level
L3Geom 3 full
L6Geom 6 full
ScGeom 3 emulate local coordinate system
ScGeom6D 6 emulate local coordinate system

Depending on IGeom, 3 (ux, uy, uz) or 6 (ux, uy, uz, φx, φy, φz) degrees of freedom (DoFs)
are controlled with LawTester, by prescribing linear and angular velocities of both particles in
contact. All DoFs controlled with LawTester are orthogonal (fully decoupled) and are controlled
independently.

When 3 DoFs are controlled, rotWeight controls whether local shear is applied by moving particle
on arc around the other one, or by rotating without changing position; although such rotation
induces mutual rotation on the interaction, it is ignored with IGeom with only 3 DoFs. When 6
DoFs are controlled, only arc-displacement is applied for shear, since otherwise mutual rotation
would occur.

2.4. Yade modules reference 1137

Yade Documentation, Release 3rd ed.

idWeight distributes prescribed motion between both particles (resulting local deformation is the
same if id1 is moved towards id2 or id2 towards id1). This is true only for ux, uy, uz, φx

however ; bending rotations φy, φz are nevertheless always distributed regardless of idWeight to
both spheres in inverse proportion to their radii, so that there is no shear induced.

LawTester knows current contact deformation from 2 sources: from its own internal data (which
are used for prescribing the displacement at every step), which can be accessed in uTest, and from
IGeom itself (depending on which data it provides), which is stored in uGeom. These two values
should be identical (disregarding numerical percision), and it is a way to test whether IGeom and
related functors compute what they are supposed to compute.

LawTester-operated interactions can be rendered with GlExtra_LawTester renderer.

See scripts/test/law-test.py for an example.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property disPath
Loading path, where each Vector3 contains desired normal displacement and two components
of the shear displacement (in local coordinate system, which is being tracked automatically.
If shorter than rotPath, the last value is repeated.

property displIsRel
Whether displacement values in disPath are normalized by reference contact length (r1+r2
for 2 spheres).

property doneHook
Python command (as string) to run when end of the path is achieved. If empty, the engine
will be set dead.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property hooks
Python commands to be run when the corresponding point in path is reached, before doing
other things in that particular step. See also doneHook.

property idWeight
Float, usually �〈0,1〉, determining on how are displacements distributed between particles
(0 for id1, 1 for id2); intermediate values will apply respective part to each of them. This
parameter is ignored with 6-DoFs IGeom.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1138 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/law-test.py

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property pathSteps
Step number for corresponding values in path; if shorter than path, distance between last 2
values is used for the rest.

property refLength
Reference contact length, for rendering only.

property renderLength
Characteristic length for the purposes of rendering, set equal to the smaller radius.

property rotPath
Rotational components of the loading path, where each item contains torsion and two bending
rotations in local coordinates. If shorter than path, the last value is repeated.

property rotWeight
Float �〈0,1〉 determining whether shear displacement is applied as rotation or displacement on
arc (0 is displacement-only, 1 is rotation-only). Not effective when mutual rotation is specified.

property step
Step number in which this engine is active; determines position in path, using pathSteps.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property trsf
Transformation matrix for the local coordinate system. (auto-updated)

property uGeom
Current generalized displacements (3 displacements, 3 rotations), as stored in the interation
itself. They should corredpond to uTest, otherwise a bug is indicated.

property uTest
Current generalized displacements (3 displacements, 3 rotations), as they should be according
to this LawTester. Should correspond to uGeom.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property uuPrev
Generalized displacement values reached in the previous step, for knowing which increment
to apply in the current step.

class yade.plot.LevelSet(inherits Shape → Serializable)
A level set description of particle shape based on a discrete distance field and surface nodes
[Duriez2021a] [Duriez2021b]. See examples/levelSet for example scripts.

assignSurfNodes((LevelSet)arg1, (object)nodes) → None :
Assigns given nodes (as a list of Vector3r points conforming local frame) to surfNodes, erasing
pre-existing ones if any.

property axesAABE
The half lengths of the principal axes of the axis-aligned bounding ellipsoid (AABE) of the
level-set shape. Format (rx,ry,rz). Only works for VLS-DEM.

center((LevelSet)arg1) → Vector3 :
The center of mass of the volume (considering obviously an uniform density for this volume),
in local axes (for verification purposes, by comparison with the origin).

2.4. Yade modules reference 1139

https://gitlab.com/yade-dev/trunk/blob/master/examples/levelSet

Yade Documentation, Release 3rd ed.

property color
Color for rendering (normalized RGB).

computeMarchingCubes((LevelSet)arg1) → None :
Compute or recompute the triangulation of the particle surface after using the Marching
Cubes algorithm on distField.

property corners
The 8 corners of an axis-aligned bounding box, in local axes. It is computed once for all by
Bo1_LevelSet_Aabb and used by the same Functor to get Body.bound.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property distField
The signed (< 0 when inside) distance-to-surface function as a discrete scalar field on lsGrid,
with distField[i][j][k] corresponding to lsGrid.gridPoint(i,j,k). From Python, slice this multi-
dimensional list with care: while distField[i][:][:] corresponds to values on a x-cst plane,
distField[:][:][k] is not at z-constant (use [[distField[i][j][k] for j in ..] for i in ..] instead)

distance((LevelSet)arg1, (Vector3)pt[, (bool)unbound=False]) → float :
Distance to surface at pt, with pt being expressed in the local frame. The ‘unbound’ flag (if
True) allows the computation of distance values outside of the grid extents, which otherwise
returns NaN together with an error.

getSurface((LevelSet)arg1) → float :
Returns particle surface as computed from numeric integration over the surface nodes. It is
required those have been ray traced with nodesPath = 1. The return value is just approximate
outside of spherical shapes.

property hasAABE
Flag to indicate whether an axis-aligned bounding ellipsoid (AABE) has been provided by the
user. If true, you must specify axisAABE. Only works for VLS-DEM.

property highlight
Whether this Shape will be highlighted when rendered.

inertia((LevelSet)arg1) → Vector3 :
The diagonal coefficients (i.e., eigenvalues, in a consistent workflow) of the geometric inertia
matrix (the one considering the infinitesimal volume as the integrand, instead of infinitesimal
mass) of the particle volume, as a (xx,yy,zz) Vector3r.

property lsGrid
The regular grid carrying distField, in local axes.

marchingCubesNbTriangles((LevelSet)arg1) → int :
Returns the number of triangles forming the surface triangulation as per the Marching Cubes
algorithm (executed on distField).

marchingCubesNormals((LevelSet)arg1) → object :
Returns the normals for a surface triangulation obtained after executing the Marching Cubes
algorithm on distField.

1140 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

marchingCubesVertices((LevelSet)arg1) → object :
Returns the vertices for a surface triangulation obtained after executing the Marching Cubes
algorithm on distField.

normal((LevelSet)arg1, (Vector3)pt[, (bool)unbound=False]) → Vector3 :
Unit normal vector to the surface, at some pt. Local frame applies to both output normal
and input pt. Has an ‘unbound’ flag signaling whether to allow (if True) the computation of
the normal outside of the grid extents.

rayTrace((LevelSet)arg1, (Vector3)ray[, (float)nodesTol=50]) → object :
Performs one ray tracing along ray (to be given in cartesian coordinates, see spher2cart() if
a conversion is useful from spherical ones; norm should not matter) and returns the obtained
surface points (without modifying surfNodes). Argument nodesTol has the same meaning as
in rayTraceSurfNodes, see therein. Provided for debugging or shape analysis purposes.

rayTraceSurfNodes((LevelSet)arg1[, (int)nSurfNodes=102[, (int)nodesPath=2[,
(float)nodesTol=50]]]) → None :

Defines all surface nodes (i.e., surfNodes) by ray tracing, erasing pre-existing ones if any,
according to given arguments

Parameters

• nSurfNodes (int) – how many rays are to be launched. Please use a perfect
square + 2 if not twoD and if nodesPath = 1. Previously coined nNodes in
[Duriez2021b]

• nodesPath (int) – defines how the space of spherical coordinates (ϑ ∈
[0;π], φ ∈ [0; 2π]) is discretized when ray tracing the boundary nodes: 1 gives
a rectangular partition of that space, plus two nodes at ϑ = 0[π]; 2 locates the
nodes along a spiral path [Duriez2021a]

• nodesTol (real) – tolerance coefficient for accepting (if |φ|/L < nodesTol × nu-
meric precision with φ the return value of distance and L a body-characteristic
length taken as 3

√
V with V the volume, or

√
V/ggrid with ggrid the grid spac-

ing if twoD) surface nodes proposed by the ray tracing algorithm

property smearCoeff
Rules the smearing coefficient ε > 0 of the Heaviside step function for a smooth integration of
the particle’s volume close to its surface (the higher ε the smoother, i.e. the more diffuse the
surface in terms of volume integration). Given in reciprocal multiples of Rcell =

√
3/2ggrid

the half diagonal of the cells of the lsGrid with ggrid the cell length: ε = Rcell×1/ smearCoeff
(smearing is deactivated if negative).

property sphericity
Shape sphericity computed from boundary nodes and assuming both largest inscribed sphere
and smallest circumscribed sphere have the origin (of local axes) as center.

property starLike
Indicates whether surface nodes are ray-traced considering that a ray can intersect the surface
no more than once.

property surfNodes
Surface discretization in terms of (a list of) nodes, for the master-slave refined contact treat-
ment in Ig2_LevelSet_LevelSet_ScGeom, previously coined boundNodes in [Duriez2021b].
Expressed in local frame.

property twoD
True for z-invariant shapes. Serves to restrict the ray tracing of surfNodes in the (x,y) plane.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1141

Yade Documentation, Release 3rd ed.

volume((LevelSet)arg1) → float :
The volume defined by the negative domain of the level set function, in a voxellised fashion,
where a negative value of the level set, distField[i][j][k] ≤ 0, is considered to correspond to a
material cubic voxel of side lsGrid.spacing and centered at lsGrid.gridPoint(i,j,k). Smearing
considerations may apply as per smearCoeff .

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.Lin4NodeTetra(inherits DeformableElement → Shape → Serializable)
Tetrahedral Deformable Element Composed of Nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1142 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.Lin4NodeTetra_Lin4NodeTetra_InteractionElement(inherits DeformableCohe-
siveElement →
DeformableElement →
Shape → Serializable)

Tetrahedral Deformable Element Composed of Nodes

addFace((DeformableElement)arg1, (Vector3)arg2) → None :
Add a face into the element

addNode((DeformableElement)arg1, (Body)arg2) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

addPair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

property color
Color for rendering (normalized RGB).

delNode((DeformableElement)arg1, (Body)arg2) → None :
Remove a node shared_pt<:yref:’Body’>& from the element

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property elementframe

property faces
Faces of the element for drawing

getNode((DeformableElement)arg1, (int)arg2) → Body :
Get a node shared_pt<:yref:’Body’>& as into the element

getVolume((DeformableElement)arg1) → float :
Get volume of the element

property highlight
Whether this Shape will be highlighted when rendered.

property localmap
Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

property nodepairs
Ids and relative position+orientation difference of members of the cohesive deformable element
in the inital condition (should not be accessed directly)

removeLastFace((DeformableElement)arg1) → None :
Remove a face from the element

2.4. Yade modules reference 1143

Yade Documentation, Release 3rd ed.

removePair((DeformableCohesiveElement)arg1, (Body)arg2, (Body)arg3) → None :
Add a node shared_pt<:yref:’Body’>& as into the element

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.LinCohesiveElasticMaterial(inherits CohesiveDeformableElementMaterial →
Material → Serializable)

Linear Isotropic Elastic material

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.plot.LinCohesiveStiffPropDampElastMat(inherits LinCohesiveElasticMaterial →
CohesiveDeformableElementMaterial →
Material → Serializable)

Elastic material with Rayleigh Damping.

property alpha
Mass propotional damping constant of Rayleigh Damping.

1144 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property beta
Stiffness propotional damping constant of Rayleigh Damping.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.plot.LinExponentialPotential(inherits CundallStrackPotential → GenericPotential →
Serializable)

LinExponential Potential with only Cundall-and-Strack-like contact. The LinExponential potential
formula is F(u) = k∗(xe−x0)

xe
(u/a− x0) exp

(
−(u/a)
xe−x0

)
. Where k is the slope at the origin, x0 is the

position where the potential cross 0 and xe is the position of the extremum.

property F0
Force at contact. Force when F0 = F(u = 0) (LinExponential)

property Fe
Extremum force. Value of force at extremum. (LinExponential)

property alpha
Bulk-to-roughness stiffness ratio

computeParametersFromF0((LinExponentialPotential)arg1, (float)F0, (float)xe, (float)k) → None
:

Set parameters of the potential, with k computed from F0

2.4. Yade modules reference 1145

Yade Documentation, Release 3rd ed.

computeParametersFromF0Fe((LinExponentialPotential)arg1, (float)xe, (float)Fe, (float)F0) →
None :

Set parameters of the potential, with k and x0 computed from F0 and Fe

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property k
Slope at the origin (stiffness). (LinExponential)

potential((LinExponentialPotential)arg1, (float)u) → float :
Get potential value at any point.

setParameters((LinExponentialPotential)arg1, (float)x0, (float)xe, (float)k) → None :
Set parameters of the potential

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property x0
Equilibrium distance. Potential force is 0 at x0 (LinExponential)

property xe
Extremum position. Position of local max/min of force. (LinExponential)

class yade.plot.LinIsoElastMat(inherits DeformableElementMaterial → Material → Serializable)
Linear Isotropic Elastic material

property density
Density of the material.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

1146 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.plot.LinIsoRayleighDampElastMat(inherits LinIsoElastMat →
DeformableElementMaterial → Material →
Serializable)

Elastic material with Rayleigh Damping.

property alpha
Mass propotional damping constant of Rayleigh Damping.

property beta
Stiffness propotional damping constant of Rayleigh Damping.

property density
Density of the material.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poissonratio
Poisson ratio. Initially aluminium.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property youngmodulus
Young’s modulus. Initially aluminium.

class yade.plot.LineRef(inherits object)
Holds reference to plot line and to original data arrays (which change during the simulation), and
updates the actual line using those data upon request.

update()

2.4. Yade modules reference 1147

Yade Documentation, Release 3rd ed.

class yade.plot.LinearDragEngine(inherits PartialEngine → Engine → Serializable)
Apply viscous resistance or linear drag on some particles at each step, decelerating them propor-
tionally to their linear velocities. The applied force reads

Fd = −bv

where b is the linear drag, v is particle’s velocity.

b = 6πνr

where ν is the medium viscosity, r is the Stokes radius of the particle (but in this case we accept
it equal to sphere radius for simplification),

Note: linear drag is only applied to spherical particles, listed in ids.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nu
Viscosity of the medium.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.LubricationPDFEngine(inherits PDFEngine → PeriodicEngine → GlobalEngine →
Engine → Serializable)

Implementation of PDFEngine for Lubrication law

1148 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Drag_%28physics%29#Very_low_Reynolds_numbers_.E2.80.94_Stokes.27_drag
http://en.wikipedia.org/wiki/Stokes_radius

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property filename
Filename

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property numDiscretizeAnglePhi
Number of sector for phi-angle

property numDiscretizeAngleTheta
Number of sector for theta-angle

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

2.4. Yade modules reference 1149

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property warnedOnce
For one-time warning. May trigger usefull warnings

class yade.plot.LubricationPhys(inherits ViscElPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

IPhys class for Lubrication w/o FlowEngine. Used by Law2_ScGeom_ImplicitLubricationPhys.

property Fn
Linear-elastic part of the normal force of the contact

property Fv
Viscous part of the normal force of the contact

property a
Mean radius [m]

property cn
Normal viscous constant

property contact
The spheres are in contact

property cs
Shear viscous constant

property delta
log(u) - used for scheme with δ = log(u) variable change

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property eps
Roughness: fraction of radius used as roughness [-]

property eta
Fluid viscosity [Pa.s]

property keps
stiffness coefficient of the asperities [N/m]. Only used with resolution method=0, with reso-
lution>0 it is always equal to kn.

1150 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property kn
Normal stiffness

property kno
Coefficient for normal stiffness (Hertzian-like contact) [N/m^(3/2)]

property ks
Shear stiffness

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

property mum
Friction coefficient [-]

property normalContactForce
Normal contact force [N]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalLubricationForce
Normal lubrication force [N]

property normalPotentialForce
Normal force from potential other than contact [N]

property nun
Coefficient for normal lubrication [N.s]

property prevDotU
du/dt from previous integration - used for trapezoidal scheme (see Law2_ScGeom_Implic-
itLubricationPhys::resolution for choosing resolution scheme)

property prev_un
Nondeformed distance (un) at t-dt [m]

property shearContactForce
Frictional contact force [N]

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearLubricationForce
Shear lubrication force [N]

property slip
The contact is slipping

property tangensOfFrictionAngle
tan of angle of friction

property u
Interfacial distance (u) at t-dt [m]

property ue
Surface deflection (ue) at t-dt [m]

2.4. Yade modules reference 1151

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.LudingMat(inherits Material → Serializable)
Material for simple Luding‘s model of contact [Luding2008] ,[Singh2013]_ .

property G0
Viscous damping

property PhiF
Dimensionless plasticity depth

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Friction angle [rad]

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property k1
Slope of loading plastic branch

property kc
Slope of irreversible, tensile adhesive branch

property kp
Slope of unloading and reloading limit elastic branch

property ks
Shear stiffness

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1152 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.LudingPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

IPhys created from LudingMat, for use with Law2_ScGeom_LudingPhys_Basic.

property DeltMax
Maximum overlap between particles for a collision

property DeltMin
MinimalDelta value of delta

property DeltNull
Force free overlap, plastic contact deformation

property DeltPMax
Maximum overlap between particles for the limit case

property DeltPNull
Max force free overlap, plastic contact deformation

property DeltPrev
Previous value of delta

property G0
Viscous damping

property PhiF
Dimensionless plasticity depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property k1
Slope of loading plastic branch

property k2
Slope of unloading and reloading elastic branch

property kc
Slope of irreversible, tensile adhesive branch

property kn
Normal stiffness

property kp
Slope of unloading and reloading limit elastic branch

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.4. Yade modules reference 1153

Yade Documentation, Release 3rd ed.

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.MPIBodyContainer(inherits Serializable)
a dummy container to serialize and send.

property bContainer
a dummy body container to serialize

clearContainer((MPIBodyContainer)arg1) → None :
clear bodies in the container

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

getCount((MPIBodyContainer)arg1) → int :
get container count

insertBody((MPIBodyContainer)arg1, (int)bodyId) → None :
insert a body (by id) in this container

insertBodyListPy((MPIBodyContainer)arg1, (list)listOfIds) → None :
inset a list of bodies (by ids)

property subdomainRank
origin rank of this container

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.MatchMaker(inherits Serializable)
Class matching pair of ids to return pre-defined (for a pair of ids defined in matches) or derived
value (computed using algo) of a scalar parameter. It can be called (id1, id2, val1=NaN, val2=NaN)
in both python and c++.

Note: There is a converter from python number defined for this class, which creates a new
MatchMaker returning the value of that number; instead of giving the object instance therefore,
you can only pass the number value and it will be converted automatically.

property algo
Algorithm used to compute value when no match for ids is found. Possible values are

• ‘avg’ (arithmetic average)

• ‘min’ (minimum value)

• ‘max’ (maximum value)

• ‘harmAvg’ (harmonic average)

The following algo algorithms do not require meaningful input values in order to work:

• ‘val’ (return value specified by val)

• ‘zero’ (always return 0.)

1154 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

computeFallback((MatchMaker)arg1, (float)val1, (float)val2) → float :
Compute algo value for val1 and val2, using algorithm specified by algo.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property matches
Array of (id1,id2,value) items; queries matching id1 + id2 or id2 + id1 will return value

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property val
Constant value returned if there is no match and algo is val

class yade.plot.Material(inherits Serializable)
Material properties of a body.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.MaterialContainer
Container for Materials. A material can be accessed using

1. numerical index in range(0,len(cont)), like cont[2];

2. textual label that was given to the material, like cont[‘steel’]. This entails traversing all
materials and should not be used frequently.

__init__((object)arg1, (MaterialContainer)arg2) → None

2.4. Yade modules reference 1155

Yade Documentation, Release 3rd ed.

append((MaterialContainer)arg1, (Material)arg2) → int :
Add new shared Material; changes its id and return it.

append((MaterialContainer)arg1, (object)arg2) -> object :
Append list of Material instances, return list of ids.

index((MaterialContainer)arg1, (str)arg2) → int :
Return id of material, given its label.

class yade.plot.Matrix3
3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3(1,0,0, 0,1,0, 0,0,1)

Ones = Matrix3(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Quaternion)q) -> None

__init__((object)arg1, (Matrix3)other) -> None

__init__((object)arg1, (Vector3)diag) -> object

__init__((object)arg1, (float)m00, (float)m01, (float)m02, (float)m10, (float)m11,
(float)m12, (float)m20, (float)m21, (float)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) -> object

col((Matrix3)arg1, (int)col) → Vector3 :
Return column as vector.

cols((Matrix3)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix3)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix
P such that self=U*P).

determinant((Matrix3)arg1) → float :
Return matrix determinant.

diagonal((Matrix3)arg1) → Vector3 :
Return diagonal as vector.

inverse((Matrix3)arg1) → Matrix3 :
Return inverted matrix.

isApprox((Matrix3)arg1, (Matrix3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix3)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

1156 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

maxAbsCoeff((Matrix3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix3)arg1) → float :
Maximum value over all elements.

mean((Matrix3)arg1) → float :
Mean value over all elements.

minCoeff((Matrix3)arg1) → float :
Minimum value over all elements.

norm((Matrix3)arg1) → float :
Euclidean norm.

normalize((Matrix3)arg1) → None :
Normalize this object in-place.

normalized((Matrix3)arg1) → Matrix3 :
Return normalized copy of this object

polarDecomposition((Matrix3)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix3)arg1) → float :
Product of all elements.

pruned((Matrix3)arg1[, (float)absTol=1e-06]) → Matrix3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3)arg1, (int)row) → Vector3 :
Return row as vector.

rows((Matrix3)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix3)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix3)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix3)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3)arg1) → float :
Sum of all elements.

svd((Matrix3)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix3)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix3)arg1) → Matrix3 :
Return transposed matrix.

class yade.plot.Matrix3c
/TODO/

Identity = Matrix3c(1,0,0, 0,1,0, 0,0,1)

2.4. Yade modules reference 1157

Yade Documentation, Release 3rd ed.

Ones = Matrix3c(1,1,1, 1,1,1, 1,1,1)

static Random() → Matrix3c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(0,0,0, 0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Matrix3c)other) -> None

__init__((object)arg1, (Vector3c)diag) -> object

__init__((object)arg1, (complex)m00, (complex)m01, (complex)m02, (complex)m10, (com-
plex)m11, (complex)m12, (complex)m20, (complex)m21, (complex)m22) -> object

__init__((object)arg1, (str)m00, (str)m01, (str)m02, (str)m10, (str)m11, (str)m12,
(str)m20, (str)m21, (str)m22) -> object

__init__((object)arg1, (Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False]) ->
object

col((Matrix3c)arg1, (int)col) → Vector3c :
Return column as vector.

cols((Matrix3c)arg1) → int :
Number of columns.

determinant((Matrix3c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix3c)arg1) → Vector3c :
Return diagonal as vector.

inverse((Matrix3c)arg1) → Matrix3c :
Return inverted matrix.

isApprox((Matrix3c)arg1, (Matrix3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Matrix3c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix3c)arg1) → complex :
Mean value over all elements.

norm((Matrix3c)arg1) → float :
Euclidean norm.

normalize((Matrix3c)arg1) → None :
Normalize this object in-place.

normalized((Matrix3c)arg1) → Matrix3c :
Return normalized copy of this object

prod((Matrix3c)arg1) → complex :
Product of all elements.

pruned((Matrix3c)arg1[, (float)absTol=1e-06]) → Matrix3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix3c)arg1, (int)row) → Vector3c :
Return row as vector.

1158 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

rows((Matrix3c)arg1) → int :
Number of rows.

squaredNorm((Matrix3c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix3c)arg1) → complex :
Sum of all elements.

trace((Matrix3c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix3c)arg1) → Matrix3c :
Return transposed matrix.

class yade.plot.Matrix6
6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix6((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0), (0,0,0,0,0,1))

Ones = Matrix6((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6 :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6)other) -> None

__init__((object)arg1, (Vector6)diag) -> object

__init__((object)arg1, (Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) -> object

__init__((object)arg1, (Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4, (Vec-
tor6)l5 [, (bool)cols=False]) -> object

col((Matrix6)arg1, (int)col) → Vector6 :
Return column as vector.

cols((Matrix6)arg1) → int :
Number of columns.

computeUnitaryPositive((Matrix6)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix
P such that self=U*P).

determinant((Matrix6)arg1) → float :
Return matrix determinant.

diagonal((Matrix6)arg1) → Vector6 :
Return diagonal as vector.

inverse((Matrix6)arg1) → Matrix6 :
Return inverted matrix.

2.4. Yade modules reference 1159

Yade Documentation, Release 3rd ed.

isApprox((Matrix6)arg1, (Matrix6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((Matrix6)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

ll((Matrix6)arg1) → Matrix3 :
Return lower-left 3x3 block

lr((Matrix6)arg1) → Matrix3 :
Return lower-right 3x3 block

maxAbsCoeff((Matrix6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Matrix6)arg1) → float :
Maximum value over all elements.

mean((Matrix6)arg1) → float :
Mean value over all elements.

minCoeff((Matrix6)arg1) → float :
Minimum value over all elements.

norm((Matrix6)arg1) → float :
Euclidean norm.

normalize((Matrix6)arg1) → None :
Normalize this object in-place.

normalized((Matrix6)arg1) → Matrix6 :
Return normalized copy of this object

polarDecomposition((Matrix6)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((Matrix6)arg1) → float :
Product of all elements.

pruned((Matrix6)arg1[, (float)absTol=1e-06]) → Matrix6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6)arg1, (int)row) → Vector6 :
Return row as vector.

rows((Matrix6)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((Matrix6)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((Matrix6)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((Matrix6)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6)arg1) → float :
Sum of all elements.

1160 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

svd((Matrix6)arg1) → tuple :
Alias for jacobiSVD.

trace((Matrix6)arg1) → float :
Return sum of diagonal elements.

transpose((Matrix6)arg1) → Matrix6 :
Return transposed matrix.

ul((Matrix6)arg1) → Matrix3 :
Return upper-left 3x3 block

ur((Matrix6)arg1) → Matrix3 :
Return upper-right 3x3 block

class yade.plot.Matrix6c
/TODO/

Identity = Matrix6c((1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0), (0,0,0,0,0,1))

Ones = Matrix6c((1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,1),
(1,1,1,1,1,1), (1,1,1,1,1,1))

static Random() → Matrix6c :
Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6c((0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,0,0,0),
(0,0,0,0,0,0), (0,0,0,0,0,0))

__init__((object)arg1) → None
__init__((object)arg1, (Matrix6c)other) -> None

__init__((object)arg1, (Vector6c)diag) -> object

__init__((object)arg1, (Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) -> object

__init__((object)arg1, (Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vector6c)l4,
(Vector6c)l5 [, (bool)cols=False]) -> object

col((Matrix6c)arg1, (int)col) → Vector6c :
Return column as vector.

cols((Matrix6c)arg1) → int :
Number of columns.

determinant((Matrix6c)arg1) → complex :
Return matrix determinant.

diagonal((Matrix6c)arg1) → Vector6c :
Return diagonal as vector.

inverse((Matrix6c)arg1) → Matrix6c :
Return inverted matrix.

isApprox((Matrix6c)arg1, (Matrix6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

ll((Matrix6c)arg1) → Matrix3c :
Return lower-left 3x3 block

lr((Matrix6c)arg1) → Matrix3c :
Return lower-right 3x3 block

2.4. Yade modules reference 1161

Yade Documentation, Release 3rd ed.

maxAbsCoeff((Matrix6c)arg1) → float :
Maximum absolute value over all elements.

mean((Matrix6c)arg1) → complex :
Mean value over all elements.

norm((Matrix6c)arg1) → float :
Euclidean norm.

normalize((Matrix6c)arg1) → None :
Normalize this object in-place.

normalized((Matrix6c)arg1) → Matrix6c :
Return normalized copy of this object

prod((Matrix6c)arg1) → complex :
Product of all elements.

pruned((Matrix6c)arg1[, (float)absTol=1e-06]) → Matrix6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((Matrix6c)arg1, (int)row) → Vector6c :
Return row as vector.

rows((Matrix6c)arg1) → int :
Number of rows.

squaredNorm((Matrix6c)arg1) → float :
Square of the Euclidean norm.

sum((Matrix6c)arg1) → complex :
Sum of all elements.

trace((Matrix6c)arg1) → complex :
Return sum of diagonal elements.

transpose((Matrix6c)arg1) → Matrix6c :
Return transposed matrix.

ul((Matrix6c)arg1) → Matrix3c :
Return upper-left 3x3 block

ur((Matrix6c)arg1) → Matrix3c :
Return upper-right 3x3 block

class yade.plot.MatrixX
XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

static Identity((int)arg1, (int)rank) → MatrixX :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixX :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixX :
Create matrix with given dimensions where all elements are set to number between 0 and 1
(uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixX :
Create zero matrix of given dimensions

1162 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (MatrixX)other) -> None

__init__((object)arg1, (VectorX)diag) -> object

__init__((object)arg1 [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (Vec-
torX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (Vec-
torX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (Vec-
torX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

col((MatrixX)arg1, (int)col) → VectorX :
Return column as vector.

cols((MatrixX)arg1) → int :
Number of columns.

computeUnitaryPositive((MatrixX)arg1) → tuple :
Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix
P such that self=U*P).

determinant((MatrixX)arg1) → float :
Return matrix determinant.

diagonal((MatrixX)arg1) → VectorX :
Return diagonal as vector.

inverse((MatrixX)arg1) → MatrixX :
Return inverted matrix.

isApprox((MatrixX)arg1, (MatrixX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

jacobiSVD((MatrixX)arg1) → tuple :
Compute SVD decomposition of square matrix, retuns (U,S,V) such that
self=U*S*V.transpose()

maxAbsCoeff((MatrixX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((MatrixX)arg1) → float :
Maximum value over all elements.

mean((MatrixX)arg1) → float :
Mean value over all elements.

minCoeff((MatrixX)arg1) → float :
Minimum value over all elements.

norm((MatrixX)arg1) → float :
Euclidean norm.

normalize((MatrixX)arg1) → None :
Normalize this object in-place.

normalized((MatrixX)arg1) → MatrixX :
Return normalized copy of this object

polarDecomposition((MatrixX)arg1) → tuple :
Alias for computeUnitaryPositive.

prod((MatrixX)arg1) → float :
Product of all elements.

2.4. Yade modules reference 1163

Yade Documentation, Release 3rd ed.

pruned((MatrixX)arg1[, (float)absTol=1e-06]) → MatrixX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixX)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixX)arg1, (int)row) → VectorX :
Return row as vector.

rows((MatrixX)arg1) → int :
Number of rows.

selfAdjointEigenDecomposition((MatrixX)arg1) → tuple :
Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals).
eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3
with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition((MatrixX)arg1) → tuple :
Alias for selfAdjointEigenDecomposition.

squaredNorm((MatrixX)arg1) → float :
Square of the Euclidean norm.

sum((MatrixX)arg1) → float :
Sum of all elements.

svd((MatrixX)arg1) → tuple :
Alias for jacobiSVD.

trace((MatrixX)arg1) → float :
Return sum of diagonal elements.

transpose((MatrixX)arg1) → MatrixX :
Return transposed matrix.

class yade.plot.MatrixXc
/TODO/

static Identity((int)arg1, (int)rank) → MatrixXc :
Create identity matrix with given rank (square).

static Ones((int)rows, (int)cols) → MatrixXc :
Create matrix of given dimensions where all elements are set to 1.

static Random((int)rows, (int)cols) → MatrixXc :
Create matrix with given dimensions where all elements are set to number between 0 and 1
(uniformly-distributed).

static Zero((int)rows, (int)cols) → MatrixXc :
Create zero matrix of given dimensions

__init__((object)arg1) → None
__init__((object)arg1, (MatrixXc)other) -> None

__init__((object)arg1, (VectorXc)diag) -> object

__init__((object)arg1 [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (Vec-
torXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (Vec-
torXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (Vec-
torXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) -> object

__init__((object)arg1, (object)rows [, (bool)cols=False]) -> object

1164 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

col((MatrixXc)arg1, (int)col) → VectorXc :
Return column as vector.

cols((MatrixXc)arg1) → int :
Number of columns.

determinant((MatrixXc)arg1) → complex :
Return matrix determinant.

diagonal((MatrixXc)arg1) → VectorXc :
Return diagonal as vector.

inverse((MatrixXc)arg1) → MatrixXc :
Return inverted matrix.

isApprox((MatrixXc)arg1, (MatrixXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((MatrixXc)arg1) → float :
Maximum absolute value over all elements.

mean((MatrixXc)arg1) → complex :
Mean value over all elements.

norm((MatrixXc)arg1) → float :
Euclidean norm.

normalize((MatrixXc)arg1) → None :
Normalize this object in-place.

normalized((MatrixXc)arg1) → MatrixXc :
Return normalized copy of this object

prod((MatrixXc)arg1) → complex :
Product of all elements.

pruned((MatrixXc)arg1[, (float)absTol=1e-06]) → MatrixXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((MatrixXc)arg1, (int)rows, (int)cols) → None :
Change size of the matrix, keep values of elements which exist in the new matrix

row((MatrixXc)arg1, (int)row) → VectorXc :
Return row as vector.

rows((MatrixXc)arg1) → int :
Number of rows.

squaredNorm((MatrixXc)arg1) → float :
Square of the Euclidean norm.

sum((MatrixXc)arg1) → complex :
Sum of all elements.

trace((MatrixXc)arg1) → complex :
Return sum of diagonal elements.

transpose((MatrixXc)arg1) → MatrixXc :
Return transposed matrix.

2.4. Yade modules reference 1165

Yade Documentation, Release 3rd ed.

class yade.plot.MeasureCapStress(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Post-processing engine giving the capillary stress tensor (the fluids mixture contribution to the to-
tal stress in unsaturated, i.e. triphasic, conditions) according to the µUNSAT expression detailled
in [Duriez2017c]. Although this expression differs in nature from the one of utils.getCapillaryStress
(consideration of distributed integrals herein, vs resultant capillary force therein), both are equiv-
alent [Duriez2016b], [Duriez2017], [Duriez2017c]. The REV volume V entering the expression is
automatically measured, from the Cell for periodic conditions, or from utils.aabbExtrema function
otherwise.

property capillaryPressure
Capillary pressure uc, to be defined equal to Law2_ScGeom_CapillaryPhys_Capillar-
ity.capillaryPressure.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
To output some debugging messages.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property muGamma
Tensorial contribution to sigmaCap from the contact lines Γ : µΓ =

∫
Γ
νnw ⊗ xdl with νnw

the fluid-fluid interface conormal [Duriez2017c], and x the position. (auto-updated)

property muSnw
Tensorial contribution to sigmaCap from the wetting/non-wetting (e.g. liquid/gas) interface
Snw: µSnw =

∫
Snw

(δ − n ⊗ n)dS with n the outward normal and δ the identity tensor.
(auto-updated)

property muSsw
Tensorial contribution to sigmaCap from the wetted solid surfaces Ssw: µSsw =

∫
Ssw

n⊗xdS

with n the outward normal and x the position. (auto-updated)

1166 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property muVw
Tensorial contribution (spherical i.e. isotropic) to sigmaCap from the wetting fluid volume:
µVw = Vw δ with Vw = vW and δ the identity tensor. (auto-updated)

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property sigmaCap
The capillary stress tensor σcap itself, expressed as σcap = 1/V [uc(µVw + µSsw) +
γnw(µSnw + µΓ)] where the four microstructure tensors µVw,µSsw,µSnw,µΓ correspond
to muVw, muSsw, muSnw and muGamma attributes. (auto-updated)

property surfaceTension
Fluid-fluid surface tension γnw, to be defined equal to Law2_ScGeom_CapillaryPhys_Cap-
illarity.surfaceTension.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vW
Wetting fluid volume, summing menisci volumes (faster here than through python loops).
(auto-updated)

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property wettAngle
Wetting, i.e. contact, angle value (radians). To be defined consistently with the value upon
which the capillary files (used by Law2_ScGeom_CapillaryPhys_Capillarity) rely.

class yade.plot.MicroMacroAnalyser(inherits GlobalEngine → Engine → Serializable)
compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.

property compDeformation
Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

2.4. Yade modules reference 1167

Yade Documentation, Release 3rd ed.

property compIncrt
Should increments of force and displacements be defined on [n,n+1]? If not, states will be
saved with only positions and forces (no displacements).

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property incrtNumber

property interval
Number of timesteps between analyzed states.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nonSphereAsFictious
bodies that are not spheres will be used to defines bounds (else just skipped).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property outputFile
Base name for increment analysis output file.

property stateFileName
Base name of state files.

property stateNumber
A number incremented and appended at the end of output files to reflect increment number.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.MindlinCapillaryPhys(inherits MindlinPhys → RotStiffFrictPhys → FrictPhys →
NormShearPhys → NormPhys → IPhys → Serializable)

Adds capillary physics to Mindlin’s interaction physics.

property Delta1
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

1168 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property Delta2
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

property Fs
Shear force in local axes (computed incrementally)

property adhesionForce
Force of adhesion as predicted by DMT

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

property capillaryPressure
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law2 parameter

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fCap
Capillary Force produces by the presence of the meniscus. This is the force acting on particle
#2

property fusionNumber
Indicates the number of meniscii that overlap with this one

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

2.4. Yade modules reference 1169

Yade Documentation, Release 3rd ed.

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property meniscus
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

property vMeniscus
Volume of the meniscus

1170 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.MindlinPhys(inherits RotStiffFrictPhys → FrictPhys → NormShearPhys →
NormPhys → IPhys → Serializable)

Representation of an interaction of the Hertz-Mindlin type.

property Fs
Shear force in local axes (computed incrementally)

property adhesionForce
Force of adhesion as predicted by DMT

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
bool to keep a bond flagged as broken (only useful when displacement criteria is used in partial
sat for cracked cell estimates)

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

2.4. Yade modules reference 1171

Yade Documentation, Release 3rd ed.

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

class yade.plot.MindlinPhysCDM(inherits MindlinPhys → RotStiffFrictPhys → FrictPhys →
NormShearPhys → NormPhys → IPhys → Serializable)

Representation of an interaction of an extended Hertz-Mindlin type. Normal direction: parame-
ters for Conical Damage Model (Harkness et al. 2016, Suhr & Six 2017). Tangential direction:
parameters for stress dependent interparticle friction coefficient (Suhr & Six 2016). Both models
can be switched on/off separately, see FrictMatCDM.

property E
[Pa] equiv. Young’s modulus

property Fs
Shear force in local axes (computed incrementally)

property G
[Pa] equiv. shear modulus

1172 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property R
[m] contact radius in conical damage model

property adhesionForce
Force of adhesion as predicted by DMT

property alphaFac
factor considering angle of conical asperities

property beta
Auxiliary parameter used in the viscous damping model of [Mueller2011]

property betan
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

property betas
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

property c1
[-] parameter of pressure dependent friction model c1

property c2
[-] parameter of pressure dependent friction model c2

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property initD
initial penetration distance, used for crackaperture estimate

property isAdhesive
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

property isBroken
bool to keep a bond flagged as broken (only useful when displacement criteria is used in partial
sat for cracked cell estimates)

property isSliding
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

property isYielding
bool: is contact currently yielding?

property kn
Normal stiffness

property kno
Constant value in the formulation of the normal stiffness

property kr
rotational stiffness [N.m/rad]

2.4. Yade modules reference 1173

Yade Documentation, Release 3rd ed.

property ks
Shear stiffness

property kso
Constant value in the formulation of the tangential stiffness

property ktw
twist stiffness [N.m/rad]

property maxBendPl
Coefficient to determine the maximum plastic moment to apply at the contact

property momentBend
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

property momentTwist
Artificial twisting moment (no plastic condition can be applied at the moment)

property mu0
[-] parameter of pressure dependent friction model mu0

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property normalViscous
Normal viscous component

property prevU
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

property radius
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

property shearElastic
Total elastic shear force

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearViscous
Shear viscous component

property sigmaMax
[Pa] max compressive strength of material

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property usElastic
Total elastic shear displacement (only elastic part)

property usTotal
Total elastic shear displacement (elastic+plastic part)

class yade.plot.MortarMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for mortar interface, used in Ip2_MortarMat_MortarMat_MortarPhys and Law2_Sc-
Geom_MortarPhys_Lourenco. Default values according to

1174 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property cohesion
cohesion [Pa]

property compressiveStrength
compressiveStrength [Pa]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property ellAspect
aspect ratio of elliptical ‘cap’. Value >1 means the ellipse is longer along normal stress axis.

property frictionAngle
Friction angle

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property neverDamage
If true, interactions remain elastic regardless stresses

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Shear to normal modulus ratio

property tensileStrength
tensileStrength [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
Normal elastic modulus [Pa]

class yade.plot.MortarPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

IPhys class containing parameters of MortarMat. Used by Law2_ScGeom_MortarPhys_Lourenco.

2.4. Yade modules reference 1175

Yade Documentation, Release 3rd ed.

property cohesion
cohesion [Pa]

property compressiveStrength
compressiveStrength [Pa]

property crossSection
Crosssection of interaction

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property ellAspect
aspect ratio of elliptical ‘cap’. Value >1 means the ellipse is longer along normal stress axis.

failureCondition((MortarPhys)arg1, (float)arg2, (float)arg3) → bool :
Failure condition from normal stress and norm of shear stress (false=elastic, true=damaged)

property kn
Normal stiffness

property ks
Shear stiffness

property neverDamage
If true, interactions remain elastic regardless stresses

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property sigmaN
Current normal stress (auto-updated)

property sigmaT
Current shear stress (auto-updated)

property tangensOfFrictionAngle
tan of angle of friction

property tensileStrength
tensileStrength [Pa]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.MultiFrictPhys(inherits IPhys → Serializable)
A set of FrictPhys for describing the physical part of an interaction with multiple frictional contact
points between two LevelSet bodies, as a set of FrictPhys items in contacts. To combine with
MultiScGeom and associated classes.

1176 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property contacts
The actual list of FrictPhys items corresponding to the different contact points.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictAngle
Mother value of atan(FrictPhys.tangensOfFrictionAngle) in radians that will apply to each
contact point.

property kn
Mother value of FrictPhys.kn that will apply to each contact point.

property ks
Mother value of FrictPhys.ks that will apply to each contact point.

property nodesIds
The physics counterpart of MultiScGeom.nodesIds (both should be equal by design).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.MultiScGeom(inherits IGeom → Serializable)
A set of ScGeom for describing the kinematics of an interaction with multiple contact points between
two LevelSet bodies, as a set of ScGeom items in contacts. To combine with MultiFrictPhys and
associated classes.

property contacts
The actual list of ScGeom items corresponding to the different contact points.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property nodesIds
List of surface nodes (on id1 if that body is smaller – or equal – in volume, or id2 otherwise)
making contacts. Contact point for a node of index nodesIds[i] has kinematic properties stored
in contacts[i]. Should be equal to MultiFrictPhys.nodesIds by design

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.NewtonIntegrator(inherits GlobalEngine → Engine → Serializable)
Engine integrating newtonian motion equations, see Motion integration for some theoretical back-
ground.

2.4. Yade modules reference 1177

Yade Documentation, Release 3rd ed.

property dampGravity
By default, numerical damping applies to ALL forces, even gravity. If this option is set to
false, then the gravity forces calculated based on NewtonIntegrator.gravity are excluded from
the damping calculation. This option has no effect on gravity forces added by GravityEngine.

property damping
damping coefficient for Cundall’s non viscous damping (see Numerical damping and
[Chareyre2005])

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property densityScaling
if True, then density scaling [Pfc3dManual30] will be applied in order to have a critical timestep
equal to GlobalStiffnessTimeStepper::targetDt for all bodies. This option makes the simulation
unrealistic from a dynamic point of view, but may speedup quasistatic simulations. In rare
situations, it could be useful to not set the scalling factor automatically for each body (which
the time-stepper does). In such case revert GlobalStiffnessTimeStepper.densityScaling to False.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactAsphericalRot
Enable more exact body rotation integrator for aspherical bodies only, using formulations from
[delValle2023], [Omelyan1998], or [Fincham1992] depending on rotAlgorithm

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property gravity
Gravitational acceleration (effectively replaces GravityEngine).

property kinSplit
Whether to separately track translational and rotational kinetic energy.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined and the bitwise AND between mask and body‘s groupMask gives 0, the body
will not move/rotate. Velocities and accelerations will be calculated not paying attention to
this parameter.

property maxVelocitySq
stores max. displacement, based on which we trigger collision detection. (auto-updated)

property niterOmelyan1998
The number of iterations used to solve the nonlinear system of [Omelyan1998] formulation.
Provided a small enough timestep, three iterations are enough to make the system converge.

property normalizeEvery
Normalize the quaternion every normalizeEvery step. Only used in the aspherical formulations
from [delValle2023], [Omelyan1998].

1178 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property prevVelGrad
Store previous velocity gradient (Cell::velGrad) to track average acceleration in periodic sim-
ulations. (auto-updated)

property rotAlgorithm
Which rotation algorithm to use. Options are: delValle2023, Omelyan1998, Fincham1992.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property warnNoForceReset
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.plot.Node(inherits Shape → Serializable)
Geometry of node particle.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.NormPhys(inherits IPhys → Serializable)
Abstract class for interactions that have normal stiffness.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1179

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.NormShearPhys(inherits NormPhys → IPhys → Serializable)
Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Omega
The whole YADE world made of one or, possibly, several scenes serving as independent simulations.
The Omega instance is accessed as O, e.g., O.bodies

addScene((Omega)arg1) → int :
Add new scene to Omega, returns its number

property bodies
Bodies in the current simulation (container supporting index access by id and iteration)

1180 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

bufferFromIntrsct((Omega)arg1, (Subdomain)subdomain, (int)rank, (int)size, (bool)mirror) →
object :

returns a (char*) pointer to the underying buffer of intersections[rank], so that it can be
overwritten. Size must be passed in advance. Pointer to mirrorIntersections[rank] is returned
if mirror=True. Python syntax: bufferFromIntrsct(…)[:]=bytes(something)

property cell
Periodic Cell of the current scene (None if the scene is aperiodic).

childClassesNonrecursive((Omega)arg1, (str)arg2) → list :
Return list of all classes deriving from given class, as registered in the class factory

disableGdb((Omega)arg1) → None :
Revert SEGV and ABRT handlers to system defaults.

property dt
Current timestep (Δt) value. See dynDt for enabling/disabling automatic Δt updates through
a TimeStepper.

property dynDt
Whether a TimeStepper (when present in O.engines) is used for dynamic Δt control.

property dynDtAvailable
Whether a TimeStepper is amongst O.engines, activated or not.

property energy
EnergyTracker of the current simulation. (meaningful only with O.trackEnergy)

property engines
List of engines in the simulation (corresponds to Scene::engines in C++ source code).

exitNoBacktrace((Omega)arg1[, (int)status=0]) → None :
Disable SEGV handler and exit, optionally with given status number.

property filename
Filename under which the current simulation was saved (None if never saved).

property forceSyncCount
Counter for number of syncs in ForceContainer, for profiling purposes.

property forces
ForceContainer (forces, torques) in the current simulation.

property interactions
Access to interactions of simulation, by using

1. id’s of both Bodies of the interactions, e.g. O.interactions[23,65]

2. iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are not real.

intrsctToBytes((Omega)arg1, (Subdomain)subdomain, (int)rank, (bool)mirror) → object :
returns a copy of intersections[rank] (a vector<int>) from a subdomain in the form of bytes.
Returns a copy mirrorIntersections[rank] if mirror=True.

isChildClassOf((Omega)arg1, (str)arg2, (str)arg3) → bool :
Tells whether the first class derives from the second one (both given as strings).

2.4. Yade modules reference 1181

Yade Documentation, Release 3rd ed.

property iter
Get current step number

labeledEngine((Omega)arg1, (str)arg2) → object :
Return instance of engine/functor with the given label. This function shouldn’t be called
by the user directly; every ehange in O.engines will assign respective global python variables
according to labels.

For example:

O.engines=[InsertionSortCollider(label=’collider’)]

collider.nBins=5 # collider has become a variable after assignment to O.engines
automatically

load((Omega)arg1, (str)file[, (bool)quiet=False]) → None :
Load simulation from file. The file should have been saved in the same version of Yade built
or compiled with the same features, otherwise compatibility is not guaranteed. Compatibility
may also be affected by different versions of external libraries such as Boost

loadTmp((Omega)arg1[, (str)mark=’’[, (bool)quiet=False]]) → None :
Load simulation previously stored in memory by saveTmp. mark optionally distinguishes
multiple saved simulations

lsTmp((Omega)arg1) → list :
Return list of all memory-saved simulations.

property materials
Shared materials; they can be accessed by id or by label

property miscParams
MiscParams in the simulation (Scene::mistParams), usually used to save serializables that
don’t fit anywhere else, like GL functors

property numThreads
Get maximum number of threads openMP can use.

pause((Omega)arg1) → None :
Stop simulation execution. (May be called from within the loop, and it will stop after the
current step).

property periodic
Get/set whether the current scene is periodic or not (True/False).

plugins((Omega)arg1) → list :
Return list of all plugins registered in the class factory.

property realtime
Return clock (human world) time the simulation has been running.

reload((Omega)arg1[, (bool)quiet=False]) → None :
Reload current simulation

reset((Omega)arg1) → None :
Reset simulations completely (including another scenes!).

resetAllScenes((Omega)arg1) → None :
Reset all scenes.

resetCurrentScene((Omega)arg1) → None :
Reset current scene.

1182 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

resetThisScene((Omega)arg1) → None :
Reset current scene.

resetTime((Omega)arg1) → None :
Reset simulation time: step number, virtual and real time. (Doesn’t touch anything else,
including timings).

run((Omega)arg1[, (int)nSteps=-1[, (bool)wait=False]]) → None :
Run the simulation. nSteps how many steps to run, then stop (if positive); wait will cause
not returning to python until simulation will have stopped.

runEngine((Omega)arg1, (Engine)arg2) → None :
Run given engine exactly once; simulation time, step number etc. will not be incremented
(use only if you know what you do).

property running
Whether background thread is currently running a simulation.

save((Omega)arg1, (str)file[, (bool)quiet=False]) → None :
Save current simulation to file (should be .xml or .xml.bz2 or .yade or .yade.gz). .xml files are
bigger than .yade, but can be more or less easily (due to their size) opened and edited, e.g.
with text editors. .bz2 and .gz correspond both to compressed versions. There are software
requirements for successful reloads, see O.load.

saveTmp((Omega)arg1[, (str)mark=’’[, (bool)quiet=False]]) → None :
Save simulation to memory (disappears at shutdown), can be loaded later with loadTmp.
mark optionally distinguishes different memory-saved simulations.

sceneToString((Omega)arg1) → object :
Return the entire scene as a string. Equivalent to using O.save(…) except that the scene goes
to a string instead of a file. (see also stringToScene())

property speed
Return current calculation speed [iter/sec].

step((Omega)arg1) → None :
Advance the simulation by one step. Returns after the step will have finished.

property stopAtIter
Get/set number of iteration after which the simulation will stop.

property stopAtTime
Get/set time after which the simulation will stop.

stringToScene((Omega)arg1, (str)arg2[, (str)mark=’’]) → None :
Load simulation from a string passed as argument (see also sceneToString).

property subStep
Get the current subStep number (only meaningful if O.subStepping==True); -1 when out-
side the loop, otherwise either 0 (O.subStepping==False) or number of engine to be run
(O.subStepping==True)

property subStepping
Get/set whether subStepping is active.

switchScene((Omega)arg1) → None :
Switch to alternative simulation (while keeping the old one). Calling the function again
switches back to the first one. Note that most variables from the first simulation will still
refer to the first simulation even after the switch (e.g. b=O.bodies[4]; O.switchScene(); [b still
refers to the body in the first simulation here])

2.4. Yade modules reference 1183

Yade Documentation, Release 3rd ed.

switchToScene((Omega)arg1, (int)arg2) → None :
Switch to defined scene. Default scene has number 0, other scenes have to be created by
addScene method.

property tags
Tags (string=string dictionary) of the current simulation (container supporting string-index
access/assignment)

property thisScene
Return current scene’s id.

property time
Return virtual (model world) time of the simulation.

property timingEnabled
Globally enable/disable timing services (see documentation of the timing module).

tmpFilename((Omega)arg1) → str :
Return unique name of file in temporary directory which will be deleted when yade exits.

tmpToFile((Omega)arg1, (str)fileName[, (str)mark=’’]) → None :
Save XML of saveTmp’d simulation into fileName.

tmpToString((Omega)arg1[, (str)mark=’’]) → str :
Return XML of saveTmp’d simulation as string.

property trackEnergy
When energy tracking is enabled or disabled in this simulation.

wait((Omega)arg1) → None :
Don’t return until the simulation will have been paused. (Returns immediately if not running).

class yade.plot.OpenGLRenderer(inherits Serializable)
Class responsible for rendering scene on OpenGL devices.

property bgColor
Color of the background canvas (RGB)

property blinkHighlight
Adjust blinking of the body selected in the ‘Simulation Inspection’ window.

property bound
Render body Bound

property cellColor
Color of the periodic cell (RGB).

property clipPlaneActive
Activate/deactivate respective clipping planes

property clipPlaneSe3
Position and orientation of clipping planes

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property dispScale
Artificially enlarge (scale) dispalcements from bodies’ reference positions by this relative
amount, so that they become better visible (independently in 3 dimensions). Disbled if (1,1,1).

property dof
Show which degrees of freedom are blocked for each body

1184 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property extraDrawers
Additional rendering components (GlExtraDrawer).

property ghosts
Render objects crossing periodic cell edges by cloning them in multiple places (periodic sim-
ulations only).

hideBody((OpenGLRenderer)arg1, (int)id) → None :
Hide body from id (see OpenGLRenderer::showBody)

property id
Show body id’s

property intrAllWire
Draw wire for all interactions, blue for potential and green for real ones (mostly for debugging)

property intrGeom
Render Interaction::geom objects.

property intrPhys
Render Interaction::phys objects

property intrWire
If rendering interactions, use only wires to represent them.

property light1
Turn light 1 on.

property light2
Turn light 2 on.

property light2Color
Per-color intensity of secondary light (RGB).

property light2Pos
Position of secondary OpenGL light source in the scene.

property lightColor
Per-color intensity of primary light (RGB).

property lightPos
Position of OpenGL light source in the scene.

property mask
Bitmask for showing only bodies where ((mask & Body::mask)!=0)

render((OpenGLRenderer)arg1) → None :
Render the scene in the current OpenGL context.

property rotScale
Artificially enlarge (scale) rotations of bodies relative to their reference orientation, so the
they are better visible.

property selId
Id of particle that was selected by the user.

setRefSe3((OpenGLRenderer)arg1) → None :
Make current positions and orientation reference for scaleDisplacements and scaleRotations.

property shape
Render body Shape

2.4. Yade modules reference 1185

Yade Documentation, Release 3rd ed.

showBody((OpenGLRenderer)arg1, (int)id) → None :
Make body visible (see OpenGLRenderer::hideBody)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Render all bodies with wire only (faster)

class yade.plot.PDFEngine(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Base class for spectrums calculations. Compute Probability Density Functions of normalStress,
shearStress, distance, velocity and interactions in spherical coordinates and write result to a file.
Column name format is: Data(theta, phi). Convention used: x: phi = 0, y: theta = 0, z: phi =
pi/2

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property filename
Filename

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property numDiscretizeAnglePhi
Number of sector for phi-angle

property numDiscretizeAngleTheta
Number of sector for theta-angle

1186 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property warnedOnce
For one-time warning. May trigger usefull warnings

class yade.plot.PFacet(inherits Shape → Serializable)
PFacet (particle facet) geometry (see [Effeindzourou2016], [Effeindzourou2015a]). It is highly rec-
ommended to use the helper functions in gridpfacet (e.g., gridpfacet.pfacetCreator1-4) to generate
correct PFacet elements.

property area
PFacet’s area

property cellDist
Distance of bodies in cell size units, if using periodic boundary conditions. Note that periodic
boundary conditions for PFacets have not yet been fully implemented.

property color
Color for rendering (normalized RGB).

property conn1
First Body the Pfacet is connected to.

property conn2
Second Body the Pfacet is connected to.

property conn3
third Body the Pfacet is connected to.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.4. Yade modules reference 1187

Yade Documentation, Release 3rd ed.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property node1
First Body the Pfacet is connected to.

property node2
Second Body the Pfacet is connected to.

property node3
third Body the Pfacet is connected to.

property normal
PFacet’s normal (in local coordinate system)

property radius
PFacet’s radius

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.ParallelEngine(inherits Engine → Serializable)
Engine for running other Engine in parallel.

__init__((object)arg1) → None
object __init__(tuple args, dict kwds)

__init__((object)arg1, (list)arg2) -> object :
Construct from (possibly nested) list of slaves.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

1188 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property slaves
List of lists of Engines; each top-level group will be run in parallel with other groups, while
Engines inside each group will be run sequentially, in given order.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PartialEngine(inherits Engine → Serializable)
Engine affecting only particular bodies in the simulation, namely those defined in ids attribute. See
also GlobalEngine.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PartialSatClayEngine(inherits PartialSatClayEngineT → PartialEngine →
Engine → Serializable)

Engine designed to simulate the partial saturation of clay and associated swelling.

property Ka
bulk modulus of air used for equivalent compressibility model

property Ks
bulkmodulus of solid used for equivalent compressibility model

2.4. Yade modules reference 1189

Yade Documentation, Release 3rd ed.

property Kw
bulkmodulus of water used for equivalent compressibility model

OSI((PartialSatClayEngineT)arg1) → float :
Return the number of interactions only between spheres.

property Po
Po parameter for Van Genuchten model, Free swelling 0.04e6. If porosity is distributed, this
value becomes cell based.

property SrM
residual saturation for empirical relative saturation based permeability relationship

property SsM
saturated saturation for empirical relative saturation based permeability relationship

property a
parameter a for evolution of Po as a function of porosity

property airViscosity
Used with PartialSatClayEngine::getGasPerm for crack permeability estimates.

property allCellsFractured
use to simulate all pores fractured for debugging purposes only

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

property alphaExpRate
rate of exponential distribution for porosity distribution

property alpham
alpha parameter for particle volumetric strain model MPa^-1

property apertureFactor
factor to consider tortuosity

artificialParticleSwell((PartialSatClayEngine)arg1, (float)volStrain) → None :
Artificially swell all particles by the strain provided during next time step. Does not reactivate
itself for next time step, user must call for each timestep they want to use it.

avFlVelOnSph((PartialSatClayEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((PartialSatClayEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((PartialSatClayEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((PartialSatClayEngineT)arg1) → Vector3 :
measure the mean velocity in the period

1190 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property b
parameter b for evolution of lambda as a function of porosity

property bIntrinsicPerm
b parameter for dependency of intrinsic permeability on macroporosity Gens 2011. Not active
if 0 (default). Mokni2016 uses 8

property betaExpRate
rate of exponential distribution for porosity distribution

property betaLaplaceShape
shape of laplace distribution used for porosity distribution

property betam
beta parameter for particle volumetric strain model MPa^-1

blockCell((PartialSatClayEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockCellPoroThreshold
If >0, any cell above this porosity will be blocked from the beginning (partially sat crack
should not participate).

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property blockIsoCells
search for cells that might be surrounded by blocked (minerals or cracks) and block them to
avoid numerical instabilities.

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

2.4. Yade modules reference 1191

Yade Documentation, Release 3rd ed.

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property brokenBondsRemoveCapillaryforces
if true, broken bonds will also remove any capillary forces associated with the area of the
crack

property calcCrackArea
The amount of crack per pore is updated if calcCrackArea=True

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

property changeCrackSaturation
if cell becomes cracked, its saturation is reduced to residual saturation (warning this is not
conservative). Useful for reducing partial sat permeability in these cells.

cholmodStats((PartialSatClayEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((PartialSatClayEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((PartialSatClayEngineT)arg1) → None :
Clear the list of points with pressure imposed.

property collectedDT
this is the exact time step that is computed, it enables the stiffness timestep estimate to
change dynamically while maintaining an exact match for the flow timestep

compTessVolumes((PartialSatClayEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property computeFracturePaths
if true, fracture paths connecting to boundary conditions will become pcondition cells and
forces will be computed using atmospheric pressure.

property constantPorosity
use the meanInitialPorosity everywhere instead of random distribution

1192 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property crackAreaFactor
Factors the area used for crack geometry computations and capillary force removal inside
cracks

property crackCellPoroThreshold
If >0, any cell above this porosity will follow crack logic from the beginning. (~0.35 for pellet
imagery)

property crackModelActive
Activates the parallel plate approximation model for facets connected to cohesionBroken edges

property crackedCellTotal
total number of cracked cells

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property directlyModifySatFromPoro
if true, changes in porosity are used to directly change porosity. Normally, the water retention
curve is taking care of this on its own.

property displacementBasedCracks
fracture criteria will be based on displacement instead of broken bond status

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

2.4. Yade modules reference 1193

Yade Documentation, Release 3rd ed.

edgeSize((PartialSatClayEngineT)arg1) → float :
Return the number of interactions.

property elapsedIters
number of mechanical iters since last flow iter.

emulateAction((PartialSatClayEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((PartialSatClayEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((PartialSatClayEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceConfinement
If true, all the boundary particles are locked in place to simulate perfect constant volume.

1194 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

property fracBasedPointSuctionCalc
if true, the suction per material point is computed based on fraction shared by incident cell.

property fracPorosity
porosity value used for cracked cells

property freeSwelling
if true, boundary forces are computed with pAir pressure only

property freezePorosity
useful for freezing porosity values during stage for reaching initial conditions where volume
changes should not impact porosity

property freezeSaturation
if true, saturation will not change in specimen.

property gasPermFirst
Set true each time you want a new gas perm estimate.

getAverageAperture((PartialSatClayEngine)arg1) → float :
get the averageaperture.

getAverageSaturation((PartialSatClayEngine)arg1) → float :
Get average saturation of entire specimen.

getAverageSuction((PartialSatClayEngine)arg1) → float :
Get average suction of entire specimen.

getBoundaryFluidArea((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryGasFlux((PartialSatClayEngine)arg1, (int)boundary) → float :
Get total Gas flux through boundary defined by its body id.

getBoundaryVel((PartialSatClayEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((PartialSatClayEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

2.4. Yade modules reference 1195

Yade Documentation, Release 3rd ed.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((PartialSatClayEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((PartialSatClayEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((PartialSatClayEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellCracked((PartialSatClayEngine)arg1, (Vector3)pos) → bool :
Get cell cracked in position pos[0],pos[1],pos[2].

getCellFlux((PartialSatClayEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((PartialSatClayEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellGasCenter((PartialSatClayEngine)arg1, (int)id) → Vector3 :
Get cell center of gas mesh with id. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellGasPImposed((PartialSatClayEngine)arg1, (int)id) → bool :
Get pressure condition of gas cell with id. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellGasVelocity((PartialSatClayEngine)arg1, (Vector3)pos) → object :
Get relative cell gas velocity at position pos[0] pos [1] pos[2]. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellGasVolume((PartialSatClayEngine)arg1, (Vector3)id) → float :
Get volume of gas cell with id. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

getCellInvVoidVolume((PartialSatClayEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPorosity((PartialSatClayEngine)arg1, (Vector3)pos) → float :
Measure cell porosity in position pos[0],pos[1],pos[2].

getCellPressure((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellSaturation((PartialSatClayEngine)arg1, (Vector3)pos) → float :
Measure cell saturation in position pos[0],pos[1],pos[2]

1196 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getCellTImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((PartialSatClayEngine)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((PartialSatClayEngine)arg1, (Vector3)pos) → float :
Get cell volume in position pos[0],pos[1],pos[2].

getConductivity((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getCrackArea((PartialSatClayEngine)arg1) → float :
get the total cracked area.

getCrackFabricVector((PartialSatClayEngine)arg1) → Vector3 :
get the crack fabric vector.

getCrackVolume((PartialSatClayEngine)arg1) → float :
get the total cracked volume.

getDiffusionCoeff((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEnteredThroatRatio((PartialSatClayEngine)arg1) → float :
Get ratio of entered to total cracked cells.

getEquivalentCompressibility((PartialSatClayEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

property getGasPerm
If true, a gas permeability will be extracted during next timestep. This involves building
another triangulation with a new conductivity matrix, factorizing the matrix, and solving i.e.
this will double computational effort if performed every step.

getIncidentCells((PartialSatClayEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((PartialSatClayEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getNumCracks((PartialSatClayEngine)arg1) → float :
get the number of cracks.

getPorePressure((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

2.4. Yade modules reference 1197

Yade Documentation, Release 3rd ed.

getPoreTemperature((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getTotalSpecimenVolume((PartialSatClayEngine)arg1) → float :
get the total specimen volume

getVertices((PartialSatClayEngineT)arg1, (int)id) → list :
get the vertices of a cell

getWaterVolume((PartialSatClayEngine)arg1) → float :
get the total water volume (entered cracks only).

property homogeneousSuctionValue
Will override the pressure solver and set all cells to the user provided value. Meant for testing
non transient swelling conditions.

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

property imageryFilePath
path to the porosity grid extracted from imagery

imposeCavity((PartialSatClayEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((PartialSatClayEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((PartialSatClayEngineT)arg1) → None :
initialize pore volumes.

insertMicroPores((PartialSatClayEngine)arg1, (float)fracMicroPores) → None :
run to inscribe spheres in a desired fraction of existing pores.

property isActivated
Activates Flow Engine

1198 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

isCellNeighbor((PartialSatClayEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property kappaWeibullScale
scale of weibull dist, this is the mean correction factor multiplied by meanInitialPorosity

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lambdaWeibullShape
shape of weibull distribution of the correction factor used for porosity distribution.

property lmbda
Lambda parameter for Van Genuchten model. Free swelling 0.4. If porosity is distributed,
this value becomes cell based.

property manualCrackPerm
If >0, it overrides the crack perm calculations (useful for setting cracked cells to extremely
low perms to avoid fluid movement)

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property matricSuctionRatio
The ratio of matric:osmotic suction. Facet forces computed for matricSuction fraction only.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property maxPo
Certain boundary situations where a low volume will develop and interpolate from a cell with
high initial porosity leading to Po exponential estimate blowing up.

property maxPoroClamp
max clamp for distribution of porosity. Value over 0.8 messes with water retention curve

property maxPorosity
max porosity found during stochastic poro distribution. used for evolution of porosity

property meanInitialPorosity
if not negative, activates stochastic distribution for porosity. mean value of porosity for
specimen

property meanKStat
report the local permeabilities’ correction

property meanPoreSizeDiameter
mean pore size diameter, used for stochastic generation of porosity field

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((PartialSatClayEngineT)arg1) → bool :
check wether metis lib is effectively used

property microStructureAdh
Adhesion between microstructure particles

2.4. Yade modules reference 1199

Yade Documentation, Release 3rd ed.

property microStructureE
The amount of crack per pore is updated if calcCrackArea=True

property microStructureNu
The amount of crack per pore is updated if calcCrackArea=True

property microStructurePhi
The amount of crack per pore is updated if calcCrackArea=True

property microStructureRho
The amount of crack per pore is updated if calcCrackArea=True

property minCellVol
Use for avoiding 0 volume cells that will interupt solution of linear system.

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minLambdao
Maybe unnecessary since the lambdao function is a decay exponential for same situation
described in maxPo above

property minMicroRadFrac
Used during sphere insertion checks, if inscribed sphere contacts facet it cannot be reduced
further than minMicroRadFrac*originalInscribedRadius

property minParticleSwellFactor
If prevents particles from decreasing too far as their saturation decreases.

property minPoroClamp
min clamp for distribution of porosity

property mineralPoro
If >0, all cell with porosity below this threshold will be blocked from flow and any associated
particles will be clumped together

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((PartialSatClayEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

nGasCells((PartialSatClayEngine)arg1) → int :
Get number of cells in gas mesh. Can only be used if
:yref:‘PartialSatEngine::getGasPerm‘=True.

property nUnsatPerm
n parameter for empirical relative saturation based permeability relationship. Off by default.
n=5 in Mokni2016b

normalLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

1200 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

normalVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property onlyFractureExposedCracks
if true, only the exposed cracks have tricked permeability.

onlySpheresInteractions((PartialSatClayEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pAir
Air pressure for calculation of capillary pressure (Pair - Pwater)

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property partialSatDT
time step used for partial sat engine. If >0, the engine will only activate once every
partialSatDT/scene->dt steps. Hydromechanical forces estimated and added as persistant
forces to particles during non partial sat time steps. This value is not exact, see PartialSat-
ClayEngine.collectedDT

property partialSatEngine
Activates the partial sat clay engine

property particleSwelling
set false to neglect particle swelling

property permAreaFactor
Factors the area used for representing roughness in cracks that still conduct flux.

property permClamp
If >0, it prevents any permeabilities from increasing beyond this value (useful in case of very
close cells

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
initial porosity of the specimen

2.4. Yade modules reference 1201

Yade Documentation, Release 3rd ed.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((PartialSatClayEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printPorosity((PartialSatClayEngine)arg1[, (str)file=’./porosity’]) → None :
save the porosity of the cell network.

printVertices((PartialSatClayEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

reloadSolver((PartialSatClayEngine)arg1, (object)arg2) → None :
use after reloading a partialSat simulation and before running next step

resetLinearSystem((PartialSatClayEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

property resetOriginalParticleValues
use to reset initial volume and radii values for particles.

property resetVolumeSolids
useful if genesis process was used to reach an initial condition. We don’t want the volume
changes that occured during geneis to affect porosity evolution.

property residualAperture
residual aperture of induced cracks

savePermeabilityNetworkVTK((PartialSatClayEngine)arg1[, (str)fileName=’./VTK’]) → None
:

Save permeability network as connections between cell centers

saveUnsatVtk((PartialSatClayEngine)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]
]) → None :

Save pressure and saturation field in vtk format. Specify a folder name for output. The cells
adjacent to the bounding spheres are generated conditionally based on withBoundaries (not
compatible with periodic boundaries)

saveVtk((PartialSatClayEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((PartialSatClayEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((PartialSatClayEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

1202 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

setCellPressure((PartialSatClayEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellSaturation((PartialSatClayEngine)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setCellTImposed((PartialSatClayEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((PartialSatClayEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((PartialSatClayEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

property suction
turn just particle suction off (for debug)

surfaceDistanceParticle((PartialSatClayEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((PartialSatClayEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property swelling
turn just particle swelling off (for debug)

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

2.4. Yade modules reference 1203

Yade Documentation, Release 3rd ed.

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timeDimension
Used to determine stability of system, partialSatEngine computes this value automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property totalCracks
total discretely connected cracks.

property totalSpecimenVolume
report the total specimen volume

property totalVolChange
tracks the total volumetric strain that occured in each step

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((PartialSatClayEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((PartialSatClayEngineT)arg1) → None :
update rates of volume change

property useForceForCracks
Cracks are only considered if a normal force of 0 is encountered between two particles.

property useKeq
use the equivalent bulkmodulus for pressure field

property useKozeny
use Kozeny for determining the permeability based on porosity (off by default)

property useOpeningPressure
if true, cracks will be created based on local opening pressure criteria computed by waterSur-
faceTension/aperture

1204 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((PartialSatClayEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property volumes
turn just particle volumes off (for debug)

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waterSurfaceTension
Water surface tension at 20 degC used to determine entry pressure to cracks

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

2.4. Yade modules reference 1205

Yade Documentation, Release 3rd ed.

class yade.plot.PartialSatClayEngineT(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((PartialSatClayEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((PartialSatClayEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((PartialSatClayEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((PartialSatClayEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((PartialSatClayEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((PartialSatClayEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((PartialSatClayEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

1206 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((PartialSatClayEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((PartialSatClayEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((PartialSatClayEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((PartialSatClayEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

2.4. Yade modules reference 1207

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((PartialSatClayEngineT)arg1) → float :
Return the number of interactions.

emulateAction((PartialSatClayEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((PartialSatClayEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((PartialSatClayEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

1208 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((PartialSatClayEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((PartialSatClayEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((PartialSatClayEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((PartialSatClayEngineT)arg1) → float :
Return the density of cavity fluid.

2.4. Yade modules reference 1209

Yade Documentation, Release 3rd ed.

getCavityFlux((PartialSatClayEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((PartialSatClayEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((PartialSatClayEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((PartialSatClayEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((PartialSatClayEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((PartialSatClayEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((PartialSatClayEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((PartialSatClayEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((PartialSatClayEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((PartialSatClayEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((PartialSatClayEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((PartialSatClayEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

1210 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getIncidentCells((PartialSatClayEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((PartialSatClayEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((PartialSatClayEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((PartialSatClayEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((PartialSatClayEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((PartialSatClayEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((PartialSatClayEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((PartialSatClayEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((PartialSatClayEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.4. Yade modules reference 1211

Yade Documentation, Release 3rd ed.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((PartialSatClayEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((PartialSatClayEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((PartialSatClayEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

1212 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((PartialSatClayEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((PartialSatClayEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((PartialSatClayEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((PartialSatClayEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((PartialSatClayEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((PartialSatClayEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((PartialSatClayEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((PartialSatClayEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((PartialSatClayEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((PartialSatClayEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

2.4. Yade modules reference 1213

Yade Documentation, Release 3rd ed.

shearLubTorque((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((PartialSatClayEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((PartialSatClayEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((PartialSatClayEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1214 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateBCs((PartialSatClayEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((PartialSatClayEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((PartialSatClayEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

2.4. Yade modules reference 1215

Yade Documentation, Release 3rd ed.

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.PartialSatMat(inherits FrictMat → ElastMat → Material → Serializable)
Material used for PartialSatClayEngine. Necessary for the custom PartialSatState.

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property num
Particle number

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

1216 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.PartialSatState(inherits State → Serializable)
Hertz mindlin state information about each body. Only active if partially saturated clay model is
active.

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property incidentCells
number of incident cells

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property lastIncidentCells
number of incident cells

property mass
Mass of this body

property ori
Current orientation.

property pos
Current position.

property radiiChange
total change of particle radius due to swelling

property radiiOriginal
original particle radius prior to swelling

2.4. Yade modules reference 1217

Yade Documentation, Release 3rd ed.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property suction
suction computed for particle (sum(sat of inc. cells)/num inc. cells)

property suctionSum
sum of suctions associated with incident cells

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

property volumeOriginal
original particle volume stored for strain increments

class yade.plot.Peri3dController(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Class for controlling independently all 6 components of “engineering” stress and strain of periodic
Cell. goal are the goal values, while stressMask determines which components prescribe stress and
which prescribe strain.

If the strain is prescribed, appropriate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.

Stress error (difference between actual and ideal stress) is evaluated in current and previous steps
(dσi,dσi−1). Linear extrapolation is used to estimate error in the next step

dσi+1 = 2dσi − dσi−1

According to this error, the strain rate is modified by mod parameter

dσi+1

{
> 0 → ε̇i+1 = ε̇i −max(abs(ε̇i)) ·mod
< 0 → ε̇i+1 = ε̇i +max(abs(ε̇i)) ·mod

According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and
compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).

The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix trsf T = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented

1218 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition

Yade Documentation, Release 3rd ed.

yet). A prescribed strain increment in global coordinates dt · ε̇ is properly rotated to cell’s local
coordinates and added to P

Pi+1 = P+UTdt · ε̇U

The new value of trsf is computed at T i+1 = UPi+1. From current and next trsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V = (T i+1T
−1 − I)/dt

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.

Examples examples/test/peri3dController_example1.py and examples/test/peri3dController_-
triaxialCompression.py explain usage and inputs of Peri3dController, exam-
ples/test/peri3dController_shear.py is an example of using shear components and also simulation
on rotated cell.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doneHook
Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property goal
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lenPe
Peri3dController internal variable

property lenPs
Peri3dController internal variable

property maxStrain
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

property maxStrainRate
Maximal absolute value of strain rate (both normal and shear components of strain)

property mod
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

property nSteps
Number of steps of the simulation.

2.4. Yade modules reference 1219

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_example1.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_shear.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_shear.py

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property pathSizes
Peri3dController internal variable

property pathsCounter
Peri3dController internal variable

property pe
Peri3dController internal variable

property poissonEstimation
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

property progress
Actual progress of the simulation with Controller.

property ps
Peri3dController internal variable

property strain
Current strain (deformation) vector (εx,εy,εz,γyz,γzx,γxy) (auto-updated).

property strainGoal
Peri3dController internal variable

property strainRate
Current strain rate vector.

property stress
Current stress vector (σx,σy,σz,τyz,τzx,τxy)|yupdate|.

property stressGoal
Peri3dController internal variable

property stressIdeal
Ideal stress vector at current time step.

property stressMask
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

property stressRate
Current stress rate vector (that is prescribed, the actual one slightly differ).

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.

1220 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))

at step 400 (=5*1000/2) the value is 450 (=3*300/2),

at step 800 (=4*1000/5) the value is 150 (=1*300/2),

at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).

See example scripts/test/peri3dController_example1 for illusration.

property xyPath
Time function for xy direction, see xxPath

property youngEstimation
Estimation of macroscopic Young’s modulus, used for the first simulation step

property yyPath
Time function for yy direction, see xxPath

property yzPath
Time function for yz direction, see xxPath

property zxPath
Time function for zx direction, see xxPath

property zzPath
Time function for zz direction, see xxPath

class yade.plot.PeriIsoCompressor(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.

property charLen
Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

property currUnbalanced
Current value of unbalanced force

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doneHook
Python command to be run when reaching the last specified stress

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property globalUpdateInt
how often to recompute average stress, stiffness and unbalanced force

property keepProportions
Exactly keep proportions of the cell (stress is controlled based on average, not its components

2.4. Yade modules reference 1221

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/peri3dController_example1

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxSpan
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

property maxUnbalanced
if actual unbalanced force is smaller than this number, the packing is considered stable,

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sigma
Current stress value

property state
Where are we at in the stress series

property stresses
Stresses that should be reached, one after another

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PeriTriaxController(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Engine for independently controlling stress or strain in periodic simulations.

PeriTriaxController.goal contains absolute values for the controlled quantity, and Peri-
TriaxController.stressMask determines meaning of those values (0 for strain, 1 for stress):
e.g. (1<<0 | 1<<2) = 1 | 4 = 5 means that goal[0] and goal[2] are stress values,
and goal[1] is strain.

See scripts/test/periodic-triax.py for a simple example.

property absStressTol
Absolute stress tolerance with respect to goal.

property currUnbalanced
current unbalanced force (updated every globUpdate) (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doneHook
python command to be run when the desired state is reached

1222 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property dynCell
Imposed stress can be controlled using the packing stiffness (dynCell = False) or by applying
the laws of dynamic (dynCell=true). Don’t forget to assign a mass to the cell.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Work input from boundary controller.

property globUpdate
How often to recompute average stress, stiffness and unbalaced force.

property goal
Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii) with Fii the cell transformation matrix.

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

property growDamping
Damping of cell resizing (0=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mass
Mass of the cell (user set); if not set and dynCell is used, it will be computed as the sum of
all particle masses.

property maxBodySpan
maximum body dimension (auto-computed)

property maxStrainRate
Maximum strain rate of the periodic cell.

property maxUnbalanced
maximum unbalanced force.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property prevGrow
previous cell grow

property relStressTol
Relative stress tolerance with respect to goal.

2.4. Yade modules reference 1223

Yade Documentation, Release 3rd ed.

property stiff
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

property strain
Cell true strain (auto-updated)

property strainRate
cell strain rate (auto-updated)

property stress
diagonal terms of the stress tensor

property stressMask
mask determining strain/stress (0/1) meaning for goal components

property stressTensor
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PeriodicEngine(inherits GlobalEngine → Engine → Serializable)
Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.

The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.

If initRun is set (false by default), the engine will run when called for the first time; otherwise
it will only start counting period (realLast, etc, interval variables) from that point, but without
actually running, and will run only once a period has elapsed since the initial run.

This class should not be used directly; rather, derive your own engine which you want to be run
periodically.

Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.

Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts:

PyRunner(realPeriod=5,iterPeriod=10000,command='print O.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whichever
comes first since it was last run.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1224 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.PeriodicFlowEngine(inherits FlowEngine_PeriodicInfo → PartialEngine →
Engine → Serializable)

A variant of FlowEngine implementing periodic boundary conditions. The API is very similar.

OSI((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions only between spheres.

2.4. Yade modules reference 1225

Yade Documentation, Release 3rd ed.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((FlowEngine_PeriodicInfo)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((FlowEngine_PeriodicInfo)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((FlowEngine_PeriodicInfo)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((FlowEngine_PeriodicInfo)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

1226 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((FlowEngine_PeriodicInfo)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngine_PeriodicInfo)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((FlowEngine_PeriodicInfo)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

2.4. Yade modules reference 1227

Yade Documentation, Release 3rd ed.

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

property duplicateThreshold
distance from cell borders that will triger periodic duplication in the triangulation (auto-
updated)

edgeSize((FlowEngine_PeriodicInfo)arg1) → float :
Return the number of interactions.

emulateAction((FlowEngine_PeriodicInfo)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngine_PeriodicInfo)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngine_PeriodicInfo)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

1228 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((FlowEngine_PeriodicInfo)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((FlowEngine_PeriodicInfo)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((FlowEngine_PeriodicInfo)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((FlowEngine_PeriodicInfo)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((FlowEngine_PeriodicInfo)arg1) → float :
Return the flux through the edge of the cavity.

2.4. Yade modules reference 1229

Yade Documentation, Release 3rd ed.

getCell((FlowEngine_PeriodicInfo)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((FlowEngine_PeriodicInfo)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((FlowEngine_PeriodicInfo)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngine_PeriodicInfo)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((FlowEngine_PeriodicInfo)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

1230 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getIncidentCells((FlowEngine_PeriodicInfo)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((FlowEngine_PeriodicInfo)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((FlowEngine_PeriodicInfo)arg1, (int)id) → list :
get the vertices of a cell

property gradP
Macroscopic pressure gradient

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((FlowEngine_PeriodicInfo)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((FlowEngine_PeriodicInfo)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((FlowEngine_PeriodicInfo)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((FlowEngine_PeriodicInfo)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((FlowEngine_PeriodicInfo)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

2.4. Yade modules reference 1231

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((FlowEngine_PeriodicInfo)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((FlowEngine_PeriodicInfo)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((FlowEngine_PeriodicInfo)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

1232 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((FlowEngine_PeriodicInfo)arg1, (float)wallUpY , (float)wallDownY) → None
:

Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowEngine_PeriodicInfo)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

resetLinearSystem((FlowEngine_PeriodicInfo)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((FlowEngine_PeriodicInfo)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((FlowEngine_PeriodicInfo)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((FlowEngine_PeriodicInfo)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngine_PeriodicInfo)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((FlowEngine_PeriodicInfo)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((FlowEngine_PeriodicInfo)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

2.4. Yade modules reference 1233

Yade Documentation, Release 3rd ed.

shearLubForce((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngine_PeriodicInfo)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((FlowEngine_PeriodicInfo)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((FlowEngine_PeriodicInfo)arg1, (int)cellId, (int)throatIndex) →
float :

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1234 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateBCs((FlowEngine_PeriodicInfo)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((FlowEngine_PeriodicInfo)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

volume((FlowEngine_PeriodicInfo)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

2.4. Yade modules reference 1235

Yade Documentation, Release 3rd ed.

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.PhaseCluster(inherits Serializable)
Preliminary.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property entryPore
the pore of the cluster incident to the throat with smallest entry Pc.

property entryRadius
smallest entry capillary pressure.

getCapPressure((PhaseCluster)arg1, (int)numf) → float :
get local capillary pressure

getCapVol((PhaseCluster)arg1, (int)numf) → float :
get position of the meniscus - in terms of volume

getConductivity((PhaseCluster)arg1, (int)numf) → float :
get conductivity

getFlux((PhaseCluster)arg1, (int)interface) → float :
get flux at an interface (i.e. velocity of the menicus), the index to be used is the rank of the
interface in the same order as in getInterfaces().

getInterfaces((PhaseCluster)arg1[, (int)cellId=-1]) → list :
get the list of interfacial pore-throats associated to a cluster, listed as [id1,id2,area,index]
where id2 is the neighbor pore outside the cluster and index is the position in the global
cluster’s list of interfaces. If cellId>=0 only the interfaces adjacent to the corresponding inner
cell are returned.

getPores((PhaseCluster)arg1) → object :
get the list of pores by index

property interfacialArea
interfacial area of the cluster

property label
Unique label of this cluster, should be reflected in pores of this cluster.

setCapPressure((PhaseCluster)arg1, (int)numf , (float)pCap) → None :
set local capillary pressure

setCapVol((PhaseCluster)arg1, (int)numf , (float)vCap) → None :
set position of the meniscus - in terms of volume

solvePressure((PhaseCluster)arg1) → None :
Solve 1-phase flow in one single cluster defined by its id.

1236 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateCapVol((PhaseCluster)arg1, (int)numf , (float)dt) → float :
increments throat’s volume of given interface by flux*dt

updateCapVolList((PhaseCluster)arg1, (float)dt) → None :
increments throat’s volume of all interfaces by flux*dt

property volume
cumulated volume of all pores.

class yade.plot.Polyhedra(inherits Shape → Serializable)
Polyhedral (convex) geometry.

GetCentroid((Polyhedra)arg1) → Vector3 :
return polyhedra’s centroid

GetInertia((Polyhedra)arg1) → Vector3 :
return polyhedra’s inertia tensor

GetOri((Polyhedra)arg1) → Quaternion :
return polyhedra’s orientation

GetSurfaceTriangulation((Polyhedra)arg1) → object :
triangulation of facets (for plotting)

GetSurfaces((Polyhedra)arg1) → object :
get indices of surfaces’ vertices (for postprocessing)

GetVolume((Polyhedra)arg1) → float :
return polyhedra’s volume

Initialize((Polyhedra)arg1) → None :
Initialization

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property seed
Seed for random generator.

setVertices((Polyhedra)arg1, (object)arg2) → None :
set vertices and update receiver. Takes a list/tuple of vertices as argument.

Note: Causes memory leaks, so if you want to use it maaaany times, use one of setVer-
tices mentioned lower, passing each vertex as individual argument (currently only setVer-

2.4. Yade modules reference 1237

Yade Documentation, Release 3rd ed.

tices(v1,v2,v3,v4) for tetrahedron is implemented, on request it is easy to implement more
vertices).

setVertices4((Polyhedra)arg1, (Vector3)arg2, (Vector3)arg3, (Vector3)arg4, (Vector3)arg5) →
None :

set 4 vertices and update receiver. Each vertex is single argument.

property size
Size of the grain in meters - x,y,z - before random rotation

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property v
Polyhedron vertices in local coordinate system.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.PolyhedraGeom(inherits IGeom → Serializable)
Geometry of interaction between 2 Polyhedra, including volumetric characteristics

property contactPoint
Contact point (global coords), centroid of the overlapping polyhedron

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property equivalentCrossSection
Cross-section area of the overlap (perpendicular to the normal) - not used

property equivalentPenetrationDepth
volume / equivalentCrossSection - not used

property normal
Normal direction of the interaction

property orthonormal_axis

property penetrationVolume
Volume of overlap [m3]

property shearInc
Shear displacement increment in the last step

property twist_axis

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PolyhedraMat(inherits FrictMat → ElastMat → Material → Serializable)
Elastic material with Coulomb friction.

1238 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property IsSplitable
To be splitted … or not

property Wei_P
Weibull Formulation, failure probability, P, [Gladky2017].

property Wei_S0
Weibull Formulation, Sigma0, Pa, (if negative - disabled), [Gladky2017]

property Wei_V0
Weibull Formulation, V0, m^3, representative volume, [Gladky2017].

property Wei_m
Weibull Formulation, Weibull modulus, m, (if negative - disabled), [Gladky2017]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property sigmaCD
Mohr-Coulomb failure criterium SigmaCD, Pa, maximal compressive strength (if negative -
disabled), [Gladky2017]

property sigmaCZ
Mohr-Coulomb failure criterium SigmaCZ, Pa, maximal tensile strength (if negative - dis-
abled), [Gladky2017]

property strength
Stress at which polyhedra of volume 4/3*pi [mm] breaks.

2.4. Yade modules reference 1239

Yade Documentation, Release 3rd ed.

property strengthTau
Tangential stress at which polyhedra of volume 4/3*pi [mm] breaks.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.PolyhedraPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

Simple elastic material with friction for volumetric constitutive laws

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PolyhedraSplitter(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Engine that splits polyhedras.

Warning: PolyhedraSplitter returns different results depending on CGAL version! For details
see https://gitlab.com/yade-dev/trunk/issues/45

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1240 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/issues/45

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.PotentialBlock(inherits Shape → Serializable)
Geometry of PotentialBlock.

property AabbMinMax
Whether the exact Aabb should be calculated. If false, an approximate cubic Aabb is defined
with edges of 2R

2.4. Yade modules reference 1241

Yade Documentation, Release 3rd ed.

property R
R in Potential Particles. If left zero, a default value is calculated as half the distance of the
farthest vertices

property a
List of a coefficients of plane normals

property b
List of b coefficients of plane normals

property boundaryNormal
Normal direction of boundary if fixedNormal=True

property c
List of c coefficients of plane normals

property cohesion
Cohesion (stress) of each face (property for plane, rock joint)

property color
Color for rendering (normalized RGB).

property connectivity
Connectivity of vertices for each plane (auto-updated)

property d
List of d coefficients of plane equations

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property erase
Parameter to mark particles to be removed (for excavation)

property fixedNormal
Whether to fix the contact normal at a boundary, using boundaryNormal

property highlight
Whether this Shape will be highlighted when rendered.

property id
Particle id (for graphics in vtk output)

property inertia
Principal inertia tensor (auto-updated)

property intactRock
Property for plane

property isBolt
Whether a block is part of a bolt (used in the Rockbolt.cpp script)

property isBoundary
Whether the particle is part of a boundary block

1242 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property isLining
Whether particle is part of tunnel lining (used in the RockLining.cpp script)

property jointType
jointType

property k
k in Potential Particles (not used)

property liningFriction
Lining friction

property liningLength
Lining spacing between nodes

property liningNormalPressure
Normal pressure acting on lining

property liningStiffness
Lining stiffness

property liningTensionGap
Numerical gap between lining and block to allowing tension to be calculated

property liningTotalPressure
Total pressure acting on lining

property maxAabb
Max from box centre: Used for visualisation in vtk

property minAabb
Min from box centre: Used for visualisation in vtk

property orientation
Principal orientation

property phi_b
Basic friction angle of each face (property for plane, rock joint)

property phi_r
Residual friction angle of each face (property for plane, rock joint)

property position
Initial position of the particle, if initially defined eccentrically to the centroid (auto-updated)

property r
r in Potential Particles

property tension
Tension (stress) of each face (property for plane, rock joint)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertices
Vertices (auto-updated)

property volume
Volume (auto-updated)

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

2.4. Yade modules reference 1243

Yade Documentation, Release 3rd ed.

class yade.plot.PotentialBlock2AABB(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from PotentialBlock.

property aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PotentialBlockVTKRecorder(inherits PeriodicEngine → GlobalEngine → Engine→ Serializable)
Engine recording potential blocks as surfaces into files with given periodicity.

property REC_COLORS
Whether to record colors

property REC_ID
Whether to record id

property REC_INTERACTION
Whether to record contact point and forces

property REC_VELOCITY
Whether to record velocity

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
File prefix to save to

1244 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxDimension
Maximum allowed distance between consecutive grid lines

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property sampleX
Number of divisions in the X direction for triangulation

property sampleY
Number of divisions in the Y direction for triangulation

property sampleZ
Number of divisions in the Z direction for triangulation

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property twoDimension
Whether to render the particles as 2-D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

2.4. Yade modules reference 1245

Yade Documentation, Release 3rd ed.

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.PotentialParticle(inherits Shape → Serializable)
EXPERIMENTAL. Geometry of PotentialParticle.

property AabbMinMax
Whether the exact Aabb should be calculated. If false, an approximate cubic Aabb is defined
with edges of 2R

property R
R in Potential Particles

property a
List of a coefficients of plane normals

property b
List of b coefficients of plane normals

property boundaryNormal
Normal direction of boundary if fixedNormal=True

property c
List of c coefficients of plane normals

property color
Color for rendering (normalized RGB).

property d
List of d coefficients of plane normals

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property fixedNormal
Whether to fix the contact normal at a boundary, using boundaryNormal

property highlight
Whether this Shape will be highlighted when rendered.

property id
Particle id (for graphics in vtk output)

property isBoundary
Whether the particle is part of a boundary particle

property k
k in Potential Particles

property maxAabb
Max from box centre: Used for visualisation in vtk and qt

property maxAabbRotated
Max from box centre: Used for primary contact detection

1246 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property minAabb
Min from box centre: Used for visualisation in vtk and qt

property minAabbRotated
Min from box centre: Used for primary contact detection

property r
r in Potential Particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vertices
Vertices

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.PotentialParticle2AABB(inherits BoundFunctor → Functor → Serializable)
EXPERIMENTAL. Functor creating Aabb from PotentialParticle.

property aabbEnlargeFactor
see Sphere2AABB.

property bases
Ordered list of types (as strings) this functor accepts.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property label
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

property timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.PotentialParticleVTKRecorder(inherits PeriodicEngine → GlobalEngine →
Engine → Serializable)

Engine recording potential blocks as surfaces into files with given periodicity.

property REC_COLORS
Whether to record colors

property REC_ID
Whether to record id

property REC_INTERACTION
Whether to record contact point and forces

property REC_VELOCITY
Whether to record velocity

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

2.4. Yade modules reference 1247

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
File prefix to save to

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxDimension
Maximum allowed distance between consecutive grid lines

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property sampleX
Number of divisions in the X direction for triangulation

property sampleY
Number of divisions in the Y direction for triangulation

property sampleZ
Number of divisions in the Z direction for triangulation

1248 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property twoDimension
Whether to render the particles as 2-D

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.PyRunner(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-
cEngine documentation for details.

property command
Command to be run by python interpreter. Not run if empty.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property ignoreErrors
Debug only: set this value to true to tell PyRunner to ignore any errors encountered during
command execution.

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

2.4. Yade modules reference 1249

Yade Documentation, Release 3rd ed.

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateGlobals
Whether to workaround ipython not recognizing local variables by calling globals().
update(locals()). If true then PyRunner is able to call functions declared later locally in
a running live yade session. The PyRunner call is a bit slower because it updates globals()
with recently declared python functions.

Warning:

When updateGlobals==False and a function was declared inside a live
yade session (ipython) then an error NameError: name 'command' is not
defined will occur unless python globals() are updated with command

globals().update(locals())

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.Quaternion
Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q, q*v
(rotating v by q), q==q, q!=q.

Static attributes: Identity.

Note: Quaternion is represented as axis-angle when printed (e.g. Identity is Quaternion((1,
0,0),0), and can also be constructed from the axis-angle representation. This is however different
from the data stored inside, which can be accessed by indices [0] (x), [1] (y), [2] (z), [3] (w).
To obtain axis-angle programatically, use Quaternion.toAxisAngle which returns the tuple.

1250 Chapter 2. Yade for users

https://github.com/ipython/ipython/issues/62
http://ipython.org

Yade Documentation, Release 3rd ed.

Identity = Quaternion((1,0,0),0)

Rotate((Quaternion)arg1, (Vector3)v) → Vector3

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)axis, (object)angle) -> object

__init__((object)arg1, (Vector3)axis, (float)angle) -> object

__init__((object)arg1, (object)angle, (Vector3)axis) -> object

__init__((object)arg1, (float)angle, (Vector3)axis) -> object

__init__((object)arg1, (tuple)axis, (str)angle) -> object

__init__((object)arg1, (tuple)tuple) -> object

__init__((object)arg1, (Vector3)u, (Vector3)v) -> object

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (float)w, (float)x, (float)y, (float)z) -> None :
Initialize from coefficients.

Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((object)arg1, (Matrix3)rotMatrix) -> None

__init__((object)arg1, (Quaternion)other) -> None

angularDistance((Quaternion)arg1, (Quaternion)arg2) → float

conjugate((Quaternion)arg1) → Quaternion

inverse((Quaternion)arg1) → Quaternion

norm((Quaternion)arg1) → float

normalize((Quaternion)arg1) → None

normalized((Quaternion)arg1) → Quaternion

setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) → None

slerp((Quaternion)arg1, (float)t, (Quaternion)other) → Quaternion

toAngleAxis((Quaternion)arg1) → tuple

toAxisAngle((Quaternion)arg1) → tuple

toRotationMatrix((Quaternion)arg1) → Matrix3

toRotationVector((Quaternion)arg1) → Vector3

class yade.plot.RadialForceEngine(inherits PartialEngine → Engine → Serializable)
Apply force of given magnitude directed away from spatial axis.

property axisDir
Axis direction (normalized automatically)

property axisPt
Point on axis

2.4. Yade modules reference 1251

Yade Documentation, Release 3rd ed.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fNorm
Applied force magnitude

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

yade.plot.Real
alias of float

class yade.plot.Recorder(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles
opening the file as needed. See PeriodicEngine for controlling periodicity.

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1252 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

2.4. Yade modules reference 1253

Yade Documentation, Release 3rd ed.

class yade.plot.RegularGrid(inherits Serializable)
A rectilinear (aka uniform or regular) grid, for LevelSet shapes or other purposes. A cubic regular
grid extending from a min = (m,m,m) to a max at (M,M,M), with nGP = (n,n,n) ie a spacing
= (M-m)/(n-1), can be conveniently obtained from RegularGrid(m,M,n). For more general cases,
minimum point min, spacing and nGP have to be passed as such at instantiation.

closestCorner((RegularGrid)arg1, (Vector3)pt[, (bool)unbound=False]) → Vector3i :
Returns the Vector3i indices of the closest gridpoint which is smaller (for all components)
than pt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dims((RegularGrid)arg1) → Vector3 :
Returns the grid dimensions along the three axes, as a Vector3.

gridPoint((RegularGrid)arg1, (int)i, (int)j, (int)k) → Vector3 :
Returns the Vector3 position of any grid point, given its indices i (along the X-axis), j (Y-axis),
k (Z-axis).

max((RegularGrid)arg1) → Vector3 :
Returns the maximum corner of the grid.

property min
The minimum corner of the grid.

property nGP
The number of grid points along the three axes as a Vector3i.

property spacing
The (uniform and isotropic) grid spacing between two axis-consecutive grid points.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ResetRandomPosition(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.

property angularVelocity
Mean angularVelocity of spheres.

property angularVelocityRange
Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity±angularVelocityRange.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

1254 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property factoryFacets
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxAttempts
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another
position.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property normal
??

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property point
??

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property subscribedBodies
Affected bodies.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1255

Yade Documentation, Release 3rd ed.

property velocity
Mean velocity of spheres.

property velocityRange
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocity±velocityRange.

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property volumeSection
Create new spheres inside factory volume rather than on its surface.

class yade.plot.RockBolt(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Engine recording potential blocks as surfaces into files with given periodicity.

property averageForce
averageForce

property axialForces
force

property axialMax
maximum axial force

property axialStiffness
EA

property blockIDs
ids

property boltDirection
direction

property boltLength
startingPt

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property displacements
ids

property distanceFrCentre
nodePosition

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
File prefix to save to

1256 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property forces
force

property halfActiveLength
stiffness

property initRun
Run the first time we are called as well.

property initialDirection
initial length

property initialLength
initial length

property installed
installed?

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property localCoordinates
local coordinates of intersection

property maxForce
maxForce

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property name
File prefix to save to

property nodeDistanceVec
nodeDistance

property nodePosition
nodePosition

property normalStiffness
EA/L

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.4. Yade modules reference 1257

Yade Documentation, Release 3rd ed.

property openingCreated
opening created?

property openingRad
estimated opening radius

property preTension
prestressed tension

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property resetLengthInit
reset length for pretension

property ruptured
ruptured

property shearForces
force

property shearMax
maximum shear force

property shearStiffness
stiffness

property startingPoint
startingPt

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useMidPoint
large length

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property vtkIteratorInterval
how often to print vtk

property vtkRefTimeStep
first timestep to print vtk

class yade.plot.RockLiningGlobal(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Engine recording potential blocks as surfaces into files with given periodicity.

property Area
A

1258 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property EA
EA

property EI
EI

property ElasticModulus
E

property Inertia
I

property assembledKglobal
global stiffness matrix

property axialForces
force

property axialMax
maximum axial force

property blockIDs
ids

property contactLength
contactLength

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property density
density

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property displacement
force

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property expansionFactor
alpha deltaT

property fileName
File prefix to save to

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initOverlap
initialOverlap

property initRun
Run the first time we are called as well.

2.4. Yade modules reference 1259

Yade Documentation, Release 3rd ed.

property installed
installed?

property interfaceCohesion
L

property interfaceFriction
L

property interfaceStiffness
L

property interfaceTension
L

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lengthNode
L

property liningThickness
liningThickness

property localCoordinates
local coordinates of intersection

property lumpedMass
lumpedMass

property moment
moment

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property name
File prefix to save to

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property openingCreated
opening created?

property openingRad
estimated opening radius

1260 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property radialDisplacement
force

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property refAngle
initial theta

property refDir
initial v

property refOri
initial theta

property refPos
initial u

property ruptured
ruptured

property shearForces
force

property shearMax
maximum shear force

property sigmaMax
sigma max

property sigmaMin
sigma min

property startingPoint
startingPt

property stickIDs
L

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalNodes
L

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property vtkIteratorInterval
how often to print vtk

2.4. Yade modules reference 1261

Yade Documentation, Release 3rd ed.

property vtkRefTimeStep
first timestep to print vtk

class yade.plot.RotStiffFrictPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)
Version of FrictPhys with a rotational stiffness

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property kr
rotational stiffness [N.m/rad]

property ks
Shear stiffness

property ktw
twist stiffness [N.m/rad]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.RotationEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying rotation (by setting angular velocity) to subscribed bodies. If rotateAroundZero
is set, then each body is also displaced around zeroPoint.

property angularVelocity
Angular velocity. [rad/s]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1262 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rotateAroundZero
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

property rotationAxis
Axis of rotation (direction); will be normalized automatically.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property zeroPoint
Point around which bodies will rotate if rotateAroundZero is True

class yade.plot.RungeKuttaCashKarp54Integrator(inherits Integrator → TimeStepper →
GlobalEngine → Engine → Serializable)

RungeKuttaCashKarp54Integrator engine.

__init__((object)arg1) → None
object __init__(tuple args, dict kwds)

__init__((object)arg1, (list)arg2) -> object :
Construct from (possibly nested) list of slaves.

property a_dxdt

property a_x

property abs_err
Relative integration tolerance

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1263

Yade Documentation, Release 3rd ed.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property integrationsteps
all integrationsteps count as all succesfull substeps

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxVelocitySq
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rel_err
Absolute integration tolerance

property slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

property stepsize
It is not important for an adaptive integration but important for the observer for setting the
found states after integration

property timeStepUpdateInterval
dt update interval

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.STLImporter

ymport((STLImporter)arg1, (str)arg2) → object

class yade.plot.ScGeom(inherits GenericSpheresContact → IGeom → Serializable)
Class representing geometry of a contact point between two bodies. It is more general than sphere-
sphere contact even though it is primarily focused on spheres contact interactions (reason for
the ‘Sc’ naming); it is also used for representing contacts of a Sphere with non-spherical bodies
(Facet, Plane, Box, ChainedCylinder), or between two non-spherical bodies (ChainedCylinder).
The contact has 3 DOFs (normal and 2×shear) and uses incremental algorithm for updating shear.

We use symbols x, v, ω respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.
Then we define branch length and unit contact normal

l = ||x2 − x1||,n =
x2 − x1

||x2 − x1||

1264 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

The relative velocity of the spheres is then

v12 =
r1 + r2

l
(v2 − v1) − (r2ω2 + r1ω1)× n

where the fraction multiplying translational velocities is to make the definition objective and avoid
ratcheting effects (see Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting). The shear compo-
nent is

vs12 = v12 − (n · v12)n.

Tangential displacement increment over last step then reads

∆xs12 = ∆tvs12.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ScGeom6D(inherits ScGeom → GenericSpheresContact → IGeom → Serializable)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

2.4. Yade modules reference 1265

Yade Documentation, Release 3rd ed.

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property shearInc
Shear displacement increment in the last step

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ScGridCoGeom(inherits ScGeom6D → ScGeom → GenericSpheresContact → IGeom→ Serializable)
Geometry of a GridConnection-Sphere contact.

property bending
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

property contactPoint
some reference point for the interaction (usually in the middle). (auto-computed)

1266 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property id3
id of the first GridNode. (auto-updated)

property id4
id of the second GridNode. (auto-updated)

property id5
id of the third GridNode. (auto-updated)

incidentVel((ScGeom)arg1, (Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3 :
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

property initialOrientation1
Orientation of body 1 one at initialisation time (auto-updated)

property initialOrientation2
Orientation of body 2 one at initialisation time (auto-updated)

property isDuplicate
this flag is turned true (1) automatically if the contact is shared between two Connections. A
duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

property normal
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

property penetrationDepth
Penetration distance of spheres (positive if overlapping)

property refR1
Reference radius of particle #1. (auto-computed)

property refR2
Reference radius of particle #2. (auto-computed)

relAngVel((ScGeom)arg1, (Interaction)i) → Vector3 :
Return relative angular velocity of the interaction.

property relPos
position of the contact on the connection (0: node-, 1:node+) (auto-updated)

property shearInc
Shear displacement increment in the last step

property trueInt
Defines the body id of the GridConnection where the contact is real, when ScGridCo-
Geom::isDuplicate>0.

2.4. Yade modules reference 1267

Yade Documentation, Release 3rd ed.

property twist
Elastic twist angle (around normal axis) of the contact.

property twistCreep
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property weight
barycentric coordinates of the projection point (auto-updated)

class yade.plot.Scene(inherits Serializable)
Object comprising a stand-alone simulation.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doSort
Used, when new body is added to the scene.

property dt
Current timestep for integration.

property isPeriodic
Whether periodic boundary conditions are active.

property iter
Current iteration (computational step) number

property selectedBody
Id of body that is selected by the user

property speed
Current calculation speed [iter/s]

property stopAtIter
Iteration after which to stop the simulation.

property stopAtTime
Time after which to stop the simulation

property subD
subdomain (shape) attached to this proc.

property subStep
Number of sub-step; not to be changed directly. -1 means to run loop prologue (cell integra-
tion), 0…n-1 runs respective engines (n is number of engines), n runs epilogue (increment step
number and time.

property subStepping
Whether we currently advance by one engine in every step (rather than by single run through
all engines).

property subdomain
the subdomain this scene is assigned in MPI/domain decomposition.

property tags
Arbitrary key=value associations (tags like mp3 tags: author, date, version, description etc.)

property time
Simulation time (virtual time) [s]

1268 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property trackEnergy
Whether energies are being traced.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Serializable

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ServoPIDController(inherits TranslationEngine → KinematicEngine →
PartialEngine → Engine → Serializable)

PIDController servo-engine for applying prescribed force on bodies. http://en.wikipedia.org/wiki/
PID_controller

property axis
Unit vector along which apply the velocity [-]

property curVel
Current applied velocity [m/s]

property current
Current value for the controller [N]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property errorCur
Current error [N]

property errorPrev
Previous error [N]

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property iTerm
Integral term [N]

property ids
Ids list of bodies affected by this PartialEngine.

property iterPeriod
Periodicity criterion of velocity correlation [-]

property iterPrevStart
Previous iteration of velocity correlation [-]

property kD
Derivative gain/coefficient for the PID-controller [-]

2.4. Yade modules reference 1269

http://en.wikipedia.org/wiki/PID_controller
http://en.wikipedia.org/wiki/PID_controller

Yade Documentation, Release 3rd ed.

property kI
Integral gain/coefficient for the PID-controller [-]

property kP
Proportional gain/coefficient for the PID-controller [-]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxVelocity
Velocity [m/s]

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property target
Target value for the controller [N]

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property translationAxis
Direction of imposed translation [Vector3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velocity
Scalar value of the imposed velocity [m/s]. Imposed vector velocity is velocity * axis

class yade.plot.Shape(inherits Serializable)
Geometry of a body

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1270 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.SimpleShear(inherits FileGenerator → Serializable)
Preprocessor for a simple shear box model. The packing initially conforms a gas-like, very loose,
state (see utils.makeCloud function), but importing some existing packing from a text file can be
also performed after little change in the source code. In its current state, the preprocessor carries out
an oedometric compression, until a value of normal stress equal to 2 MPa (and a stable mechanical
state). Others Engines such as KinemCNDEngine, KinemCNSEngine and KinemCNLEngine, could
be used to apply resp. constant normal displacement, constant normal rigidity and constant normal
stress paths using such a simple shear box.

property density
density of the spheres [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

property gravApplied
depending on this, GravityEngine is added or not to the scene to take into account the weight
of particles

property gravity
vector corresponding to used gravity (if gravApplied) [m/s2]

property height
initial height (along y-axis) of the shear box [m]

property length
initial length (along x-axis) of the shear box [m]

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

property matFrictionDeg
value of FrictMat.frictionAngle within the packing and for the two horizontal boundaries
(friction is zero along other boundaries) [◦] (the necessary conversion in [rad] is done auto-
matically)

property matPoissonRatio
value of FrictMat.poisson for the bodies [-]

property matYoungModulus
value of FrictMat.young for the bodies [Pa]

property thickness
thickness of the boxes constituting the shear box [m]

property timeStepUpdateInterval
value of TimeStepper::timeStepUpdateInterval for the TimeStepper used here

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property width
initial width (along z-axis) of the shear box [m]

2.4. Yade modules reference 1271

Yade Documentation, Release 3rd ed.

class yade.plot.SnapshotEngine(inherits PeriodicEngine → GlobalEngine → Engine →
Serializable)

Periodically save snapshots of GLView(s) as .png files. Files are named fileBase + counter + ‘.png’
(counter is left-padded by 0s, i.e. snap00004.png).

property counter
Number that will be appended to fileBase when the next snapshot is saved (incremented at
every save). (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property deadTimeout
Timeout for 3d operations (opening new view, saving snapshot); after timing out, throw
exception (or only report error if ignoreErrors) and make myself dead. [s]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileBase
Basename for snapshots

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property format
Format of snapshots (one of JPEG, PNG, EPS, PS, PPM, BMP) QGLViewer documentation.
File extension will be lowercased format. Validity of format is not checked.

property ignoreErrors
Only report errors instead of throwing exceptions, in case of timeouts.

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property msecSleep
number of msec to sleep after snapshot (to prevent 3d hw problems) [ms]

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

1272 Chapter 2. Yade for users

http://www.libqglviewer.com/refManual/classQGLViewer.html#abbb1add55632dced395e2f1b78ef491c

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property plot
Name of field in plot.imgData to which taken snapshots will be appended automatically.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property snapshots
Files that have been created so far

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.SpatialQuickSortCollider(inherits Collider → GlobalEngine → Engine →
Serializable)

Collider using quicksort along axes at each step, using Aabb bounds.

Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the
algorithm is simple enought to make it good for checking other collider’s correctness.

property avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

property boundDispatcher
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.4. Yade modules reference 1273

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Sphere(inherits Shape → Serializable)
Geometry of spherical particle.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property radius
Radius [m]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.SpheresFactory(inherits GlobalEngine → Engine → Serializable)
Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMax, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive maxParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overridden SpheresFactory::pickRandomPosition().

A sample script for this engine is in scripts/spheresFactory.py.

property PSDcalculateMass
PSD-Input is in mass (true), otherwise the number of particles will be considered.

1274 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/spheresFactory.py

Yade Documentation, Release 3rd ed.

property PSDcum
PSD-dispersion, cumulative procent meanings [-]

property PSDsizes
PSD-dispersion, sizes of cells, Diameter [m]

property blockedDOFs
Blocked degress of freedom

property color
Use the color for newly created particles, if specified

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property exactDiam
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property goalMass
Total mass that should be attained at the end of the current step. (auto-updated)

property ids
ids of created bodies

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
groupMask to apply for newly created spheres

property massFlowRate
Mass flow rate [kg/s]

property materialId
Shared material id to use for newly created spheres (can be negative to count from the end)

property maxAttempt
Maximum number of attempts to position a new sphere randomly.

property maxMass
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

property maxParticles
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

2.4. Yade modules reference 1275

Yade Documentation, Release 3rd ed.

property normal
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

property normalVel
Direction of particle’s velocites.

property numParticles
Cummulative number of particles produces so far (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rMax
Maximum radius of generated spheres (uniform distribution)

property rMin
Minimum radius of generated spheres (uniform distribution)

property silent
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

property stopIfFailed
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalMass
Mass of spheres that was produced so far. (auto-updated)

property totalVolume
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vAngle
Maximum angle by which the initial sphere velocity deviates from the normal.

property vMax
Maximum velocity norm of generated spheres (uniform distribution)

property vMin
Minimum velocity norm of generated spheres (uniform distribution)

class yade.plot.SplitPolyMohrCoulomb(inherits PolyhedraSplitter → PeriodicEngine →
GlobalEngine → Engine → Serializable)

Split polyhedra according to Mohr-Coulomb criterion.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

1276 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
Base.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

2.4. Yade modules reference 1277

Yade Documentation, Release 3rd ed.

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.SplitPolyTauMax(inherits PolyhedraSplitter → PeriodicEngine → GlobalEngine →
Engine → Serializable)

Split polyhedra along TauMax.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1278 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.State(inherits Serializable)
State of a body (spatial configuration, internal variables).

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

2.4. Yade modules reference 1279

Yade Documentation, Release 3rd ed.

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

class yade.plot.StepDisplacer(inherits PartialEngine → Engine → Serializable)
Apply generalized displacement (displacement or rotation) stepwise on subscribed bodies. Could
be used for purposes of contact law tests (by moving one sphere compared to another), but in this
case, see rather LawTester

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mov
Linear displacement step to be applied per iteration, by addition to State.pos.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property rot
Rotation step to be applied per iteration (via rotation composition with State.ori).

property setVelocities
If false, positions and orientations are directly updated, without changing the speeds of con-
cerned bodies. If true, only velocity and angularVelocity are modified. In this second case
integrator is supposed to be used, so that, thanks to this Engine, the bodies will have the
prescribed jump over one iteration (dt).

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1280 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Subdomain(inherits Shape → Serializable)
The bounding box of a mpi subdomain. Stores internals and provides optimized functions for
communications between workers. This class may not be used directly. Instead, Subdomains are
appended automatically to the scene bodies when using mpy.mpirun

boundOnAxis((Subdomain)arg1, (Bound)bound, (Vector3)axis, (bool)min) → float :
computes projected position of a bound in a certain direction

boundOnAxis((Subdomain)arg1, (Bound)bound, (Vector3)axis, (bool)min) ->
float :

computes projected position of a bound in a certain direction

property boundsMax
max corner of all bboxes of members; differs from effective domain bounds by the extra length
(sweepLength)

property boundsMin
min corner of all bboxes of members; differs from effective domain bounds by the extra length
(sweepLength)

centerOfMass((Subdomain)arg1) → Vector3 :
returns center of mass of assigned bodies

centerOfMass((Subdomain)arg1) -> Vector3 :
returns center of mass of assigned bodies

cleanIntersections((Subdomain)arg1, (int)otherDomain) → None :
makes sure that the ids in the current subdomain belong to the current subdomain

property color
Color for rendering (normalized RGB).

property comm
Communicator to be used for MPI (converts mpi4py comm <-> c++ comm)

completeSendBodies((Subdomain)arg1) → None :
calls MPI_wait to complete the non blocking sends/recieves.

countIntsWith((Subdomain)arg1, (int)body, (int)someSubDomain[,
(Scene)someSubDomain=<Scene instance at 0x1830290>]) → int :

returns for a body the count of interactions (real or virtual) with bodies from a certain
subdomain, interactions with subdomains excluded. Third parameter (scene pointer) can be
left to default (equivalent to O._sceneObj).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property extraLength
verlet dist for the subdomain, added to bodies verletDist

2.4. Yade modules reference 1281

Yade Documentation, Release 3rd ed.

filterIntersections((Subdomain)arg1) → float :
clear intersections and mirror intersections of all non-interacting bodies.

filteredInts((Subdomain)arg1, (int)someSubDomain, (bool)mirror) → object :
return a copy of intersections or mirrorIntersections from which non-interacting bodies have
been removed.

getMirrorIntrs((Subdomain)arg1) → None :
get mirrorIntersections from other subdomains

getRankSize((Subdomain)arg1) → None :
set subdomain ranks, used for communications -> merging, sending bodies etc.

getStateBoundsValuesFromIds((Subdomain)arg1, (object)b_ids) → object :
returns pos,vel,angVel,ori,bounds of listed bodies.

getStateValues((Subdomain)arg1, (int)otherDomain) → object :
returns pos,vel,angVel,ori of bodies interacting with a given otherDomain, based on Subdo-
main.intersections.

getStateValuesFromIds((Subdomain)arg1, (object)b_ids) → object :
returns pos,vel,angVel,ori of listed bodies.

property highlight
Whether this Shape will be highlighted when rendered.

property ids
Ids of owned particles.

init((Subdomain)arg1) → None :
Initialize subdomain variables as rank and buffer sizes, call this from each thread after scene
distribution by master.

property intersections
lists of bodies from this subdomain intersecting other subdomains. WARNING: only assigne-
ment and concatenation allowed

medianFilterCPP((Subdomain)arg1, (int)arg2, (Vector3)bodiesToRecv, (Vector3)otherSubdomain,
(int)oterSubdomainCenterofMass, (bool)useAABB) → object :

cpp version of median filter, used for body reallocation operations.

mergeOp((Subdomain)arg1) → None :
merge with setting interactions

migrateBodiesSend((Subdomain)arg1, (object)bodiesToSend, (int)destination) → None :
ids of body to be sent have their subdomain parameter reassigned, followed by sendBodies

property mirrorIntersections
lists of bodies from other subdomains intersecting this one. WARNING: only assignement
and concatenation allowed

mpiIrecvStates((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-Irecv states from another domain (non-blocking)

mpiRecvStates((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-recv states from another domain (blocking)

mpiSendStates((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-send states from current domain to another domain (blocking)

mpiWaitReceived((Subdomain)arg1, (int)otherSubdomain) → None :
mpi-Wait states from another domain (upon return the buffer is set)

1282 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

receiveBodies((Subdomain)arg1, (int)sender) → None :
Receive the bodies from MPI sender rank to MPI receiver rank

sendBodies((Subdomain)sender, (int)receiver, (object)idsToSend) → None :
Copy the bodies from MPI sender rank to MPI receiver rank

setIDstoSubdomain((Subdomain)arg1, (list)idList) → None :
set list of ids to the subdomain.

setMinMax((Subdomain)arg1) → None :
returns bounding min-max based on members bounds. precondition: the members bounds
have been dispatched already, else we re-use old values. Carefull if subdomain is not at the
end of O.bodies.

setStateBoundsValuesFromIds((Subdomain)arg1, (object)b_ids, (object)input) → None :
set pos,vel,angVel,ori,bounds from listed body ids and data.

setStateValuesFromBuffer((Subdomain)arg1, (int)subdomain) → None :
set pos,vel,angVel,ori from state buffer.

setStateValuesFromIds((Subdomain)arg1, (object)b_ids, (object)input) → None :
set pos,vel,angVel,ori from listed body ids and data.

splitBodiesToWorkers((Subdomain)arg1, (bool)eraseWorkerBodies) → None :
of true bodies in workers are erased and reassigned.

property subdomains
subdomain ids of other bodies, WARNING: only assignement and concatenation allowed

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateLocalIds((Subdomain)arg1, (bool)eraseRemoteMastrer) → None :
updates the ids in the subdomain id vector, if not eraseRemoteMastrer, body->subdomain in
master are updated.

updateNewMirrorIntrs((Subdomain)arg1, (int)otherdomain, (object)newMirrorList) → None :
update the mirrorIntersections of a specific subdomain

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.SumIntrForcesCb(inherits IntrCallback → Serializable)
Callback summing magnitudes of forces over all interactions. IPhys of interactions must derive
from NormShearPhys (responsability fo the user).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.TTetraGeom(inherits IGeom → Serializable)
Geometry of interaction between 2 tetrahedra, including volumetric characteristics

property contactPoint
Contact point (global coords)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

2.4. Yade modules reference 1283

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property equivalentCrossSection
Cross-section of the overlap (perpendicular to the axis of least inertia

property equivalentPenetrationDepth
??

property maxPenetrationDepthA
??

property maxPenetrationDepthB
??

property normal
Normal of the interaction, directed in the sense of least inertia of the overlap volume

property penetrationVolume
Volume of overlap [m3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.TTetraSimpleGeom(inherits IGeom → Serializable)
EXPERIMENTAL. Geometry of interaction between 2 tetrahedra

property contactPoint
Contact point (global coords)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property flag
TODO

property normal
Normal of the interaction TODO

property penetrationVolume
Volume of overlap [m3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.TagsWrapper
Container emulating dictionary semantics for accessing tags associated with simulation. Tags are
accesed by strings.

1284 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1, (TagsWrapper)arg2) → None

has_key((TagsWrapper)arg1, (str)arg2) → bool

keys((TagsWrapper)arg1) → list

class yade.plot.TesselationWrapper(inherits GlobalEngine → Engine → Serializable)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities (see also the dedicated section in user manual). The calculation of microstrain
is explained in [Catalano2014a]

See example usage in script example/tesselationWrapper/tesselationWrapper.py.

Below is an output of the defToVtk function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.)

The definition of outer contours of arbitrary shapes and the application of stress on them, based
on CGAL’s ‘alpha shapes’ is also possible. See scripts/examples/alphaShapes/GlDrawAlpha.py
(giving the figure below) and other examples therein. Read more in [Pekmezi2020] and further
papers by the same authors.

addBoundingPlane((TesselationWrapper)arg1, (int)axis, (bool)positive) → int :
add a bounding plane (in fact a sphere with very large radius) bounding the spheres along
the direction ‘axis’ (0,1,2), on the ‘positive’ or negative side.

property alphaCapsVol
The volume of the packing as defined by the boundary alpha cap polygons

applyAlphaForces((TesselationWrapper)arg1, (Matrix3)stress[, (float)alpha=0[,
(float)shrinkedAlpha=0[, (bool)fixedAlpha=False[, (bool)reset=True]]]]) →
None :

set permanent forces based on stress using an alpha shape

applyAlphaVel((TesselationWrapper)arg1, (Matrix3)velGrad[, (float)alpha=0[,
(float)shrinkedAlpha=0[, (bool)fixedAlpha=False]]]) → None :

set velocities based on a velocity gradient tensor using an alpha shape

calcAlphaStress((TesselationWrapper)arg1[, (float)alpha=0[, (float)shrinkedAlpha=0[,
(bool)fixedAlpha=False]]]) → Matrix3 :

get the Love-Weber average of the Cauchy stress on the polyhedral caps associated to boundary
particles

2.4. Yade modules reference 1285

https://gitlab.com/yade-dev/trunk/blob/master/scripts/examples/alphaShapes/GlDrawAlpha.py

Yade Documentation, Release 3rd ed.

calcVolPoroDef((TesselationWrapper)arg1[, (bool)deformation=False]) → dict :
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

computeDeformations((TesselationWrapper)arg1) → None :
compute per-particle deformation. Get it with TesselationWrapper::deformation (id,i,j).

computeVolumes((TesselationWrapper)arg1) → None :
compute volumes of all Voronoi’s cells.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defToVtk((TesselationWrapper)arg1[, (str)outputFile=’def.vtk’]) → None :
Write local deformations in vtk format from states 0 and 1.

defToVtkFromPositions((TesselationWrapper)arg1[, (str)input1=’pos1’[, (str)input2=’pos2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=False]]]]) → None :

Write local deformations in vtk format from positions files (one sphere per line, with x,y,z,rad
separated by spaces).

defToVtkFromStates((TesselationWrapper)arg1[, (str)input1=’state1’[, (str)input2=’state2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=True]]]]) → None :

Write local deformations in vtk format from state files (since the file format is very special,
consider using defToVtkFromPositions if the input files were not generated by Tesselation-
Wrapper).

deformation((TesselationWrapper)arg1, (int)id, (int)i, (int)j) → float :
Get individual components of the particle deformation tensors

deformationTensor((TesselationWrapper)arg1, (int)id) → Matrix3 :
Get particle deformation (tensor)

1286 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property far
Defines the radius of the large virtual spheres used to define nearly flat boundaries around the
assembly. The radius will be the (scene’s) bounding box size multiplied by ‘far’. Higher values
will minimize the error theoretically (since the infinite sphere really defines a plane), but it
may increase numerical errors at some point. The default should give a resonable compromize.

getAlphaCaps((TesselationWrapper)arg1[, (float)alpha=0[, (float)shrinkedAlpha=0[,
(bool)fixedAlpha=False]]]) → list :

Get the list of area vectors for the polyhedral caps associated to boundary particles (‘extended’
alpha-contour). If alpha is not specified or null the minimum alpha resulting in a unique
connected domain is used. Taking a smaller ‘shrinked’ alpha for placing the virtual spheres
moves the enveloppe outside the packing, It should be ~(alpha-refRad) typically.

getAlphaFaces((TesselationWrapper)arg1[, (float)alpha=0]) → list :
Get the list of alpha faces for a given alpha. If alpha is not specified or null the minimum
alpha resulting in a unique connected domain is used

getAlphaGraph((TesselationWrapper)arg1[, (float)alpha=0[, (float)shrinkedAlpha=0[,
(bool)fixedAlpha=False]]]) → list :

Get the list of area vectors for the polyhedral caps associated to boundary particles (‘extended’
alpha-contour). If alpha is not specified or null the minimum alpha resulting in a unique
connected domain is used

getAlphaVertices((TesselationWrapper)arg1[, (float)alpha=0]) → list :
Get the list of ‘alpha’ bounding spheres for a given alpha. If alpha is not specified or null the
minimum alpha resulting in a unique connected domain is used. This function is generating
a new alpha shape for each call, not to be used intensively.

property grad_u
The Displacement Gradient Tensor

property groupMask
Bitmask for filtering spheres, ignored if 0.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

loadState((TesselationWrapper)arg1[, (str)inputFile=’state’[, (bool)state=0[, (bool)bz2=True]]
]) → None :

Load a file with positions to define state 0 or 1.

property mma
underlying object processing the data - see specific settings in MicroMacroAnalyser class
documentation

property n_spheres
(auto-computed)

2.4. Yade modules reference 1287

Yade Documentation, Release 3rd ed.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

saveState((TesselationWrapper)arg1[, (str)outputFile=’state’[, (bool)state=0[, (bool)bz2=True]
]]) → None :

Save a file with positions, can be later reloaded in order to define state 0 or 1.

setState((TesselationWrapper)arg1[, (bool)state=0]) → None :
Make the current state of the simulation the initial (0) or final (1) configuration for the
definition of displacement increments, use only state=0 if you just want to get volmumes and
porosity. Exclude bodies using the bitmask TesselationWrapper::groupMask.

testAlphaShape((TesselationWrapper)arg1[, (float)alpha=0]) → None :
transitory function, testing AlphaShape feature

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

triangulate((TesselationWrapper)arg1[, (bool)reset=True]) → None :
triangulate spheres of the packing

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

volume((TesselationWrapper)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

class yade.plot.Tetra(inherits Shape → Serializable)
Tetrahedron geometry.

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property v
Tetrahedron vertices (in local coordinate system).

1288 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.TetraVolumetricLaw(inherits GlobalEngine → Engine → Serializable)
Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ThermalEngine(inherits PartialEngine → Engine → Serializable)
An engine typically used in combination with FlowEngine to simulate thermal-hydraulic-
mechanical processes. Framework description and demonstration presented within the following
paper [Caulk2019a] :Caulk, R.A. and Chareyre, B. (2019) An open framework for the simulation
of thermal-hydraulic-mechanical processes in discrete element systems. Thermal Process Engi-
neering: Proceedings of DEM8 International Conference for Discrete Element Methods, Enschede
Netherlands, July 2019.

property advection
Activates advection

property bndCondIsTemperature
defines the type of boundary condition for each side of particle packing. True if temperature is
imposed, False for no heat-flux. Indices can be retrieved with FlowEngine::xmin and friends.

property boundarySet
set false to change boundary conditions

checkThermal((ThermalEngine)arg1) → bool :
Check if all bodies have thermal states.

2.4. Yade modules reference 1289

Yade Documentation, Release 3rd ed.

property conduction
Activates conduction

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
debugging flags

property delT
Allows user to apply a delT to solids and observe macro thermal expansion. Resets to 0 after
one conduction step.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property flowTempBoundarySet
set false to change boundary conditions

property fluidBeta
volumetric temperature coefficient m^3/m^3C, default water, <= 0 deactivates

property fluidBulkModulus
If > 0, thermalEngine uses this value instead of flow.fluidBulkModulus.

property fluidConduction
Activates conduction within fluid

property fluidConductionAreaFactor
Factor for the porethroat area (used for fluid-fluid conduction model)

property fluidK
Thermal conductivity of the fluid.

property fluidThermoMech
Activates thermoMech

getConductionIterPeriod((ThermalEngine)arg1) → int :
let user check estimated conductionIterPeriod .

getMaxTimeStep((ThermalEngine)arg1) → float :
let user check estimated maxTimeStep.

getThermalDT((ThermalEngine)arg1) → float :
let user check estimated thermalDT .

property ids
Ids list of bodies affected by this PartialEngine.

property ignoreFictiousConduction
Allows user to ignore conduction between fictious cells and particles. Mainly for debugging
purposes.

1290 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property lenBodies
cache the number of thermal bodies to perform checks and raise warnings if newly inserted
bodies are not thermal

property letThermalRunFlowForceUpdates
If true, Thermal will run force updates according to new pressures instead of FlowEngine.
only useful if useVolumeChange=false.

makeThermal((ThermalEngine)arg1) → None :
Assign thermal states to all bodies.

property minimumFluidCondDist
Useful for maintaining stability despite poor external triangulations involving flat tetrahedrals.
Consider setting to minimum particle diameter to keep scale.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particleAlpha
Particle volumetric thermal expansion coeffcient

property particleCp
Particle thermal heat capacity (J/(kgK)

property particleDensity
If > 0, this value will override material density for thermodynamic calculations (useful for
quasi-static simulations involving unphysical particle densities)

property particleK
Particle thermal conductivity (W/(mK)

property particleT0
Initial temperature of particles

property porosityFactor
If >0, factors the fluid thermal expansion. Useful for simulating low porosity matrices.

setReynoldsNumbers((ThermalEngine)arg1) → None :
update the cell reynolds numbers manually (computationally expensive)

property solidThermoMech
Activates thermoMech

property tempDependentFluidBeta
If true, fluid volumetric thermal expansion coefficient, ThermalEngine::fluidBeta, is tempera-
ture dependent (linear model between 20-70 degC)

property thermalBndCondValue
Imposed temperature boundary condition for the particles.

property thermalBndFlux
Flux through thermal boundary.

2.4. Yade modules reference 1291

Yade Documentation, Release 3rd ed.

property thermoMech
Activates thermoMech

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tsSafetyFactor
Allow user to control the timstep estimate with a safety factor. Default 0.8. If <= 0, thermal
timestep is equal to DEM

property unboundCavityBodies
automatically unbound bodies touching only cavity cells.

property uniformReynolds
Control reynolds number in all cells (mostly debugging purposes).

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property useHertzMethod
flag to use hertzmethod for thermal conductivity area calc

property useKernMethod
flag to use Kern method for thermal conductivity area calc

class yade.plot.ThermalState(inherits State → Serializable)
State containing quantities for thermal physics.

property Cp
Heat capacity of the body

property Tcondition
indicates if particle is assigned dirichlet (constant temp) condition

property alpha
coefficient of thermal expansion

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property boundaryId
identifies if a particle is associated with constant temperature thrermal boundary condition

property delRadius
radius change due to thermal expansion

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1292 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isCavity
flag used for unbounding cavity bodies

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property k
thermal conductivity of the body

property mass
Mass of this body

property oldTemp
change of temp (for thermal expansion)

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

property se3
Position and orientation as one object.

property stabilityCoefficient
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

property stepFlux
flux during current step

property temp
temperature of the body

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

2.4. Yade modules reference 1293

Yade Documentation, Release 3rd ed.

class yade.plot.ThreeDTriaxialEngine(inherits TriaxialStressController → BoundaryController →
GlobalEngine → Engine → Serializable)

The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl_i)
else in strain.

For a stress control the imposed stress is specified by ‘sigma_i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using
TriaxialStressController::controlInternalStress. For that, just switch on ‘internalCom-
paction=1’ and fix sigma_iso=value of mean pressure that you want at the end of the internal
compaction.

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

property Key
A string appended at the end of all files, use it to name simulations.

property UnbalancedForce
mean resultant forces divided by mean contact force

property boxVolume
Total packing volume.

property computeStressStrainInterval

property currentStrainRate1
current strain rate in direction 1 - converging to ThreeDTriaxialEngine::strainRate1 (./s)

property currentStrainRate2
current strain rate in direction 2 - converging to ThreeDTriaxialEngine::strainRate2 (./s)

property currentStrainRate3
current strain rate in direction 3 - converging to ThreeDTriaxialEngine::strainRate3 (./s)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property depth
size of the box (2-axis) (auto-updated)

property depth0
Reference size for strain definition. See TriaxialStressController::depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Mechanical work associated to the boundary conditions, i.e.

∫
∂Ω

T · uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

1294 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

property frictionAngleDegree
Value of friction used in the simulation if (updateFrictionAngle)

property goal1
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

property goal2
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

property goal3
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

property height
size of the box (1-axis) (auto-updated)

property height0
Reference size for strain definition. See TriaxialStressController::height

property internalCompaction
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

property max_vel
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

property max_vel1
see TriaxialStressController::max_vel (auto-computed)

property max_vel2
see TriaxialStressController::max_vel (auto-computed)

property max_vel3
see TriaxialStressController::max_vel (auto-computed)

property meanStress
Mean stress in the packing. (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

2.4. Yade modules reference 1295

Yade Documentation, Release 3rd ed.

property porosity
Porosity of the packing, computed from particlesVolume and boxVolume. (auto-updated)

property previousMultiplier
(auto-updated)

property previousStress
(auto-updated)

property radiusControlInterval

setContactProperties((ThreeDTriaxialEngine)arg1, (float)arg2) → None :
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

property spheresVolume
Shorthand for TriaxialStressController::particlesVolume

property stiffnessUpdateInterval
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

property strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

property strainDamping
factor used for smoothing changes in effective strain rate. If target rate is TR, then (1-
damping)*(TR-currentRate) will be added at each iteration. With damping=0, rate=target
all the time. With damping=1, it doesn’t change.

strainRate((TriaxialStressController)arg1) → Vector3 :
Current strain rate in a vector d/dt(exx,eyy,ezz).

property strainRate1
target strain rate in direction 1 (./s, >0 for compression)

property strainRate2
target strain rate in direction 2 (./s, >0 for compression)

property strainRate3
target strain rate in direction 3 (./s, >0 for compression)

stress((TriaxialStressController)arg1, (int)id) → Vector3 :
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

property stressControl_1
Switch to choose a stress or a strain control in directions 1

property stressControl_2
Switch to choose a stress or a strain control in directions 2

property stressControl_3
Switch to choose a stress or a strain control in directions 3

property stressDamping
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

property stressMask
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

1296 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property thickness
thickness of boxes (needed by some functions)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updateFrictionAngle
Switch to activate the update of the intergranular frictionto the value ThreeDTriaxi-
alEngine::frictionAngleDegree.

property updatePorosity
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

property volumetricStrain
Volumetric strain (see TriaxialStressController::strain). (auto-updated)

property wall_back_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_back_id
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_bottom_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_bottom_id
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_front_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_front_id
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_left_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_left_id
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_right_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_right_id
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_top_activated
if true, this wall moves according to the target value (stress or strain rate).

2.4. Yade modules reference 1297

Yade Documentation, Release 3rd ed.

property wall_top_id
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property width
size of the box (0-axis) (auto-updated)

property width0
Reference size for strain definition. See TriaxialStressController::width

class yade.plot.TimeAverager(inherits PartialEngine → Engine → Serializable)
Average data over time for specific sphere identified by ids. Data are position, velocity, angular
velocity, global resultant force and torque, resultant force and torque computed from contacts
only and contact force field (see description below). The data must be first initialized with its
instantaneous value by running the initialization method. Then averaged values are updated at
every time steps with a moving average algorythm, until the initialization method is run again.

property computeContactForceField
Wether to compute and average contact force field at the surface of the particles (experimental
feature). The contact force field is obtained by ditributing the contact forces on a grid at the
surface of the sphere. The contact forces are spread on each point of the grid, according to
the distance between the contact point and the grid point. The algorythm uses a gaussian
kernel to smooth the field. If computeContactForceField is true, grid and sigma parameters
must be filled in. This can significantly increase the computation time for dense grid or high
number of particles.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

getAngVel((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged angular velocity of particle since last initialization

getContactForce((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant force computed from contact forces on particle since last initialization

getContactForceField((TimeAverager)arg1, (int)arg2) → object :
Get averaged contact force field at the surface of the particle since last initialization

getContactTorque((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant torque computed from contact forces on particle since last initialization

getForce((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant force of particle since last initialization

getNbContact((TimeAverager)arg1, (int)arg2) → float :
Get averaged number of contact points on particle since last initialization

getPos((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged position of particle since last initialization

1298 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getTorque((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged resultant torque of particle since last initialization

getVel((TimeAverager)arg1, (int)arg2) → Vector3 :
Get averaged velocity of particle since last initialization

property grid
Grid on which to compute the contact force field. Should be a list of 3D coordinates at the
surface of the particle (a simple way to generate a well distributed grid at the surface of a
sphere is with the Fibonacci lattice method).

property ids
Ids list of bodies affected by this PartialEngine.

initialization((TimeAverager)arg1) → None :
Initialize tAccu to zero and the averaged variables to there instantaneous values. Necessary
to execute before any simulation run, otherwise it crashes.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property sigma
Standard deviation of the Gaussian function, which determines how the contact forces are
weighted based on their distance from a contact point. It is usually set at the order of the
distance between two points in the grid.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.TimeStepper(inherits GlobalEngine → Engine → Serializable)
Engine defining time-step (fundamental class)

property active
is the engine active?

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.4. Yade modules reference 1299

Yade Documentation, Release 3rd ed.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timeStepUpdateInterval
dt update interval

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.TimingDeltas

property data
Get timing data as list of tuples (label, execTime[nsec], execCount) (one tuple per checkpoint)

reset((TimingDeltas)arg1) → None :
Reset timing information

class yade.plot.TorqueEngine(inherits PartialEngine → Engine → Serializable)
Apply given torque (momentum) value at every subscribed particle, at every step.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property moment
Torque value to be applied.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1300 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.TorqueRecorder(inherits Recorder → PeriodicEngine → GlobalEngine → Engine→ Serializable)
Engine saves the total torque according to the given axis and ZeroPoint, the force is taken from
bodies, listed in ids For instance, can be useful for defining the torque, which affects on ball mill
during its work.

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property ids
List of bodies whose state will be measured

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

2.4. Yade modules reference 1301

Yade Documentation, Release 3rd ed.

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property rotationAxis
Rotation axis

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property totalTorque
Resultant torque, returning by the function.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

property zeroPoint
Point of rotation center

class yade.plot.TranslationEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying translation motion (by setting linear velocity) to subscribed bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

1302 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property ids
Ids list of bodies affected by this PartialEngine.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property translationAxis
Direction of imposed translation [Vector3]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property velocity
Scalar value of the imposed velocity [m/s]. Imposed vector velocity is velocity * axis

class yade.plot.TriaxialCompressionEngine(inherits TriaxialStressController →
BoundaryController → GlobalEngine → Engine →
Serializable)

The engine is a state machine with the following states; transitions my be automatic, see below.

1. STATE_ISO_COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmaIsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (!internalCompaction) or by growing size of grains (internalCom-
paction).

2. STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmaLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmaLateralConfinement == sigmaIsoCom-
paction.

3. STATE_TRIAX_LOADING: confined uniaxial compression: constant sigmaLateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

4. STATE_FIXED_POROSITY_COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5. STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;

Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

2.4. Yade modules reference 1303

Yade Documentation, Release 3rd ed.

Note: Most of the algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

property Key
A string appended at the end of all files, use it to name simulations.

property StabilityCriterion
tolerance in terms of TriaxialCompressionEngine::UnbalancedForce to consider the packing is
stable

property UnbalancedForce
mean resultant forces divided by mean contact force

property autoCompressionActivation
Auto-switch from isotropic compaction (or unloading state if sigmaLateralConfine-
ment<sigmaIsoCompaction) to deviatoric loading

property autoStopSimulation
Stop the simulation when the sample reach STATE_LIMBO, or keep running

property autoUnload
Auto-switch from isotropic compaction to unloading

property boxVolume
Total packing volume.

property computeStressStrainInterval

property currentState
There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per.TriaxialCompressionEngine

property currentStrainRate
current strain rate - converging to TriaxialCompressionEngine::strainRate (./s)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property depth
size of the box (2-axis) (auto-updated)

property depth0
Reference size for strain definition. See TriaxialStressController::depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property epsilonMax
Value of axial deformation for which the loading must stop

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

1304 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Mechanical work associated to the boundary conditions, i.e.

∫
∂Ω

T · uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

property fixedPoroCompaction
A special type of compaction with imposed final porosity TriaxialCompressio-
nEngine::fixedPorosity (WARNING : can give unrealistic results!)

property fixedPorosity
Value of porosity chosen by the user

property frictionAngleDegree
Value of friction assigned just before the deviatoric loading

property goal1
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

property goal2
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

property goal3
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

property height
size of the box (1-axis) (auto-updated)

property height0
Reference size for strain definition. See TriaxialStressController::height

property internalCompaction
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

property isAxisymetric
if true, sigma_iso is assigned to sigma1, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

property maxStress
Max absolute value of axial stress during the simulation (for post-processing)

property max_vel
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

2.4. Yade modules reference 1305

Yade Documentation, Release 3rd ed.

property max_vel1
see TriaxialStressController::max_vel (auto-computed)

property max_vel2
see TriaxialStressController::max_vel (auto-computed)

property max_vel3
see TriaxialStressController::max_vel (auto-computed)

property meanStress
Mean stress in the packing. (auto-updated)

property noFiles
If true, no files will be generated (*.xml, *.spheres,…)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

property porosity
Porosity of the packing, computed from particlesVolume and boxVolume. (auto-updated)

property previousMultiplier
(auto-updated)

property previousSigmaIso
Previous value of inherited sigma_iso (used to detect manual changes of the confining pressure)

property previousState
Previous state (used to detect manual changes of the state in .xml)

property previousStress
(auto-updated)

property radiusControlInterval

setContactProperties((TriaxialCompressionEngine)arg1, (float)arg2) → None :
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

property sigmaIsoCompaction
Prescribed isotropic pressure during the compaction phase (< 0 for real - compressive - com-
paction)

property sigmaLateralConfinement
Prescribed confining pressure in the deviatoric loading (< 0 for classical compressive cases);
might be different from TriaxialCompressionEngine::sigmaIsoCompaction

property sigma_iso
prescribed confining stress (see :yref:TriaxialCompressionEngine::isAxisymetric‘)

property spheresVolume
Shorthand for TriaxialStressController::particlesVolume

property stiffnessUpdateInterval
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

1306 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

property strainDamping
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

property strainRate
target strain rate (./s, >0 for compression)

stress((TriaxialStressController)arg1, (int)id) → Vector3 :
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

property stressDamping
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

property stressMask
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

property testEquilibriumInterval
interval of checks for transition between phases, higher than 1 saves computation time.

property thickness
thickness of boxes (needed by some functions)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property translationAxis
compression axis

property uniaxialEpsilonCurr
Current value of axial deformation during confined loading (is reference to strain[1])

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatePorosity
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

property volumetricStrain
Volumetric strain (see TriaxialStressController::strain). (auto-updated)

property wall_back_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_back_id
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_bottom_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_bottom_id
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

2.4. Yade modules reference 1307

Yade Documentation, Release 3rd ed.

property wall_front_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_front_id
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_left_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_left_id
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_right_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_right_id
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_top_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_top_id
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property warn
counter used for sending a deprecation warning once

property width
size of the box (0-axis) (auto-updated)

property width0
Reference size for strain definition. See TriaxialStressController::width

class yade.plot.TriaxialStateRecorder(inherits Recorder → PeriodicEngine → GlobalEngine →
Engine → Serializable)

Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriaxialCompressionEngine or ThreeDTriaxialEngine present in the simulation).

property addIterNum
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property file
Name of file to save to; must not be empty.

1308 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property porosity
porosity of the packing [-]

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property truncate
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.TriaxialStressController(inherits BoundaryController → GlobalEngine →
Engine → Serializable)

An engine maintaining constant stresses or constant strain rates on some boundaries of a par-
allepipedic packing. The stress/strain control is defined for each axis using TriaxialStressCon-
troller::stressMask (a bitMask) and target values are defined by goal1,goal2, and goal3. The sign
conventions of continuum mechanics are used for strains and stresses (positive traction).

2.4. Yade modules reference 1309

Yade Documentation, Release 3rd ed.

Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

property boxVolume
Total packing volume.

property computeStressStrainInterval

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property depth
size of the box (2-axis) (auto-updated)

property depth0
Reference size for strain definition. See TriaxialStressController::depth

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property externalWork
Mechanical work associated to the boundary conditions, i.e.

∫
∂Ω

T · uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

property goal1
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

property goal2
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

property goal3
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

property height
size of the box (1-axis) (auto-updated)

property height0
Reference size for strain definition. See TriaxialStressController::height

property internalCompaction
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

1310 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

property max_vel
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

property max_vel1
see TriaxialStressController::max_vel (auto-computed)

property max_vel2
see TriaxialStressController::max_vel (auto-computed)

property max_vel3
see TriaxialStressController::max_vel (auto-computed)

property meanStress
Mean stress in the packing. (auto-updated)

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

property porosity
Porosity of the packing, computed from particlesVolume and boxVolume. (auto-updated)

property previousMultiplier
(auto-updated)

property previousStress
(auto-updated)

property radiusControlInterval

property spheresVolume
Shorthand for TriaxialStressController::particlesVolume

property stiffnessUpdateInterval
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

property strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

property strainDamping
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

strainRate((TriaxialStressController)arg1) → Vector3 :
Current strain rate in a vector d/dt(exx,eyy,ezz).

2.4. Yade modules reference 1311

Yade Documentation, Release 3rd ed.

stress((TriaxialStressController)arg1, (int)id) → Vector3 :
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

property stressDamping
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

property stressMask
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

property thickness
thickness of boxes (needed by some functions)

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property updatePorosity
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

property volumetricStrain
Volumetric strain (see TriaxialStressController::strain). (auto-updated)

property wall_back_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_back_id
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_bottom_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_bottom_id
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_front_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_front_id
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_left_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_left_id
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_right_activated
if true, this wall moves according to the target value (stress or strain rate).

1312 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property wall_right_id
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property wall_top_activated
if true, this wall moves according to the target value (stress or strain rate).

property wall_top_id
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

property width
size of the box (0-axis) (auto-updated)

property width0
Reference size for strain definition. See TriaxialStressController::width

class yade.plot.TriaxialTest(inherits FileGenerator → Serializable)
Create a scene for triaxal test.

Introduction
Yade includes tools to simulate triaxial tests on particles assemblies. This pre-processor (and
variants like e.g. CapillaryTriaxialTest) illustrate how to use them. It generates a scene which
will - by default - go through the following steps :

• generate random loose packings in a parallelepiped.

• compress the packing isotropicaly, either squeezing the packing between moving rigid
boxes or expanding the particles while boxes are fixed (depending on flag internalCom-
paction). The confining pressure in this stage is defined via sigmaIsoCompaction.

• when the packing is dense and stable, simulate a loading path and get the mechanical
response as a result.

The default loading path corresponds to a constant lateral stress (sigmaLateralConfinement)
in 2 directions and constant strain rate on the third direction. This default loading path is
performed when the flag autoCompressionActivation it True, otherwise the simulation stops
after isotropic compression.

Different loading paths might be performed. In order to define them, the user can modify
the flags found in engine TriaxialStressController at any point in the simulation (in c++).
If TriaxialStressController.wall_X_activated is true boundary X is moved automati-
cally to maintain the defined stress level sigmaN (see axis conventions below). If false the
boundary is not controlled by the engine at all. In that case the user is free to prescribe fixed
position, constant velocity, or more complex conditions.

Note: Axis conventions. Boundaries perpendicular to the x axis are called “left” and “right”,
y corresponds to “top” and “bottom”, and axis z to “front” and “back”. In the default loading
path, strain rate is assigned along y, and constant stresses are assigned on x and z.

Essential engines

1. The TriaxialCompressionEngine is used for controlling the state of the sample and simu-
lating loading paths. TriaxialCompressionEngine inherits from TriaxialStressController,
which computes stress- and strain-like quantities in the packing and maintain a constant
level of stress at each boundary. TriaxialCompressionEngine has few more members in
order to impose constant strain rate and control the transition between isotropic com-
pression and triaxial test. Transitions are defined by changing some flags of the Triaxial-
StressController, switching from/to imposed strain rate to/from imposed stress.

2. The class TriaxialStateRecorder is used to write to a file the history of stresses and strains.

2.4. Yade modules reference 1313

Yade Documentation, Release 3rd ed.

3. TriaxialTest is using GlobalStiffnessTimeStepper to compute an appropriate ∆t for the
numerical scheme.

Note: TriaxialStressController::ComputeUnbalancedForce returns a value that can
be useful for evaluating the stability of the packing. It is defined as (mean force on parti-
cles)/(mean contact force), so that it tends to 0 in a stable packing. This parameter is checked
by TriaxialCompressionEngine to switch from one stage of the simulation to the next one (e.g.
stop isotropic confinment and start axial loading)

Frequently Asked Questions

1. How is generated the packing? How to change particles sizes distribution? Why
do I have a message “Exceeded 3000 tries to insert non-overlapping sphere?

The initial positioning of spheres is done by generating random (x,y,z) in a box and
checking if a sphere of radius R (R also randomly generated with respect to a uniform
distribution between mean*(1-std_dev) and mean*(1+std_dev) can be inserted at this
location without overlaping with others.

If the sphere overlaps, new (x,y,z)’s are generated until a free position for the new sphere is
found. This explains the message you have: after 3000 trial-and-error, the sphere couldn’t
be placed, and the algorithm stops.

You get the message above if you try to generate an initialy dense packing, which is not
possible with this algorithm. It can only generate clouds. You should keep the default
value of porosity (n~0.7), or even increase if it is still to low in some cases. The dense
state will be obtained in the second step (compaction, see below).

2. How is the compaction done, what are the parameters maxWallVelocity and
finalMaxMultiplier?

Compaction is done

1. by moving rigid boxes or

2. by increasing the sizes of the particles (decided using the option internalCompaction
� size increase).

Both algorithm needs numerical parameters to prevent instabilities. For instance, with
the method (1) maxWallVelocity is the maximum wall velocity, with method (2) final-
MaxMultiplier is the max value of the multiplier applied on sizes at each iteration (always
something like 1.00001).

3. During the simulation of triaxial compression test, the wall in one direction
moves with an increment of strain while the stresses in other two directions are
adjusted to sigma_iso. How the stresses in other directions are maintained
constant to sigma_iso? What is the mechanism? Where is it implemented in
Yade?

The control of stress on a boundary is based on the total stiffness K of all contacts between
the packing and this boundary. In short, at each step, displacement=stress_error/K.
This algorithm is implemented in TriaxialStressController, and the control itself is in
TriaxialStressController::ControlExternalStress. The control can be turned off
independently for each boundary, using the flags wall_XXX_activated, with XXX�{top,
bottom, left, right, back, front}. The imposed sress is a unique value (sigma_iso) for
all directions if TriaxialStressController.isAxisymetric, or 3 independent values sigma1,
sigma2, sigma3.

4. Which value of friction angle do you use during the compaction phase of the
Triaxial Test?

The friction during the compaction (whether you are using the expansion method or the
compression one for the specimen generation) can be anything between 0 and the final
value used during the Triaxial phase. Note that higher friction than the final one would
result in volumetric collapse at the beginning of the test. The purpose of using a different

1314 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

value of friction during this phase is related to the fact that the final porosity you get
at the end of the sample generation essentially depends on it as well as on the assumed
Particle Size Distribution. Changing the initial value of friction will get to a different
value of the final porosity.

5. Which is the aim of the bool isRadiusControlIteration?
This internal variable (updated automatically) is true each N timesteps (with
N=radiusControlInterval). For other timesteps, there is no expansion. Cycling without
expanding is just a way to speed up the simulation, based on the idea that 1% increase
each 10 iterations needs less operations than 0.1% at each iteration, but will give similar
results.

6. How comes the unbalanced force reaches a low value only after many timesteps
in the compaction phase?

The value of unbalanced force (dimensionless) is expected to reach low value (i.e. identi-
fying a static-equilibrium condition for the specimen) only at the end of the compaction
phase. The code is not aiming at simulating a quasistatic isotropic compaction process,
it is only giving a stable packing at the end of it.

property Key
A code that is added to output filenames.

property StabilityCriterion
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

property WallStressRecordFile

property autoCompressionActivation
Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

property autoStopSimulation
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

property autoUnload
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

property boxFrictionDeg
Friction angle [°] of boundaries contacts.

property boxKsDivKn
Ratio of shear vs. normal contact stiffness for boxes.

property boxYoungModulus
Stiffness of boxes.

property compactionFrictionDeg
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

property dampingForce
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

property dampingMomentum
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

2.4. Yade modules reference 1315

Yade Documentation, Release 3rd ed.

property defaultDt
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

property density
density of spheres

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property facetWalls
Use facets for boundaries (not tested)

property finalMaxMultiplier
max multiplier of diameters during internal compaction (secondary precise adjustment)

property fixedBoxDims
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

generate((FileGenerator)arg1, (str)out) → None :
Generate scene, save to given file

property importFilename
File with positions and sizes of spheres.

property internalCompaction
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load((FileGenerator)arg1) → None :
Generate scene, save to temporary file and load immediately

property lowerCorner
Lower corner of the box.

property maxMultiplier
max multiplier of diameters during internal compaction (initial fast increase)

property maxWallVelocity
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

property noFiles
Do not create any files during run (.xml, .spheres, wall stress records)

property numberOfGrains
Number of generated spheres.

property radiusControlInterval
interval between size changes when growing spheres.

property radiusMean
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

property radiusStdDev
Normalized standard deviation of generated sizes.

property recordIntervalIter
interval between file outputs

property seed
Seed used for the call to makeCloud

1316 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property sigmaIsoCompaction
Confining stress during isotropic compaction (< 0 for real - compressive - compaction).

property sigmaLateralConfinement
Lateral stress during triaxial loading (< 0 for classical compressive cases). An isotropic un-
loading is performed if the value is not equal to TriaxialTest::sigmaIsoCompaction.

property sphereFrictionDeg
Friction angle [°] of spheres assigned just before triaxial testing.

property sphereKsDivKn
Ratio of shear vs. normal contact stiffness for spheres.

property sphereYoungModulus
Stiffness of spheres.

property strainRate
Strain rate in triaxial loading.

property thickness
thickness of boundaries. It is arbitrary and should have no effect

property timeStepUpdateInterval
interval for GlobalStiffnessTimeStepper

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property upperCorner
Upper corner of the box.

property wallOversizeFactor
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

property wallStiffnessUpdateInterval
interval for updating the stiffness of sample/boundaries contacts

property wallWalls
Use walls for boundaries (not tested)

class yade.plot.TwoPhaseFlowEngine(inherits TwoPhaseFlowEngineT → PartialEngine → Engine→ Serializable)
documentation here

OSI((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property accumulativeDeformationFlux
accumulative internal flux caused by deformation

property accumulativeFlux
accumulative influx of water

actionMergingAlgorithm((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

actionTPF((TwoPhaseFlowEngine)arg1) → None :
run 1 time step flow Engine

property airWaterInterfacialArea
Air-water interfacial area, based on the pore-unit assembly and regular-shaped pore units

2.4. Yade modules reference 1317

Yade Documentation, Release 3rd ed.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

property areaAveragedPressure
Air-water interfacial area averaged water pressure

avFlVelOnSph((TwoPhaseFlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((TwoPhaseFlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((TwoPhaseFlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((TwoPhaseFlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((TwoPhaseFlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondIsWaterReservoir
Boundary conditions, if bndCondIsPressure[] = True, is it air or water boundary condition?
True is water reservoir

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

1318 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

calculateResidualSaturation((TwoPhaseFlowEngine)arg1) → None :
Calculate the residual saturation for each pore body

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

property centroidAverageWaterPressure
Water pressure based on centroid-corrected averaging, see Korteland et al. (2010) - what is
the correct definition of average pressure?

cholmodStats((TwoPhaseFlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

clusterInvadePore((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly.

clusterInvadePoreFast((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly. This ‘fast’ version is
faster and it also preserves interfaces through cluster splitting. OTOH it does not update
entry Pc nor culsters volume (it could if needed)

2.4. Yade modules reference 1319

Yade Documentation, Release 3rd ed.

clusterOutvadePore((TwoPhaseFlowEngine)arg1, (int)startingId, (int)imbibedId[,
(int)index=-1]) → object :

imbibe the pore identified by imbibedId and merge the newly connected clusters if it happens.
startingId->imbibedId defines the throat through which imbibition occurs. Giving index of
the facet in cluster::interfaces should speedup its removal

compTessVolumes((TwoPhaseFlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

computeCapillaryForce((TwoPhaseFlowEngine)arg1[, (bool)addForces=False[,
(bool)permanently=False]]) → None :

Compute capillary force. Optionaly add them to body forces, for current iteration or perma-
nently.

property computeForceActivated
Activate capillary force computation. WARNING: turning off means capillary force is not
computed at all, but the drainage can still work.

computeOnePhaseFlow((TwoPhaseFlowEngine)arg1) → None :
compute pressure and fluxes in the W-phase

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

copyPoreDataToCells((TwoPhaseFlowEngine)arg1) → None :
copy data from merged pore units back to grain-based tetrahedra, this should be done before
exporting VTK files

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property debugTPF
Print debuging messages two phase flow engine

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property deformation
Boolean to indicate whether simulations of dynamic flow are withing a deformating packing
or not. If true, change of void volume due to deformation is considered in flow computations.

1320 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property deltaTimeTruncation
truncation of time step, to avoid very small time steps during local imbibition, NOTE it does
affect the mass conservation not set to 0

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property drainageFirst
If true, activate drainage first (initial saturated), then imbibition; if false, activate imbibition
first (initial unsaturated), then drainage.

property dt
timestep [s]

property dtDynTPF
Parameter which stores the smallest time step, based on the residence time

edgeSize((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((TwoPhaseFlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property entryMethodCorrection
Parameter that is used in computing entry pressure of a pore throat: P_ij = entryMethod-
Correction * surfaceTension / radius_porethroat

property entryPressureMethod
integer to define the method used to determine the pore throat radii and the according entry
pressures. 1)radius of entry pore throat based on MS-P method; 2) radius of the inscribed
circle; 3) radius of the circle with equivalent surface area of the pore throat.

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((TwoPhaseFlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((TwoPhaseFlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

2.4. Yade modules reference 1321

Yade Documentation, Release 3rd ed.

property firstDynTPF
this bool activated the initialization of the dynamic flow engine, such as merging and defining
initial values

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property fluxInViaWBC
Total water flux over water boundary conditions

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

property fractionMinSaturationInvasion
Set the threshold saturation at which drainage can occur (Sthr = fractionMinSaturationInva-
sion), note that -1 implied the conventional definition of Sthr

getBoundaryFluidArea((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((TwoPhaseFlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((TwoPhaseFlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

1322 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((TwoPhaseFlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((TwoPhaseFlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((TwoPhaseFlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCell2((TwoPhaseFlowEngine)arg1, (float)arg2, (float)arg3, (float)pos) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellEntrySaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → list :
get the entry saturation of each pore throat

getCellFlux((TwoPhaseFlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((TwoPhaseFlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
indicates whether a NW-W interface is present within the cell

getCellInSphereRadius((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the radius of the inscribed sphere in a pore unit

getCellInvVoidVolume((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellIsFictious((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
Check the connection between pore and boundary. If true, pore throat connects the boundary.

getCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘non-wetting reservoir’ state

getCellIsTrapNW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped non-wetting phase’ state

getCellIsTrapW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped wetting phase’ state

getCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘wetting reservoir’ state

2.4. Yade modules reference 1323

Yade Documentation, Release 3rd ed.

getCellLabel((TwoPhaseFlowEngine)arg1, (int)arg2) → int :
get cell label. 0 for NW-reservoir; 1 for W-reservoir; others for disconnected W-clusters.

getCellMergedID((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellMergedVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the merged volume of pore space in each pore unit

getCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPorosity((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the porosity of individual cells.

getCellPressure((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get saturation of one pore

getCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellThresholdSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellVelocity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVoidVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of pore space in each pore unit

getCellVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of each cell

getClusters((TwoPhaseFlowEngine)arg1) → list :
Get the list of clusters.

getConductivity((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

1324 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getEffRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get effective radius by three spheres position and radius.(inscribed sphere)

getEquivalentCompressibility((TwoPhaseFlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((TwoPhaseFlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getMSPRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get entry radius wrt MSP method by three spheres position and radius.

getMaxImbibitionPc((TwoPhaseFlowEngine)arg1) → float :
Get the maximum entry capillary pressure for the next imbibition step.

getMinDrainagePc((TwoPhaseFlowEngine)arg1) → float :
Get the minimum entry capillary pressure for the next drainage step.

getNeighbors((TwoPhaseFlowEngine)arg1, (int)id[, (bool)withInfCell=True]) → list :
get 4 neigboring cells, optionally exclude the infinite cells if withInfCell is False

getPorePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → float :
get the pore throat radius between cell1 and cell2.

getPoreThroatRadiusList((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get 4 pore throat radii of a cell.

getPotentialPendularSpheresPair((TwoPhaseFlowEngine)arg1) → list :
Get the list of sphere ID pairs of potential pendular liquid bridge.

property getQuantitiesUpdateCont
Continuous update of various macro-scale quantities or not. Note that the updating quantities
is computationally expensive

getSaturation((TwoPhaseFlowEngine)arg1, (bool)isSideBoundaryIncluded) → float :
Get saturation of entire packing. If isSideBoundaryIncluded=false (default), the pores of side
boundary are excluded in saturation calculating; if isSideBoundaryIncluded=true (only in
isInvadeBoundary=true drainage mode), the pores of side boundary are included in saturation
calculating.

getSolidSurfaceAreaPerParticle((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get solid area inside a packing of particles

getVertices((TwoPhaseFlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

2.4. Yade modules reference 1325

Yade Documentation, Release 3rd ed.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeDeformationFluxTPF((TwoPhaseFlowEngine)arg1) → None :
Impose fluxes defined in dvTPF

imposeFlux((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((TwoPhaseFlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

property initialPC
Initial capillary pressure of the water-air inside the packing

property initialWetting
Initial wetting saturated (=true) or non-wetting saturated (=false)

initialization((TwoPhaseFlowEngine)arg1) → None :
Initialize invasion setup. Build network, compute pore geometry info and initialize reservoir
boundary conditions.

initializeVolumes((TwoPhaseFlowEngineT)arg1) → None :
initialize pore volumes.

invasion((TwoPhaseFlowEngine)arg1) → None :
Run the drainage invasion.

property isActivated
Activates Flow Engine

property isCellLabelActivated
Activate cell labels for marking disconnected wetting clusters. NW-reservoir label 0; W-
reservoir label 1; disconnected W-clusters label from 2.

isCellNeighbor((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property isDrainageActivated
Activates drainage.

property isImbibitionActivated
Activates imbibition.

1326 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property isInvadeBoundary
Invasion side boundary condition. If True, pores of side boundary can be invaded; if False,
the pore throats connecting side boundary are closed, those pores are excluded in saturation
calculation.

property isPhaseTrapped
If True, both phases can be entrapped by the other, which would correspond to snap-off. If
false, both phases are always connected to their reservoirs, thus no snap-off.

property iterationTPF
Iteration number

property keepTriangulation
this bool activated triangulation or not during initialization

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxIDMergedCells
maximum number of merged ID, this is computed in mergeCells()

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property maximumRatioPoreThroatoverPoreBody
maximum ratio of pore throat radius over pore body radius, this is used during merging of
tetrahedra.

property meanKStat
report the local permeabilities’ correction

mergeCells((TwoPhaseFlowEngine)arg1) → None :
Extract the pore network of the granular material

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((TwoPhaseFlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property modelRunName
Name of simulation, to be implemented into output files

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((TwoPhaseFlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

2.4. Yade modules reference 1327

Yade Documentation, Release 3rd ed.

normalLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property numberOfPores
Number of pores (i.e. number of tetrahedra, but compensated for merged tetrahedra

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((TwoPhaseFlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((TwoPhaseFlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

property primaryTPF
Boolean to indicate whether the initial conditions are for primary drainage of imbibition (dic-
tated by drainageFirst) or secondary drainage or imbibition. Note that during simulations, a
switch from drainage to imbibition or vise versa can easily be made by changing waterBound-
aryPressure

1328 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

printVertices((TwoPhaseFlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

reTriangulateSpheres((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

property recursiveInvasion
If true the invasion stops only when no entry pc is less than current capillary pressure, implying
simultaneous invasion of many pores. Else only one pore invasion per invasion step.

property relax
Gauss-Seidel relaxation

property remesh
update triangulation? – YET TO BE IMPLEMENTED

resetLinearSystem((TwoPhaseFlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

property safetyFactorTimeStep
Safey coefficient for time step

savePhaseVtk((TwoPhaseFlowEngine)arg1[, (str)folder=’./phaseVtk’[,
(bool)withBoundaries=True]]) → None :

Save the saturation of local pores in vtk format. Sw(NW-pore)=0, Sw(W-pore)=1. Specify a
folder name for output.

savePoreNetwork((TwoPhaseFlowEngine)arg1[, (str)folder=’./poreNetwork’]) → None :
Extract the pore network of the granular material (i.e. based on triangulation of the pore
space

saveVtk((TwoPhaseFlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((TwoPhaseFlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellDeltaVolume((TwoPhaseFlowEngine)arg1, (int)id, (float)value) → None :
get id of the cell containing (X,Y,Z).

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
change wheter a cell has a NW-W interface

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) ->
None :

change wheter a cell has a NW-W interface

setCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

2.4. Yade modules reference 1329

Yade Documentation, Release 3rd ed.

setCellPressure((TwoPhaseFlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
change saturation of one pore

setCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

property setFractionParticles
Correction fraction for swelling of particles by mismatch of surface area of particles with those
from actual surface area in pore units

setImposedPressure((TwoPhaseFlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

setPoreBodyRadius((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
set the entry pore body radius.

setPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID, (float)radius)→ None :
set the pore throat radius between cell1 and cell2.

shearLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property simpleWaterPressure
Water pressure based on averaging over pore volume

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property solvePressureSwitch
solve for pressure during actionTPF()

property stiffness
equivalent contact stiffness used in the lubrication model

property stopSimulation
Boolean to indicate that dynamic flow simulations cannot find a solution (or next time step).
If True, stop simulations

surfaceDistanceParticle((TwoPhaseFlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

1330 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

surfaceSolidThroatInPore((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property surfaceTension
Water Surface Tension in contact with air at 20 Degrees Celsius is: 0.0728(N/m)

property swelling
If true, include swelling of particles during TPF computations

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property totalWaterVolume
total watervolume

property truncationPrecision
threshold at which a saturation is truncated

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((TwoPhaseFlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

updatePressure((TwoPhaseFlowEngine)arg1) → None :
Apply the values of FlowEngine::bndCondValue to the boundary cells. Note: boundary pres-
sure will be updated automatically in many cases, this function is for some low-level manipu-
lations.

2.4. Yade modules reference 1331

Yade Documentation, Release 3rd ed.

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((TwoPhaseFlowEngineT)arg1) → None :
update rates of volume change

property useFastInvasion
use fast version of invasion

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

property voidVolume
total void volume, excluding boundary cells

volume((TwoPhaseFlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waterBoundaryPressure
Water pressure at boundary used in computations, is set automaticaly, but this value can be
used to change water pressure during simulations

property waterPressure
Volume-averaged water pressure

property waterPressurePartiallySatPores
water pressure based on the volume-averaged water pressure in partially-saturated pore units
(i.e. pore units having an interface)

1332 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property waterSaturation
Water saturation, excluding the boundary cells

property waterVolumeTruncatedLost
Water volume that has been truncated.

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.TwoPhaseFlowEngineT(inherits PartialEngine → Engine → Serializable)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

OSI((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

avFlVelOnSph((TwoPhaseFlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

averagePressure((TwoPhaseFlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((TwoPhaseFlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((TwoPhaseFlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

2.4. Yade modules reference 1333

Yade Documentation, Release 3rd ed.

blockCell((TwoPhaseFlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats((TwoPhaseFlowEngineT)arg1) → None :
get statistics of cholmod solver activity

1334 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

compTessVolumes((TwoPhaseFlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

property dt
timestep [s]

edgeSize((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions.

2.4. Yade modules reference 1335

Yade Documentation, Release 3rd ed.

emulateAction((TwoPhaseFlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((TwoPhaseFlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((TwoPhaseFlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

1336 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryFlux((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((TwoPhaseFlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((TwoPhaseFlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((TwoPhaseFlowEngineT)arg1) → float :
Return the density of cavity fluid.

getCavityFlux((TwoPhaseFlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((TwoPhaseFlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellFlux((TwoPhaseFlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((TwoPhaseFlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellInvVoidVolume((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

2.4. Yade modules reference 1337

Yade Documentation, Release 3rd ed.

getCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellVelocity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility((TwoPhaseFlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((TwoPhaseFlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors((TwoPhaseFlowEngineT)arg1, (int)arg2) → list :
get 4 neigboring cells

getPorePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((TwoPhaseFlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

1338 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

imposeFlux((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((TwoPhaseFlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes((TwoPhaseFlowEngineT)arg1) → None :
initialize pore volumes.

property isActivated
Activates Flow Engine

isCellNeighbor((TwoPhaseFlowEngineT)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property meanKStat
report the local permeabilities’ correction

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((TwoPhaseFlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((TwoPhaseFlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

2.4. Yade modules reference 1339

Yade Documentation, Release 3rd ed.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((TwoPhaseFlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((TwoPhaseFlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((TwoPhaseFlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

property relax
Gauss-Seidel relaxation

1340 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

resetLinearSystem((TwoPhaseFlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk((TwoPhaseFlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((TwoPhaseFlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((TwoPhaseFlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

setImposedPressure((TwoPhaseFlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

shearLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property stiffness
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((TwoPhaseFlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property tZero
The value used for initializing pore temperatures in thermalEngine.

2.4. Yade modules reference 1341

Yade Documentation, Release 3rd ed.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((TwoPhaseFlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((TwoPhaseFlowEngineT)arg1) → None :
update rates of volume change

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

property viscousShearBodyStress
compute shear viscous stress applied on each body

1342 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

volume((TwoPhaseFlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.UniaxialStrainer(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Axial displacing two groups of bodies in the opposite direction with given strain rate.

property absSpeed
alternatively, absolute speed of boundary motion can be specified; this is effective only at the
beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms�1]

property active
Whether this engine is activated

property asymmetry
If 0, straining is symmetric for negIds and posIds; for 1 (or -1), only posIds are strained and
negIds don’t move (or vice versa)

property avgStress
Current average stress (auto-updated) [Pa]

property axis
The axis which is strained (0,1,2 for x,y,z)

2.4. Yade modules reference 1343

Yade Documentation, Release 3rd ed.

property blockDisplacements
Whether displacement of boundary bodies perpendicular to the strained axis are blocked or
are free

property blockRotations
Whether rotations of boundary bodies are blocked.

property crossSectionArea
crossSection perpendicular to he strained axis; must be given explicitly [m2]

property currentStrainRate
Current strain rate (update automatically). (auto-updated)

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property idleIterations
Number of iterations that will pass without straining activity after stopStrain has been reached

property initAccelTime
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property limitStrain
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

property negIds
Bodies on which strain will be applied (on the negative end along the axis)

property notYetReversed
Flag whether the sense of straining has already been reversed (only used internally).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property originalLength
Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

property posIds
Bodies on which strain will be applied (on the positive end along the axis)

1344 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property setSpeeds
should we set speeds at the beginning directly, instead of increasing strain rate progressively?

property stopStrain
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

property strain
Current strain value, elongation/originalLength (auto-updated) [-]

property strainRate
Rate of strain, starting at 0, linearly raising to strainRate. [-]

property stressUpdateInterval
How often to recompute stress on supports.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.UnsaturatedEngine(inherits TwoPhaseFlowEngine → TwoPhaseFlowEngineT →
PartialEngine → Engine → Serializable)

Preliminary version engine of a drainage model for unsaturated soils. Note:Air reservoir is on the
top; water reservoir is on the bottom.(deprecated engine, use TwoPhaseFlowEngine instead)

OSI((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions only between spheres.

property accumulativeDeformationFlux
accumulative internal flux caused by deformation

property accumulativeFlux
accumulative influx of water

actionMergingAlgorithm((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

actionTPF((TwoPhaseFlowEngine)arg1) → None :
run 1 time step flow Engine

property airWaterInterfacialArea
Air-water interfacial area, based on the pore-unit assembly and regular-shaped pore units

property alphaBound
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

property alphaBoundValue
value of alpha constant pressure condition

property areaAveragedPressure
Air-water interfacial area averaged water pressure

avFlVelOnSph((TwoPhaseFlowEngineT)arg1, (int)idSph) → object :
compute a sphere-centered average fluid velocity

property averageCavityPressure
true means the pressure in the cavity will be averaged each iteration.

2.4. Yade modules reference 1345

Yade Documentation, Release 3rd ed.

averagePressure((TwoPhaseFlowEngineT)arg1) → float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure((TwoPhaseFlowEngineT)arg1, (float)posY) → float :
Measure slice-averaged pore pressure at height posY

averageVelocity((TwoPhaseFlowEngineT)arg1) → Vector3 :
measure the mean velocity in the period

blockCell((TwoPhaseFlowEngineT)arg1, (int)id, (bool)blockPressure) → None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

property blockHook
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

property bndCondIsPressure
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

property bndCondIsTemperature
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

property bndCondIsWaterReservoir
Boundary conditions, if bndCondIsPressure[] = True, is it air or water boundary condition?
True is water reservoir

property bndCondValue
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((TwoPhaseFlowEngineT)arg1, (int)idSph) → Matrix3 :
Return the shear lubrication stress on sphere idSph.

property boundaryPressure
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

property boundaryUseMaxMin
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

property boundaryVelocity
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

property boundaryXPos
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

property breakControlledRemesh
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

1346 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

calculateResidualSaturation((TwoPhaseFlowEngine)arg1) → None :
Calculate the residual saturation for each pore body

property cavityFactor
Permeability/viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

property cavityFluidDensity
>0 means cavity compressibility model considers density changes instead of volume changes.

property cavityFlux
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

property centroidAverageWaterPressure
Water pressure based on centroid-corrected averaging, see Korteland et al. (2010) - what is
the correct definition of average pressure?

checkLatticeNodeY((UnsaturatedEngine)arg1, (float)y) → None :
Check the slice of lattice nodes for yNormal(y). 0: out of sphere; 1: inside of sphere.

checknoCache((UnsaturatedEngine)arg1) → bool :
check noCache. (temporary function.)

cholmodStats((TwoPhaseFlowEngineT)arg1) → None :
get statistics of cholmod solver activity

property clampKValues
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with flux imposed.

clearImposedPressure((TwoPhaseFlowEngineT)arg1) → None :
Clear the list of points with pressure imposed.

clusterInvadePore((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly.

clusterInvadePoreFast((TwoPhaseFlowEngine)arg1, (int)cellId) → object :
drain the pore identified by cellId and update the clusters accordingly. This ‘fast’ version is
faster and it also preserves interfaces through cluster splitting. OTOH it does not update
entry Pc nor culsters volume (it could if needed)

clusterOutvadePore((TwoPhaseFlowEngine)arg1, (int)startingId, (int)imbibedId[,
(int)index=-1]) → object :

imbibe the pore identified by imbibedId and merge the newly connected clusters if it happens.
startingId->imbibedId defines the throat through which imbibition occurs. Giving index of
the facet in cluster::interfaces should speedup its removal

compTessVolumes((TwoPhaseFlowEngineT)arg1) → None :
Like TesselationWrapper::computeVolumes()

computeCapillaryForce((TwoPhaseFlowEngine)arg1[, (bool)addForces=False[,
(bool)permanently=False]]) → None :

Compute capillary force. Optionaly add them to body forces, for current iteration or perma-
nently.

2.4. Yade modules reference 1347

Yade Documentation, Release 3rd ed.

property computeForceActivated
Activate capillary force computation. WARNING: turning off means capillary force is not
computed at all, but the drainage can still work.

computeOnePhaseFlow((TwoPhaseFlowEngine)arg1) → None :
compute pressure and fluxes in the W-phase

property controlCavityPressure
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

property controlCavityVolumeChange
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

property convertClumps
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

copyPoreDataToCells((TwoPhaseFlowEngine)arg1) → None :
copy data from merged pore units back to grain-based tetrahedra, this should be done before
exporting VTK files

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

property debug
Activate debug messages

property debugTPF
Print debuging messages two phase flow engine

property decoupleForces
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

property defTolerance
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

property deformation
Boolean to indicate whether simulations of dynamic flow are withing a deformating packing
or not. If true, change of void volume due to deformation is considered in flow computations.

property deltaTimeTruncation
truncation of time step, to avoid very small time steps during local imbibition, NOTE it does
affect the mass conservation not set to 0

property desiredPorosity
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property doInterpolate
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

1348 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property drainageFirst
If true, activate drainage first (initial saturated), then imbibition; if false, activate imbibition
first (initial unsaturated), then drainage.

property dt
timestep [s]

property dtDynTPF
Parameter which stores the smallest time step, based on the residence time

edgeSize((TwoPhaseFlowEngineT)arg1) → float :
Return the number of interactions.

emulateAction((TwoPhaseFlowEngineT)arg1) → None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

property entryMethodCorrection
Parameter that is used in computing entry pressure of a pore throat: P_ij = entryMethod-
Correction * surfaceTension / radius_porethroat

property entryPressureMethod
integer to define the method used to determine the pore throat radii and the according entry
pressures. 1)radius of entry pore throat based on MS-P method; 2) radius of the inscribed
circle; 3) radius of the circle with equivalent surface area of the pore throat.

property eps
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

property epsVolMax
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((TwoPhaseFlowEngineT)arg1[, (str)filename=’matrix’]) → None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((TwoPhaseFlowEngineT)arg1[, (str)filename=’triplets’]) → None :
Export system matrix to a file with only non-zero entries.

property first
Controls the initialization/update phases

property firstDynTPF
this bool activated the initialization of the dynamic flow engine, such as merging and defining
initial values

property fixTriUpdatePermInt
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

property fixedAlpha
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

2.4. Yade modules reference 1349

Yade Documentation, Release 3rd ed.

property flatThreshold
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

property fluidBulkModulus
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

property fluidCp
Heat capacity of fluid (for thermalEngine).

fluidForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the fluid force on sphere idSph.

property fluidRho
Density of fluid (for thermalEngine).

property fluxInViaWBC
Total water flux over water boundary conditions

property forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

property fractionMinSaturationInvasion
Set the threshold saturation at which drainage can occur (Sthr = fractionMinSaturationInva-
sion), note that -1 implied the conventional definition of Sthr

getBoundaryFluidArea((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux((TwoPhaseFlowEngineT)arg1, (int)boundary) → float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel((TwoPhaseFlowEngineT)arg1, (int)boundary) → object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume((TwoPhaseFlowEngineT)arg1, (int)arg2, (float)boundary) → float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

property getCHOLMODPerfTimings
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity((TwoPhaseFlowEngineT)arg1) → float :
Return the density of cavity fluid.

1350 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getCavityFlux((TwoPhaseFlowEngineT)arg1) → float :
Return the flux through the edge of the cavity.

getCell((TwoPhaseFlowEngineT)arg1, (float)X, (float)Y , (float)Z) → int :
get id of the cell containing (X,Y,Z).

getCell2((TwoPhaseFlowEngine)arg1, (float)arg2, (float)arg3, (float)pos) → int :
get id of the cell containing (X,Y,Z).

getCellBarycenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get barycenter of cell ‘id’.

getCellCenter((TwoPhaseFlowEngineT)arg1, (int)id) → Vector3 :
get voronoi center of cell ‘id’.

getCellEntrySaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → list :
get the entry saturation of each pore throat

getCellFlux((TwoPhaseFlowEngineT)arg1, (int)cond) → float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId((TwoPhaseFlowEngineT)arg1, (int)id) → float :
Get influx in cell.

getCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
indicates whether a NW-W interface is present within the cell

getCellInSphereRadius((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the radius of the inscribed sphere in a pore unit

getCellInvVoidVolume((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluidBulkModulus.

getCellIsFictious((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
Check the connection between pore and boundary. If true, pore throat connects the boundary.

getCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘non-wetting reservoir’ state

getCellIsTrapNW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped non-wetting phase’ state

getCellIsTrapW((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘trapped wetting phase’ state

getCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2) → bool :
get status wrt ‘wetting reservoir’ state

getCellLabel((TwoPhaseFlowEngine)arg1, (int)arg2) → int :
get cell label. 0 for NW-reservoir; 1 for W-reservoir; others for disconnected W-clusters.

getCellMergedID((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellMergedVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the merged volume of pore space in each pore unit

getCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed pressure.

2.4. Yade modules reference 1351

Yade Documentation, Release 3rd ed.

getCellPorosity((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the porosity of individual cells.

getCellPressure((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get saturation of one pore

getCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id) → bool :
get the status of cell ‘id’ wrt imposed temperature.

getCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id) → float :
get pressure in cell ‘id’.

getCellThresholdSaturation((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the saturation of imbibition

getCellVelocity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVoidVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of pore space in each pore unit

getCellVolume((TwoPhaseFlowEngine)arg1, (int)arg2) → float :
get the volume of each cell

getClusters((TwoPhaseFlowEngine)arg1) → list :
Get the list of clusters.

getConductivity((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((TwoPhaseFlowEngineT)arg1[, (bool)all=True]) → list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getCuboidSubdomainPorosity((UnsaturatedEngine)arg1, (Vector3)pos1, (Vector3)pos2,
(bool)isSideBoundaryIncluded) → float :

Get the porosity of cuboid subdomain defined by (pos1,pos2). If isSideBoundaryIn-
cluded=false, the pores of side boundary are excluded in porosity calculating; if isSideBound-
aryIncluded=true (only in isInvadeBoundary=true drainage mode), the pores of side boundary
are included in porosity calculating.

getCuboidSubdomainSaturation((UnsaturatedEngine)arg1, (Vector3)pos1, (Vector3)pos2,
(bool)isSideBoundaryIncluded) → float :

Get saturation of cuboid subdomain defined by (pos1,pos2). If isSideBoundaryIncluded=false,
the pores of side boundary are excluded in saturation calculating; if isSideBoundaryIn-
cluded=true (only in isInvadeBoundary=true drainage mode), the pores of side boundary
are included in saturation calculating.

1352 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getDiffusionCoeff((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throat) → float :
get the ratio of throat cross-sectional area and distance between two cells

getEffRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get effective radius by three spheres position and radius.(inscribed sphere)

getEquivalentCompressibility((TwoPhaseFlowEngineT)arg1) → float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells((TwoPhaseFlowEngineT)arg1, (int)vertexId) → list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getInvadeDepth((UnsaturatedEngine)arg1) → float :
Get NW-phase invasion depth. (the distance from NW-reservoir to front of NW-W interface.)

getMSPRcByPosRadius((TwoPhaseFlowEngine)arg1, (Vector3)position1, (float)radius1,
(Vector3)position2, (float)radius2, (Vector3)position3, (float)radius3) →
float :

get entry radius wrt MSP method by three spheres position and radius.

getMaxImbibitionPc((TwoPhaseFlowEngine)arg1) → float :
Get the maximum entry capillary pressure for the next imbibition step.

getMinDrainagePc((TwoPhaseFlowEngine)arg1) → float :
Get the minimum entry capillary pressure for the next drainage step.

getNeighbors((TwoPhaseFlowEngine)arg1, (int)id[, (bool)withInfCell=True]) → list :
get 4 neigboring cells, optionally exclude the infinite cells if withInfCell is False

getPorePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → float :
get the pore throat radius between cell1 and cell2.

getPoreThroatRadiusList((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get 4 pore throat radii of a cell.

getPotentialPendularSpheresPair((TwoPhaseFlowEngine)arg1) → list :
Get the list of sphere ID pairs of potential pendular liquid bridge.

property getQuantitiesUpdateCont
Continuous update of various macro-scale quantities or not. Note that the updating quantities
is computationally expensive

getSaturation((TwoPhaseFlowEngine)arg1, (bool)isSideBoundaryIncluded) → float :
Get saturation of entire packing. If isSideBoundaryIncluded=false (default), the pores of side
boundary are excluded in saturation calculating; if isSideBoundaryIncluded=true (only in
isInvadeBoundary=true drainage mode), the pores of side boundary are included in saturation
calculating.

getSolidSurfaceAreaPerParticle((TwoPhaseFlowEngine)arg1, (int)cell_ID) → list :
get solid area inside a packing of particles

2.4. Yade modules reference 1353

Yade Documentation, Release 3rd ed.

getSpecificInterfacialArea((UnsaturatedEngine)arg1) → float :
get specific interfacial area (defined as the amount of fluid-fluid interfacial area per unit volume
pf the porous medium).

getSphericalSubdomainSaturation((UnsaturatedEngine)arg1, (Vector3)pos, (float)radius) →
float :

Get saturation of spherical subdomain defined by (pos, radius). The subdomain exclude
boundary pores.

getVertices((TwoPhaseFlowEngineT)arg1, (int)id) → list :
get the vertices of a cell

getWindowsSaturation((UnsaturatedEngine)arg1, (int)windowsID,
(bool)isSideBoundaryIncluded) → float :

get saturation of subdomain with windowsID. If isSideBoundaryIncluded=false (default), the
pores of side boundary are excluded in saturation calculating; if isSideBoundaryIncluded=true
(only in isInvadeBoundary=true drainage mode), the pores of side boundary are included in
saturation calculating.

property idOffset
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::wallIds.

property ids
Ids list of bodies affected by this PartialEngine.

property ignoredBody
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity((TwoPhaseFlowEngineT)arg1, (Vector3)pos) → int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeDeformationFluxTPF((TwoPhaseFlowEngine)arg1) → None :
Impose fluxes defined in dvTPF

imposeFlux((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((TwoPhaseFlowEngineT)arg1, (Vector3)pos, (float)p) → int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((TwoPhaseFlowEngineT)arg1, (int)id, (float)p) → int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

property iniVoidVolumes
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

property initialPC
Initial capillary pressure of the water-air inside the packing

property initialWetting
Initial wetting saturated (=true) or non-wetting saturated (=false)

1354 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

initialization((TwoPhaseFlowEngine)arg1) → None :
Initialize invasion setup. Build network, compute pore geometry info and initialize reservoir
boundary conditions.

initializeCellWindowsID((UnsaturatedEngine)arg1) → None :
Initialize cell windows index. A temporary function for comparison with experiments, will
delete soon

initializeVolumes((TwoPhaseFlowEngineT)arg1) → None :
initialize pore volumes.

invasion((TwoPhaseFlowEngine)arg1) → None :
Run the drainage invasion.

property isActivated
Activates Flow Engine

property isCellLabelActivated
Activate cell labels for marking disconnected wetting clusters. NW-reservoir label 0; W-
reservoir label 1; disconnected W-clusters label from 2.

isCellNeighbor((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID) → bool :
check if cell1 and cell2 are neigbors.

property isDrainageActivated
Activates drainage.

property isImbibitionActivated
Activates imbibition.

property isInvadeBoundary
Invasion side boundary condition. If True, pores of side boundary can be invaded; if False,
the pore throats connecting side boundary are closed, those pores are excluded in saturation
calculation.

property isPhaseTrapped
If True, both phases can be entrapped by the other, which would correspond to snap-off. If
false, both phases are always connected to their reservoirs, thus no snap-off.

property iterationTPF
Iteration number

property keepTriangulation
this bool activated triangulation or not during initialization

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

property maxIDMergedCells
maximum number of merged ID, this is computed in mergeCells()

property maxKdivKmean
define the max K value (see FlowEngine::clampKValues)

property maximumRatioPoreThroatoverPoreBody
maximum ratio of pore throat radius over pore body radius, this is used during merging of
tetrahedra.

2.4. Yade modules reference 1355

Yade Documentation, Release 3rd ed.

property meanKStat
report the local permeabilities’ correction

mergeCells((TwoPhaseFlowEngine)arg1) → None :
Extract the pore network of the granular material

property meshUpdateInterval
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed((TwoPhaseFlowEngineT)arg1) → bool :
check wether metis lib is effectively used

property minKdivKmean
define the min K value (see FlowEngine::clampKValues)

property minimumPorosity
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

property modelRunName
Name of simulation, to be implemented into output files

property multithread
Build triangulation and factorize in the background (multi-thread mode)

nCells((TwoPhaseFlowEngineT)arg1) → int :
get the total number of finite cells in the triangulation.

normalLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal lubrication force on sphere idSph.

property normalLubrication
compute normal lubrication force as developped by Brule

normalVect((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal vector between particles.

normalVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the normal velocity of the interaction.

property numFactorizeThreads
number of openblas threads in the factorization phase

property numSolveThreads
number of openblas threads in the solve phase.

property numberOfPores
Number of pores (i.e. number of tetrahedra, but compensated for merged tetrahedra

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((TwoPhaseFlowEngineT)arg1, (int)interaction) → int :
Return the id of the interaction only between spheres.

1356 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property pZero
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

property permeabilityFactor
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity −m

property permeabilityMap
Enable/disable stocking of average permeability scalar in cell infos.

property phiZero
if >0, considers water aircontent impact on fluid compressibility.

property porosity
Porosity computed at each retriangulation (auto-updated)

property pressureForce
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((TwoPhaseFlowEngineT)arg1, (float)wallUpY , (float)wallDownY) → None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

property primaryTPF
Boolean to indicate whether the initial conditions are for primary drainage of imbibition (dic-
tated by drainageFirst) or secondary drainage or imbibition. Note that during simulations, a
switch from drainage to imbibition or vise versa can easily be made by changing waterBound-
aryPressure

printSomething((UnsaturatedEngine)arg1) → None :
print debug.

printVertices((TwoPhaseFlowEngineT)arg1) → None :
Export vertex positions and types

property pumpTorque
Compute pump torque applied on particles

reTriangulateSpheres((TwoPhaseFlowEngine)arg1) → None :
apply triangulation, while maintaining saturation

property recursiveInvasion
If true the invasion stops only when no entry pc is less than current capillary pressure, implying
simultaneous invasion of many pores. Else only one pore invasion per invasion step.

property relax
Gauss-Seidel relaxation

property remesh
update triangulation? – YET TO BE IMPLEMENTED

resetLinearSystem((TwoPhaseFlowEngineT)arg1) → None :
trigger rebuild of the linear system while keeping the same triangulation

property safetyFactorTimeStep
Safey coefficient for time step

2.4. Yade modules reference 1357

Yade Documentation, Release 3rd ed.

savePhaseVtk((TwoPhaseFlowEngine)arg1[, (str)folder=’./phaseVtk’[,
(bool)withBoundaries=True]]) → None :

Save the saturation of local pores in vtk format. Sw(NW-pore)=0, Sw(W-pore)=1. Specify a
folder name for output.

savePoreNetwork((TwoPhaseFlowEngine)arg1[, (str)folder=’./poreNetwork’]) → None :
Extract the pore network of the granular material (i.e. based on triangulation of the pore
space

saveVtk((TwoPhaseFlowEngineT)arg1[, (str)folder=’./VTK’[, (bool)withBoundaries=False]])→ None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal((TwoPhaseFlowEngineT)arg1, (int)arg2, (Vector3)arg3) → None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellDeltaVolume((TwoPhaseFlowEngine)arg1, (int)id, (float)value) → None :
get id of the cell containing (X,Y,Z).

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
change wheter a cell has a NW-W interface

setCellHasInterface((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) ->
None :

change wheter a cell has a NW-W interface

setCellIsNWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellIsWRes((TwoPhaseFlowEngine)arg1, (int)arg2, (bool)arg3) → None :
set status whether ‘wetting reservoir’ state

setCellPImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)pImposed) → None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure((TwoPhaseFlowEngineT)arg1, (int)id, (float)pressure) → None :
set pressure in cell ‘id’.

setCellSaturation((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
change saturation of one pore

setCellTImposed((TwoPhaseFlowEngineT)arg1, (int)id, (bool)tImposed) → None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature((TwoPhaseFlowEngineT)arg1, (int)id, (float)temperature) → None :
set temperature in cell ‘id’.

property setFractionParticles
Correction fraction for swelling of particles by mismatch of surface area of particles with those
from actual surface area in pore units

setImposedPressure((TwoPhaseFlowEngineT)arg1, (int)cond, (float)p) → None :
Set pressure value at the point indexed ‘cond’.

setPoreBodyRadius((TwoPhaseFlowEngine)arg1, (int)arg2, (float)arg3) → None :
set the entry pore body radius.

setPoreThroatRadius((TwoPhaseFlowEngine)arg1, (int)cell1_ID, (int)cell2_ID, (float)radius)→ None :
set the pore throat radius between cell1 and cell2.

1358 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

shearLubForce((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear lubrication torque on sphere idSph.

property shearLubrication
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((TwoPhaseFlowEngineT)arg1, (int)idSph) → Vector3 :
Return the shear velocity of the interaction.

property simpleWaterPressure
Water pressure based on averaging over pore volume

property sineAverage
Pressure value (average) when sinusoidal pressure is applied

property sineMagnitude
Pressure value (amplitude) when sinusoidal pressure is applied (p)

property slipBoundary
Controls friction condition on lateral walls

property solvePressureSwitch
solve for pressure during actionTPF()

property stiffness
equivalent contact stiffness used in the lubrication model

property stopSimulation
Boolean to indicate that dynamic flow simulations cannot find a solution (or next time step).
If True, stop simulations

surfaceDistanceParticle((TwoPhaseFlowEngineT)arg1, (int)interaction) → float :
Return the distance between particles.

surfaceSolidThroatInPore((TwoPhaseFlowEngineT)arg1, (int)cellId, (int)throatIndex) → float
:

returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

property surfaceTension
Water Surface Tension in contact with air at 20 Degrees Celsius is: 0.0728(N/m)

property swelling
If true, include swelling of particles during TPF computations

property tZero
The value used for initializing pore temperatures in thermalEngine.

property tempDependentViscosity
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

property thermalBndCondValue
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

property thermalEngine
activate thermalEngine within FlowEngine.

2.4. Yade modules reference 1359

Yade Documentation, Release 3rd ed.

property thermalPorosity
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

property tolerance
Gauss-Seidel tolerance

property totalWaterVolume
total watervolume

property truncationPrecision
threshold at which a saturation is truncated

property twistTorque
Compute twist torque applied on particles

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

updateBCs((TwoPhaseFlowEngineT)arg1) → None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

updatePressure((TwoPhaseFlowEngine)arg1) → None :
Apply the values of FlowEngine::bndCondValue to the boundary cells. Note: boundary pres-
sure will be updated automatically in many cases, this function is for some low-level manipu-
lations.

property updateTriangulation
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes((TwoPhaseFlowEngineT)arg1) → None :
update rates of volume change

property useFastInvasion
use fast version of invasion

property useSolver
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

property viscosity
viscosity of the fluid

property viscousNormalBodyStress
compute normal viscous stress applied on each body

property viscousShear
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

1360 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property viscousShearBodyStress
compute shear viscous stress applied on each body

property voidVolume
total void volume, excluding boundary cells

volume((TwoPhaseFlowEngineT)arg1[, (int)id=0]) → float :
Returns the volume of Voronoi’s cell of a sphere.

property volumeCorrection
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
!= 0)

property volumeFactor
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

property wallIds
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,…,5)

property wallThickness
Walls thickness

property waterBoundaryPressure
Water pressure at boundary used in computations, is set automaticaly, but this value can be
used to change water pressure during simulations

property waterPressure
Volume-averaged water pressure

property waterPressurePartiallySatPores
water pressure based on the volume-averaged water pressure in partially-saturated pore units
(i.e. pore units having an interface)

property waterSaturation
Water saturation, excluding the boundary cells

property waterVolumeTruncatedLost
Water volume that has been truncated.

property waveAction
Allow sinusoidal pressure condition to simulate ocean waves

property windowsNo
Number of genrated windows(or zoomed samples).

property xmax
See FlowEngine::xmin.

property xmin
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],…).

property ymax
See FlowEngine::xmin.

property ymin
See FlowEngine::xmin.

2.4. Yade modules reference 1361

Yade Documentation, Release 3rd ed.

property zmax
See FlowEngine::xmin.

property zmin
See FlowEngine::xmin.

class yade.plot.VESupportEngine(inherits BoundaryController → GlobalEngine → Engine →
Serializable)

Engine that constraints given bodies in place (refPos) with a visco-elastic constrain according to
the Burgers model.

Burger’s rheological scheme with adopted designations.

The model of applied constraint can be degenerated to simpler models. Passing negative value of
the damping coefficient turns off the corresponding dashpot. A negative value of c2, turns off the
whole Kelvin-Voigt branch. By default c1=c2=-1, and model is simplified to an elastic boundary
condition. Hence, it can be used as Winkler foundation.

Potential applicatons are presented in [Brzezinski2022], and examples section (see
examples/viscoelastic-supports/single-element.py, and examples/viscoelastic-supports/discrete-
foundation.py

property bIds
IDs of bodies that should be attached to supports.

property c1
Damping coeff. of dashpot #1 (the one in Maxwell branch). Negative value turns off the
dashpot. [N*s/m]

property c2
Damping coeff. of dashpot #2 (the one in Kelvin-Voigt branch). Negative value turns off
whole Kelvin-Voigt branch. [N*s/m]

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

1362 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/single-element.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/discrete-foundation.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/viscoelastic-supports/discrete-foundation.py

Yade Documentation, Release 3rd ed.

property k1
Stiffness of spring #1 (the one in Maxwell branch) [N/m]

property k2
Stiffness of spring #2 (the one in Kelvin-Voigt branch) [N/m]

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.VTKRecorder(inherits PeriodicEngine → GlobalEngine → Engine → Serializable)
Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-
processing programs such as Paraview. Both bodies (depending on their shapes) and interactions
can be recorded, with various vector/scalar quantities that are defined on them.

PeriodicEngine.initRun is initialized to True automatically.

property Key
Necessary if recorders contains ‘cracks’ or ‘moments’. A string specifying the name of file
‘cracks___.txt’ that is considered in this case (see corresponding attribute).

property ascii
Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter::Ascii, while the default is Appended)

property compress
Compress output XML files [experimental].

property dead
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

property execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

property execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

property fileName
Base file name; it will be appended with {lsBody*,spheres,intrs,facets}.243100.vtu (unless
multiblock or multiblockLS is True) depending on active recorders and step number (243100
in this case). It can contain slashes, but the directory must exist already.

2.4. Yade modules reference 1363

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html

Yade Documentation, Release 3rd ed.

property firstIterRun
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

property initRun
Run the first time we are called as well.

property iterLast
Tracks step number of last run (auto-updated).

property iterPeriod
Periodicity criterion using step number (deactivated if <= 0)

property label
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

property mask
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

property multiblock
Use multi-block (.vtm) files to store data, rather than separate .vtu files.

property multiblockLS
For executing, when True and with lsBodies in recorders, a serial export of the LevelSet bodies
into one unique multi-block (.vtm) file, rather than a OpenMP export of separate .vtu files,
when False. Compatibility with multiblock has not been implemented yet

property nDo
Limit number of executions by this number (deactivated if negative)

property nDone
Track number of executions (cummulative) (auto-updated).

property ompThreads
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

property parallelMode
For MPI parallel runs, each proc writes their own vtu/vtp files. Master proc writes a
pvtu/pvtp file containing metadata about worker vtu files. load the pvtu/pvtp in paraview
for visualization.

property realLast
Tracks real time of last run (auto-updated).

property realPeriod
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

property recorders
List of active recorders (as strings). all (the default value) enables all base (‘‘lsBodies’’
excepted) and generic recorders.

Base recorders

1364 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Base recorders save the geometry (unstructured or structured grids) on which other
data is defined. They are implicitly activated by many of the other recorders. Each
of them creates a new file (or a block, if multiblock is set).

spheres
Saves positions and radii (radii) of spherical particles.

facets
Save facets positions (vertices).

boxes
Save boxes positions (edges).

lsBodies
Exports LevelSet shaped bodies in global frame, after mapping to current posi-
tions and orientations their grid with distance fields. A Python function (to use
within Paraview) is provided at examples/levelSet/pvVisu.py for helping bodies’
surfaces rendering in Paraview.

intr
Store interactions as lines between nodes at respective particles positions. Addi-
tionally stores on interactions (the geom) the signed magnitude of normal force
(forceN) and the component-wise absolute value of shear force (absForceT).

Generic recorders

Generic recorders do not depend on specific model being used and save commonly
useful data.

id
Saves id’s (field id) of spheres; active only if spheres is active.

mass
Saves masses (field mass) of spheres; active only if spheres is active.

clumpId
Saves id’s of clumps to which each sphere belongs (field clumpId); active only if
spheres is active.

colors
Saves colors of spheres and of facets (field color); only active if spheres or
facets are activated.

mask
Saves groupMasks of spheres and of facets (field mask); only active if spheres or
facets are activated.

materialId
Saves materialID of spheres and of facets; only active if spheres or facets are
activated.

coordNumber
Saves coordination number (number of neighbours) of spheres and of facets; only
active if spheres or facets are activated.

velocity
Saves linear and angular velocities of spherical particles as Vector3 and
length(fields linVelVec, linVelLen and angVelVec, angVelLen respectively‘‘);
only effective with spheres.

force
Saves force and torque of spheres, facets and boxes as Vector3 and length (norm);
only active if spheres, facets or boxes are activated.

pericell
Saves the shape of the cell (simulation has to be periodic).

2.4. Yade modules reference 1365

https://gitlab.com/yade-dev/trunk/blob/master/examples/levelSet/pvVisu.py

Yade Documentation, Release 3rd ed.

bstresses
For spheres (if activated) and while considering the per-particle stress tensors as
given by bodyStressTensors, saves the per-particle principal stresses, sigI (most
tensile) ≥ sigII ≥ sigIII (most compressive), and the associated principal direc-
tions dirI, dirII, dirIII.

Specific recorders

The following should only be activated in when appropriate engines/contact
laws are in use, otherwise crashes can occur due to violation of type presup-
positions.

cpm
Saves data pertaining to the concrete model: cpmDamage (normalized resid-
ual strength averaged on particle), cpmStress (stress on particle); intr is
activated automatically by cpm

wpm
Saves data pertaining to the wire particle model: wpmForceNFactor shows
the loading factor for the wire, e.g. normal force divided by threshold
normal force.

jcfpm
Saves data pertaining to the rock (smooth)-jointed model: damage is de-
fined by JCFpmState.tensBreak + JCFpmState.shearBreak; intr is acti-
vated automatically by jcfpm, and on joint or cohesive interactions can be
vizualized.

cracks
Saves other data pertaining to the rock model: cracks shows locations
where cohesive bonds failed during the simulation, with their types (0/1
for tensile/shear breakages), their sizes (0.5*(R1+R2)), and their normal
directions. The corresponding attribute has to be activated, and Key at-
tributes have to be consistent.

moments
Saves data pertaining to the required corresponding attribute:yref:acoustic
emissions model<Law2_ScGeom_JCFpmPhys_JointedCohesiveFriction-
alPM.recordMoments>: moments shows locations of acoustic emissions, the
number of broken bonds comprising the acoustic emission, the magnitude.

thermal
Saves temperature of bodies computed using Yade’s ThermalEngine.

liquid
Saves the liquid volume associated with capillary models.

cohfrict
Saves interaction information associated with the cohesive frictional model,
including isBroken, unp, and breakType.

SPH
Saves sphere information associated with Yade’s SPH module.

deform
Saves interaction information associated with Yade’s deformation module.

lubrication
Saves lubrications stress from LubricationPhys. spheres must be active.

partialsat
Saves suction and radii changes of spheres associated with PartialSat-
ClayEngine. spheres must be active.

hertz
Saves bond data from hertzmindlin such as displacement or ‘broken’ where

1366 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

broken follows a displacement criteria set by user in Law2_ScGeom_-
MindlinPhys_Mindlin.

property skipFacetIntr
Skip interactions that are not of sphere-sphere type (e.g. sphere-facet, sphere-box…), when
saving interactions

property skipNondynamic
Skip non-dynamic spheres (but not facets).

property timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property virtLast
Tracks virtual time of last run (auto-updated).

property virtPeriod
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.plot.Vector2
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2(1,0)

Ones = Vector2(1,1)

static Random() → Vector2 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2

UnitX = Vector2(1,0)

UnitY = Vector2(0,1)

Zero = Vector2(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (float)x, (float)y) -> None

asDiagonal((Vector2)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2)arg1) → int :
Number of columns.

dot((Vector2)arg1, (Vector2)other) → float :
Dot product with other.

2.4. Yade modules reference 1367

Yade Documentation, Release 3rd ed.

isApprox((Vector2)arg1, (Vector2)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector2)arg1) → float :
Maximum value over all elements.

mean((Vector2)arg1) → float :
Mean value over all elements.

minCoeff((Vector2)arg1) → float :
Minimum value over all elements.

norm((Vector2)arg1) → float :
Euclidean norm.

normalize((Vector2)arg1) → None :
Normalize this object in-place.

normalized((Vector2)arg1) → Vector2 :
Return normalized copy of this object

outer((Vector2)arg1, (Vector2)other) → object :
Outer product with other.

prod((Vector2)arg1) → float :
Product of all elements.

pruned((Vector2)arg1[, (float)absTol=1e-06]) → Vector2 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2)arg1) → int :
Number of rows.

squaredNorm((Vector2)arg1) → float :
Square of the Euclidean norm.

sum((Vector2)arg1) → float :
Sum of all elements.

class yade.plot.Vector2c
/TODO/

Identity = Vector2c(1,0)

Ones = Vector2c(1,1)

static Random() → Vector2c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2c

UnitX = Vector2c(1,0)

UnitY = Vector2c(0,1)

Zero = Vector2c(0,0)

1368 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (Vector2c)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (complex)x, (complex)y) -> None

asDiagonal((Vector2c)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2c)arg1) → int :
Number of columns.

dot((Vector2c)arg1, (Vector2c)other) → complex :
Dot product with other.

isApprox((Vector2c)arg1, (Vector2c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector2c)arg1) → complex :
Mean value over all elements.

norm((Vector2c)arg1) → float :
Euclidean norm.

normalize((Vector2c)arg1) → None :
Normalize this object in-place.

normalized((Vector2c)arg1) → Vector2c :
Return normalized copy of this object

outer((Vector2c)arg1, (Vector2c)other) → object :
Outer product with other.

prod((Vector2c)arg1) → complex :
Product of all elements.

pruned((Vector2c)arg1[, (float)absTol=1e-06]) → Vector2c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector2c)arg1) → int :
Number of rows.

squaredNorm((Vector2c)arg1) → float :
Square of the Euclidean norm.

sum((Vector2c)arg1) → complex :
Sum of all elements.

class yade.plot.Vector2i
2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v,
v!=v.

Implicit conversion from sequence (list, tuple, …) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)

2.4. Yade modules reference 1369

Yade Documentation, Release 3rd ed.

Ones = Vector2i(1,1)

static Random() → Vector2i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector2i

UnitX = Vector2i(1,0)

UnitY = Vector2i(0,1)

Zero = Vector2i(0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector2i)other) -> None

__init__((object)arg1, (str)str1, (str)str2) -> object

__init__((object)arg1, (int)x, (int)y) -> None

asDiagonal((Vector2i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector2i)arg1) → int :
Number of columns.

dot((Vector2i)arg1, (Vector2i)other) → int :
Dot product with other.

isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector2i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector2i)arg1) → int :
Maximum value over all elements.

mean((Vector2i)arg1) → int :
Mean value over all elements.

minCoeff((Vector2i)arg1) → int :
Minimum value over all elements.

outer((Vector2i)arg1, (Vector2i)other) → object :
Outer product with other.

prod((Vector2i)arg1) → int :
Product of all elements.

rows((Vector2i)arg1) → int :
Number of rows.

sum((Vector2i)arg1) → int :
Sum of all elements.

class yade.plot.Vector3
3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, …) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

1370 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Identity = Vector3(1,0,0)

Ones = Vector3(1,1,1)

static Random() → Vector3 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3

UnitX = Vector3(1,0,0)

UnitY = Vector3(0,1,0)

UnitZ = Vector3(0,0,1)

Zero = Vector3(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (float)x=0.0 [, (float)y=0.0 [, (float)z=0.0]]]) -> None

asDiagonal((Vector3)arg1) → Matrix3 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3)arg1) → int :
Number of columns.

cross((Vector3)arg1, (Vector3)arg2) → Vector3

dot((Vector3)arg1, (Vector3)other) → float :
Dot product with other.

isApprox((Vector3)arg1, (Vector3)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector3)arg1) → float :
Maximum value over all elements.

mean((Vector3)arg1) → float :
Mean value over all elements.

minCoeff((Vector3)arg1) → float :
Minimum value over all elements.

norm((Vector3)arg1) → float :
Euclidean norm.

normalize((Vector3)arg1) → None :
Normalize this object in-place.

normalized((Vector3)arg1) → Vector3 :
Return normalized copy of this object

outer((Vector3)arg1, (Vector3)other) → Matrix3 :
Outer product with other.

prod((Vector3)arg1) → float :
Product of all elements.

2.4. Yade modules reference 1371

Yade Documentation, Release 3rd ed.

pruned((Vector3)arg1[, (float)absTol=1e-06]) → Vector3 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3)arg1) → int :
Number of rows.

squaredNorm((Vector3)arg1) → float :
Square of the Euclidean norm.

sum((Vector3)arg1) → float :
Sum of all elements.

xy((Vector3)arg1) → Vector2

xz((Vector3)arg1) → Vector2

yx((Vector3)arg1) → Vector2

yz((Vector3)arg1) → Vector2

zx((Vector3)arg1) → Vector2

zy((Vector3)arg1) → Vector2

class yade.plot.Vector3c
/TODO/

Identity = Vector3c(1,0,0)

Ones = Vector3c(1,1,1)

static Random() → Vector3c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3c

UnitX = Vector3c(1,0,0)

UnitY = Vector3c(0,1,0)

UnitZ = Vector3c(0,0,1)

Zero = Vector3c(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3c)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (complex)x=0j [, (complex)y=0j [, (complex)z=0j]]]) -> None

asDiagonal((Vector3c)arg1) → Matrix3c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3c)arg1) → int :
Number of columns.

cross((Vector3c)arg1, (Vector3c)arg2) → Vector3c

dot((Vector3c)arg1, (Vector3c)other) → complex :
Dot product with other.

isApprox((Vector3c)arg1, (Vector3c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

1372 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

maxAbsCoeff((Vector3c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector3c)arg1) → complex :
Mean value over all elements.

norm((Vector3c)arg1) → float :
Euclidean norm.

normalize((Vector3c)arg1) → None :
Normalize this object in-place.

normalized((Vector3c)arg1) → Vector3c :
Return normalized copy of this object

outer((Vector3c)arg1, (Vector3c)other) → Matrix3c :
Outer product with other.

prod((Vector3c)arg1) → complex :
Product of all elements.

pruned((Vector3c)arg1[, (float)absTol=1e-06]) → Vector3c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector3c)arg1) → int :
Number of rows.

squaredNorm((Vector3c)arg1) → float :
Square of the Euclidean norm.

sum((Vector3c)arg1) → complex :
Sum of all elements.

xy((Vector3c)arg1) → Vector2c

xz((Vector3c)arg1) → Vector2c

yx((Vector3c)arg1) → Vector2c

yz((Vector3c)arg1) → Vector2c

zx((Vector3c)arg1) → Vector2c

zy((Vector3c)arg1) → Vector2c

class yade.plot.Vector3i
3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v,
v!=v.

Implicit conversion from sequence (list, tuple, …) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3i(1,0,0)

Ones = Vector3i(1,1,1)

static Random() → Vector3i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector3i

2.4. Yade modules reference 1373

Yade Documentation, Release 3rd ed.

UnitX = Vector3i(1,0,0)

UnitY = Vector3i(0,1,0)

UnitZ = Vector3i(0,0,1)

Zero = Vector3i(0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector3i)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3) -> object

__init__((object)arg1 [, (int)x=0 [, (int)y=0 [, (int)z=0]]]) -> None

asDiagonal((Vector3i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector3i)arg1) → int :
Number of columns.

cross((Vector3i)arg1, (Vector3i)arg2) → Vector3i

dot((Vector3i)arg1, (Vector3i)other) → int :
Dot product with other.

isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector3i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector3i)arg1) → int :
Maximum value over all elements.

mean((Vector3i)arg1) → int :
Mean value over all elements.

minCoeff((Vector3i)arg1) → int :
Minimum value over all elements.

outer((Vector3i)arg1, (Vector3i)other) → object :
Outer product with other.

prod((Vector3i)arg1) → int :
Product of all elements.

rows((Vector3i)arg1) → int :
Number of rows.

sum((Vector3i)arg1) → int :
Sum of all elements.

xy((Vector3i)arg1) → Vector2i

xz((Vector3i)arg1) → Vector2i

yx((Vector3i)arg1) → Vector2i

yz((Vector3i)arg1) → Vector2i

zx((Vector3i)arg1) → Vector2i

zy((Vector3i)arg1) → Vector2i

1374 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.Vector4
4-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 4 floats.

Static attributes: Zero, Ones.

Identity = Vector4(1,0,0, 0)

Ones = Vector4(1,1,1, 1)

static Random() → Vector4 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector4

Zero = Vector4(0,0,0, 0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector4)other) -> None

__init__((object)arg1, (str)str1, (str)str2, (str)str3, (str)str4) -> object

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3) -> None

asDiagonal((Vector4)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector4)arg1) → int :
Number of columns.

dot((Vector4)arg1, (Vector4)other) → float :
Dot product with other.

isApprox((Vector4)arg1, (Vector4)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector4)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector4)arg1) → float :
Maximum value over all elements.

mean((Vector4)arg1) → float :
Mean value over all elements.

minCoeff((Vector4)arg1) → float :
Minimum value over all elements.

norm((Vector4)arg1) → float :
Euclidean norm.

normalize((Vector4)arg1) → None :
Normalize this object in-place.

normalized((Vector4)arg1) → Vector4 :
Return normalized copy of this object

outer((Vector4)arg1, (Vector4)other) → object :
Outer product with other.

2.4. Yade modules reference 1375

Yade Documentation, Release 3rd ed.

prod((Vector4)arg1) → float :
Product of all elements.

pruned((Vector4)arg1[, (float)absTol=1e-06]) → Vector4 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector4)arg1) → int :
Number of rows.

squaredNorm((Vector4)arg1) → float :
Square of the Euclidean norm.

sum((Vector4)arg1) → float :
Sum of all elements.

class yade.plot.Vector6
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6(1,0,0, 0,0,0)

Ones = Vector6(1,1,1, 1,1,1)

static Random() → Vector6 :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6

Zero = Vector6(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6)other) -> None

__init__((object)arg1, (float)v0, (float)v1, (float)v2, (float)v3, (float)v4, (float)v5) -> ob-
ject

__init__((object)arg1, (Vector3)head, (Vector3)tail) -> object

asDiagonal((Vector6)arg1) → Matrix6 :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6)arg1) → int :
Number of columns.

dot((Vector6)arg1, (Vector6)other) → float :
Dot product with other.

head((Vector6)arg1) → Vector3

isApprox((Vector6)arg1, (Vector6)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((Vector6)arg1) → float :
Maximum value over all elements.

1376 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mean((Vector6)arg1) → float :
Mean value over all elements.

minCoeff((Vector6)arg1) → float :
Minimum value over all elements.

norm((Vector6)arg1) → float :
Euclidean norm.

normalize((Vector6)arg1) → None :
Normalize this object in-place.

normalized((Vector6)arg1) → Vector6 :
Return normalized copy of this object

outer((Vector6)arg1, (Vector6)other) → Matrix6 :
Outer product with other.

prod((Vector6)arg1) → float :
Product of all elements.

pruned((Vector6)arg1[, (float)absTol=1e-06]) → Vector6 :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6)arg1) → int :
Number of rows.

squaredNorm((Vector6)arg1) → float :
Square of the Euclidean norm.

sum((Vector6)arg1) → float :
Sum of all elements.

tail((Vector6)arg1) → Vector3

class yade.plot.Vector6c
/TODO/

Identity = Vector6c(1,0,0, 0,0,0)

Ones = Vector6c(1,1,1, 1,1,1)

static Random() → Vector6c :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6c

Zero = Vector6c(0,0,0, 0,0,0)

__init__((object)arg1) → None
__init__((object)arg1, (Vector6c)other) -> None

__init__((object)arg1, (complex)v0, (complex)v1, (complex)v2, (complex)v3, (complex)v4,
(complex)v5) -> object

__init__((object)arg1, (Vector3c)head, (Vector3c)tail) -> object

asDiagonal((Vector6c)arg1) → Matrix6c :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6c)arg1) → int :
Number of columns.

2.4. Yade modules reference 1377

Yade Documentation, Release 3rd ed.

dot((Vector6c)arg1, (Vector6c)other) → complex :
Dot product with other.

head((Vector6c)arg1) → Vector3c

isApprox((Vector6c)arg1, (Vector6c)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6c)arg1) → float :
Maximum absolute value over all elements.

mean((Vector6c)arg1) → complex :
Mean value over all elements.

norm((Vector6c)arg1) → float :
Euclidean norm.

normalize((Vector6c)arg1) → None :
Normalize this object in-place.

normalized((Vector6c)arg1) → Vector6c :
Return normalized copy of this object

outer((Vector6c)arg1, (Vector6c)other) → Matrix6c :
Outer product with other.

prod((Vector6c)arg1) → complex :
Product of all elements.

pruned((Vector6c)arg1[, (float)absTol=1e-06]) → Vector6c :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows((Vector6c)arg1) → int :
Number of rows.

squaredNorm((Vector6c)arg1) → float :
Square of the Euclidean norm.

sum((Vector6c)arg1) → complex :
Sum of all elements.

tail((Vector6c)arg1) → Vector3c

class yade.plot.Vector6i
6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of 6 ints.

Static attributes: Zero, Ones.

Identity = Vector6i(1,0,0, 0,0,0)

Ones = Vector6i(1,1,1, 1,1,1)

static Random() → Vector6i :
Return an object where all elements are randomly set to values between 0 and 1.

static Unit((int)arg1) → Vector6i

Zero = Vector6i(0,0,0, 0,0,0)

1378 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (Vector6i)other) -> None

__init__((object)arg1, (int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) -> object

__init__((object)arg1, (Vector3i)head, (Vector3i)tail) -> object

asDiagonal((Vector6i)arg1) → object :
Return diagonal matrix with this vector on the diagonal.

cols((Vector6i)arg1) → int :
Number of columns.

dot((Vector6i)arg1, (Vector6i)other) → int :
Dot product with other.

head((Vector6i)arg1) → Vector3i

isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((Vector6i)arg1) → int :
Maximum absolute value over all elements.

maxCoeff((Vector6i)arg1) → int :
Maximum value over all elements.

mean((Vector6i)arg1) → int :
Mean value over all elements.

minCoeff((Vector6i)arg1) → int :
Minimum value over all elements.

outer((Vector6i)arg1, (Vector6i)other) → object :
Outer product with other.

prod((Vector6i)arg1) → int :
Product of all elements.

rows((Vector6i)arg1) → int :
Number of rows.

sum((Vector6i)arg1) → int :
Sum of all elements.

tail((Vector6i)arg1) → Vector3i

class yade.plot.VectorX
Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, …) of X floats.

static Ones((int)arg1) → VectorX

static Random((int)len) → VectorX :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorX

static Zero((int)arg1) → VectorX

2.4. Yade modules reference 1379

Yade Documentation, Release 3rd ed.

__init__((object)arg1) → None
__init__((object)arg1, (VectorX)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorX)arg1) → MatrixX :
Return diagonal matrix with this vector on the diagonal.

cols((VectorX)arg1) → int :
Number of columns.

dot((VectorX)arg1, (VectorX)other) → float :
Dot product with other.

isApprox((VectorX)arg1, (VectorX)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorX)arg1) → float :
Maximum absolute value over all elements.

maxCoeff((VectorX)arg1) → float :
Maximum value over all elements.

mean((VectorX)arg1) → float :
Mean value over all elements.

minCoeff((VectorX)arg1) → float :
Minimum value over all elements.

norm((VectorX)arg1) → float :
Euclidean norm.

normalize((VectorX)arg1) → None :
Normalize this object in-place.

normalized((VectorX)arg1) → VectorX :
Return normalized copy of this object

outer((VectorX)arg1, (VectorX)other) → MatrixX :
Outer product with other.

prod((VectorX)arg1) → float :
Product of all elements.

pruned((VectorX)arg1[, (float)absTol=1e-06]) → VectorX :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorX)arg1, (int)arg2) → None

rows((VectorX)arg1) → int :
Number of rows.

squaredNorm((VectorX)arg1) → float :
Square of the Euclidean norm.

sum((VectorX)arg1) → float :
Sum of all elements.

class yade.plot.VectorXc
/TODO/

static Ones((int)arg1) → VectorXc

1380 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

static Random((int)len) → VectorXc :
Return vector of given length with all elements set to values between 0 and 1 randomly.

static Unit((int)arg1, (int)arg2) → VectorXc

static Zero((int)arg1) → VectorXc

__init__((object)arg1) → None
__init__((object)arg1, (VectorXc)other) -> None

__init__((object)arg1, (object)vv) -> object

asDiagonal((VectorXc)arg1) → MatrixXc :
Return diagonal matrix with this vector on the diagonal.

cols((VectorXc)arg1) → int :
Number of columns.

dot((VectorXc)arg1, (VectorXc)other) → complex :
Dot product with other.

isApprox((VectorXc)arg1, (VectorXc)other[, (float)prec=1e-12]) → bool :
Approximate comparison with precision prec.

maxAbsCoeff((VectorXc)arg1) → float :
Maximum absolute value over all elements.

mean((VectorXc)arg1) → complex :
Mean value over all elements.

norm((VectorXc)arg1) → float :
Euclidean norm.

normalize((VectorXc)arg1) → None :
Normalize this object in-place.

normalized((VectorXc)arg1) → VectorXc :
Return normalized copy of this object

outer((VectorXc)arg1, (VectorXc)other) → MatrixXc :
Outer product with other.

prod((VectorXc)arg1) → complex :
Product of all elements.

pruned((VectorXc)arg1[, (float)absTol=1e-06]) → VectorXc :
Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((VectorXc)arg1, (int)arg2) → None

rows((VectorXc)arg1) → int :
Number of rows.

squaredNorm((VectorXc)arg1) → float :
Square of the Euclidean norm.

sum((VectorXc)arg1) → complex :
Sum of all elements.

class yade.plot.ViscElCapMat(inherits ViscElMat → FrictMat → ElastMat → Material →
Serializable)

Material for extended viscoelastic model of contact with capillary parameters.

2.4. Yade modules reference 1381

Yade Documentation, Release 3rd ed.

property Capillar
True, if capillar forces need to be added.

property CapillarType
Different types of capillar interaction: Willett_numeric, Willett_analytic [Willett2000] ,
Weigert [Weigert1999] , Rabinovich [Rabinov2005] , Lambert (simplified, corrected Rabinovich
model) [Lambert2008]

property Vb
Liquid bridge volume [m^3]

property cn
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property cs
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property dcap
Damping coefficient for the capillary phase [-]

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property en
Restitution coefficient in normal direction

property et
Restitution coefficient in tangential direction

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property gamma
Surface tension [N/m]

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property kn
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property ks
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

1382 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property lubrication
option to apply lubrication forces when material is defined from young, poisson and en (resti-
tution coefficient).

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property roughnessScale
if lubrication is activated, roughness scale considered for the particles to evaluate the effective
restitution coefficient.

property tc
Contact time

property theta
Contact angle [°]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscoDyn
if lubrication is activated, surrounding fluid dynamic viscosity considered to evaluate the
effective restitution coefficient as a function of the local Stokes number of the collision.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.ViscElCapPhys(inherits ViscElPhys → FrictPhys → NormShearPhys → NormPhys→ IPhys → Serializable)
IPhys created from ViscElCapMat, for use with Law2_ScGeom_ViscElCapPhys_Basic.

property Capillar
True, if capillar forces need to be added.

property CapillarType
Different types of capillar interaction: Willett_numeric, Willett_analytic, Weigert, Rabi-
novich, Lambert, Soulie

property Fn
Linear-elastic part of the normal force of the contact

property Fv
Viscous part of the normal force of the contact

property Vb
Liquid bridge volume [m^3]

2.4. Yade modules reference 1383

Yade Documentation, Release 3rd ed.

property cn
Normal viscous constant

property cs
Shear viscous constant

property dcap
Damping coefficient for the capillary phase [-]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property gamma
Surface tension [N/m]

property kn
Normal stiffness

property ks
Shear stiffness

property liqBridgeActive
Whether liquid bridge is active at the moment

property liqBridgeCreated
Whether liquid bridge was created, only after a normal contact of spheres

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property sCrit
Critical bridge length [m]

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

property theta
Contact angle [rad]

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

1384 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.plot.ViscElMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for simple viscoelastic model of contact from analytical solution of a pair spheres inter-
action problem [Pournin2001] .

property cn
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property cs
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

property density
Density of the material [kg/m3]

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property en
Restitution coefficient in normal direction

property et
Restitution coefficient in tangential direction

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property kn
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property ks
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property lubrication
option to apply lubrication forces when material is defined from young, poisson and en (resti-
tution coefficient).

property mR
Rolling resistance, see [Zhou1999536].

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

2.4. Yade modules reference 1385

Yade Documentation, Release 3rd ed.

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property roughnessScale
if lubrication is activated, roughness scale considered for the particles to evaluate the effective
restitution coefficient.

property tc
Contact time

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property viscoDyn
if lubrication is activated, surrounding fluid dynamic viscosity considered to evaluate the
effective restitution coefficient as a function of the local Stokes number of the collision.

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.ViscElPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

IPhys created from ViscElMat, for use with Law2_ScGeom_ViscElPhys_Basic.

property Fn
Linear-elastic part of the normal force of the contact

property Fv
Viscous part of the normal force of the contact

property cn
Normal viscous constant

property cs
Shear viscous constant

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property mR
Rolling resistance, see [Zhou1999536].

1386 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property mRtype
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.ViscoFrictPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

Temporary version of FrictPhys for compatibility reasons

property creepedShear
Creeped force (parallel)

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property kn
Normal stiffness

property ks
Shear stiffness

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.VolumeGeom(inherits IGeom → Serializable)
Geometry of the interaction between two LevelSet bodies when using volume-based interactions.
Will soon become the general class for volume interaction, such that it works for polyhedra as well.

2.4. Yade modules reference 1387

Yade Documentation, Release 3rd ed.

property averagePenetrationDepth
penetrationVolume / contactArea.

property contactArea
Contact area perpendicular to the normal.

property contactPoint
Contact point (global coordinates), centroid of the penetration volume.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property normal
Normal direction of the interaction.

property orthonormal_axis

property penetrationVolume
Volume of the overlap or penetrating region.

property shearInc
Shear displacement increment in the last step.

property twist_axis

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

class yade.plot.Wall(inherits Shape → Serializable)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).

property axis
Axis of the normal; can be 0,1,2 for +x, +y, +z respectively (Body’s orientation is disregarded
for walls)

property color
Color for rendering (normalized RGB).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property highlight
Whether this Shape will be highlighted when rendered.

property sense
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

1388 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property wire
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.plot.WireMat(inherits FrictMat → ElastMat → Material → Serializable)
Material for use with the Wire classes. In conjunction with the corresponding functors it can be
used to model steel wire meshes [Thoeni2014], geotextiles [Cheng2016] and more.

property as
Cross-section area of a single wire used to transform stress into force. [m2]

property density
Density of the material [kg/m3]

property diameter
Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((Material)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property frictionAngle
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

property id
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

property isDoubleTwist
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

property label
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

property lambdaEps
Parameter between 0 and 1 to reduce strain at failure of a double-twisted wire (as used by
[Bertrand2008]). [-]

property lambdaF
Parameter between 0 and 1 introduced by [Thoeni2013] which defines where the shifted force-
displacement curve intersects with the new initial stiffness: F∗ = λFFelastic. [-]

property lambdak
Parameter between 0 and 1 to compute the elastic stiffness of a double-twisted wire (as used
by [Bertrand2008]): kD = 2(λkkh + (1− λk)k

S). [-]

2.4. Yade modules reference 1389

Yade Documentation, Release 3rd ed.

property lambdau
Parameter between 0 and 1 introduced by [Thoeni2013] which defines the maximum shift
of the force-displacement curve in order to take an additional initial elongation (e.g. wire
distortion/imperfections, slipping, system flexibility) into account: ∆l∗ = λul0rnd(seed). [-]

newAssocState((Material)arg1) → State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

property poisson
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

property seed
Integer used to initialize the random number generator for the calculation of the distortion.
If the integer is equal to 0 a internal seed number based on the time is computed. [-]

property strainStressValues
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed! NOTE:
Vector needs to be initialized!

property strainStressValuesDT
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for the double twist. Tension only is considered and the point (0,0) is not needed! If this value
is given the calculation will be based on two different stress-strain curves without considering
the parameter introduced by [Bertrand2008] (see [Thoeni2013]).

property type
Three different types are considered:

0 Corresponds to Bertrand’s approach (see [Bertrand2008]): only one stress-strain curve
is used

1 New approach: two separate stress-strain curves can be used (see [Thoeni2013])
2 New approach with stochastically distorted contact model: two separate stress-strain

curves with changed initial stiffness and horizontal shift (shift is random if seed ≥ 0,
for more details see [Thoeni2013])

By default the type is 0.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property young
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.plot.WirePhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys →
Serializable)

Representation of a single interaction of the WirePM type, storage for relevant parameters

property dL
Additional wire length for considering the distortion for WireMat type=2 (see [Thoeni2013]).

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

1390 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

property displForceValues
Defines the values for force-displacement curve.

property initD
Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

property isDoubleTwist
If true the properties of the interaction will be defined as a double-twisted wire.

property isLinked
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

property isShifted
If true WireMat type=2 and the force-displacement curve will be shifted.

property kn
Normal stiffness

property ks
Shear stiffness

property limitFactor
This value indicates on how far from failing the wire is, e.g. actual normal displacement
divided by admissible normal displacement.

property normalForce
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property plastD
Plastic part of the inter-particular distance of the previous step.

Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
zero.

property shearForce
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

property stiffnessValues
Defines the values for the various stiffnesses (the elastic stiffness is stored as kn).

property tangensOfFrictionAngle
tan of angle of friction

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

2.4. Yade modules reference 1391

Yade Documentation, Release 3rd ed.

class yade.plot.WireState(inherits State → Serializable)
Wire state information of each body.

None of that is used for computation (at least not now), only for post-processing.

property angMom
Current angular momentum

property angVel
Current angular velocity

property blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

property densityScaling
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict((Serializable)arg1) → dict :
Return dictionary of attributes.

dispHierarchy((State)arg1[, (bool)names=True]) → list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

property dispIndex
Return class index of this instance.

displ((State)arg1) → Vector3 :
Displacement from reference position (pos - refPos)

property inertia
Inertia of associated body, in local coordinate system.

property isDamped
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

property mass
Mass of this body

property numBrokenLinks
Number of broken links (e.g. number of wires connected to the body which are broken). [-]

property ori
Current orientation.

property pos
Current position.

property refOri
Reference orientation

property refPos
Reference position

rot((State)arg1) → Vector3 :
Rotation from reference orientation (as rotation vector)

1392 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

property se3
Position and orientation as one object.

updateAttrs((Serializable)arg1, (dict)arg2) → None :
Update object attributes from given dictionary

property vel
Current linear velocity.

yade.plot.addAutoData()
Add data by evaluating contents of plot.plots. Expressions rasing exceptions will be handled grace-
fully, but warning is printed for each.

>>> from yade import plot
>>> from pprint import pprint
>>> O.reset()
>>> plot.resetData()
>>> plot.plots={'O.iter':('O.time',None,'numParticles=len(O.bodies)')}
>>> plot.addAutoData()
>>> pprint(plot.data)
{'O.iter': [0], 'O.time': [0.0], 'numParticles': [0]}

Note that each item in plot.plots can be

• an expression to be evaluated (using the eval builtin);

• name=expression string, where name will appear as label in plots, and expression will be
evaluated each time;

• a dictionary-like object – current keys are labels of plots and current values are added to
plot.data. The contents of the dictionary can change over time, in which case new lines will
be created as necessary.

A simple simulation with plot can be written in the following way; note how the energy plot is
specified.

>>> from yade import plot, utils
>>> plot.plots={'i=O.iter':(O.energy,None,'total energy=O.energy.total()')}
>>> # we create a simple simulation with one ball falling down
>>> plot.resetData()
>>> O.bodies.append(utils.sphere((0,0,0),1))
0
>>> O.dt=utils.PWaveTimeStep()
>>> O.engines=[
... ForceResetter(),
... GravityEngine(gravity=(0,0,-10),warnOnce=False),
... NewtonIntegrator(damping=.4,kinSplit=True),
... # get data required by plots at every step
... PyRunner(command='yade.plot.addAutoData()',iterPeriod=1,initRun=True)
...]
>>> O.trackEnergy=True
>>> O.run(2,True)
>>> pprint(plot.data)
{'gravWork': [0.0, -25.13274...],
'i': [0, 1],
'kinRot': [0.0, 0.0],
'kinTrans': [0.0, 7.5398...],
'nonviscDamp': [0.0, 10.0530...],
'total energy': [0.0, -7.5398...]}

2.4. Yade modules reference 1393

Yade Documentation, Release 3rd ed.

yade.plot.addData(*d_in, **kw)
Add data from arguments name1=value1,name2=value2 to yade.plot.data. (the old
{‘name1’:value1,’name2’:value2} is deprecated, but still supported)

New data will be padded with nan’s, unspecified data will be nan (nan’s don’t appear in graphs).
This way, equal length of all data is assured so that they can be plotted one against any other.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.resetData()
>>> plot.addData(a=1)
>>> plot.addData(b=2)
>>> plot.addData(a=3,b=4)
>>> pprint(plot.data)
{'a': [1, nan, 3], 'b': [nan, 2, 4]}

Some sequence types can be given to addData; they will be saved in synthesized columns for
individual components.

>>> plot.resetData()
>>> plot.addData(c=Vector3(5,6,7),d=Matrix3(8,9,10, 11,12,13, 14,15,16))
>>> pprint(plot.data)
{'c_x': [5.0],
'c_y': [6.0],
'c_z': [7.0],
'd_xx': [8.0],
'd_xy': [9.0],
'd_xz': [10.0],
'd_yx': [11.0],
'd_yy': [12.0],
'd_yz': [13.0],
'd_zx': [14.0],
'd_zy': [15.0],
'd_zz': [16.0]}

yade.plot.addDataColumns(dd)
Add new columns with NaN data, without adding anything to other columns. Does nothing for
columns that already exist

yade.plot.addImgData(**kw)

yade.plot.addPointTypeSpecifier(o, noSplit=False)
Add point type specifier to simple variable name; optionally take only the part before ‘=’ from the
first item.

yade.plot.afterCurrentAlpha = 0.2
Color alpha value for part of lines after plot.current, between 0 (invisible) to 1 (full color)

yade.plot.autozoom = True
Enable/disable automatic plot rezooming after data update. Sometimes rezooming must be skipped
unless a call to plot.setLiveForceAlwaysUpdate forces it to work.

yade.plot.axesWd = 0
Linewidth (in points) to make x and y axes better visible; not activated if non-positive.

yade.plot.createPlots(subPlots=True, scatterSize=60, wider=False)

yade.plot.createTitleFrame(out, size, title)
create figure with title and save to file; a figure object must be opened to get the right size

1394 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade.plot.current = -1
Point that is being tracked with a scatter point. -1 is for the last point, set to nan to disable.

yade.plot.cycler(*args, **kwargs)
Create a new Cycler object from a single positional argument, a pair of positional arguments, or
the combination of keyword arguments.

cycler(arg) cycler(label1=itr1[, label2=iter2[, …]]) cycler(label, itr)

Form 1 simply copies a given Cycler object.

Form 2 composes a Cycler as an inner product of the pairs of keyword arguments. In other words,
all of the iterables are cycled simultaneously, as if through zip().

Form 3 creates a Cycler from a label and an iterable. This is useful for when the label cannot be
a keyword argument (e.g., an integer or a name that has a space in it).

Parameters

arg
[Cycler] Copy constructor for Cycler (does a shallow copy of iterables).

label
[name] The property key. In the 2-arg form of the function, the label can be any hashable
object. In the keyword argument form of the function, it must be a valid python identifier.

itr
[iterable] Finite length iterable of the property values. Can be a single-property Cycler that
would be like a key change, but as a shallow copy.

Returns

cycler
[Cycler] New Cycler for the given property

yade.plot.data = {'eps': [0.0001, 0.001, nan], 'force': [nan, nan, 1000.0], 'sigma':
[12, nan, nan]}

Global dictionary containing all data values, common for all plots, in the form {‘name’:[value,…],…}.
Data should be added using plot.addData function. All [value,…] columns have the same length,
they are padded with NaN if unspecified.

yade.plot.imgData = {}
Dictionary containing lists of strings, which have the meaning of images corresponding to respective
plot.data rows. See plot.plots on how to plot images.

yade.plot.labels = {}
Dictionary converting names in data to human-readable names (TeX names, for instance); if a
variable is not specified, it is left untranslated.

yade.plot.legendLoc = ('upper left', 'upper right')
Location of the y1 and y2 legends on the plot, if y2 is active.

yade.plot.live = True
Enable/disable live plot updating.

yade.plot.liveForceAlwaysUpdate = False
See plot.setLiveForceAlwaysUpdate.

yade.plot.liveInterval = 1
Interval for the live plot updating, in seconds.

2.4. Yade modules reference 1395

Yade Documentation, Release 3rd ed.

yade.plot.liveUpdate(timestamp)

yade.plot.plot(noShow=False, subPlots=True)
Do the actual plot, which is either shown on screen (and nothing is returned: if noShow is False
- note that your yade compilation should present qt4 feature so that figures can be displayed) or,
if noShow is True, returned as matplotlib’s Figure object or list of them.

You can use

>>> from yade import plot
>>> plot.resetData()
>>> plot.plots={'foo':('bar',)}
>>> plot.plot(noShow=True).savefig('someFile.pdf')
>>> import os
>>> os.path.exists('someFile.pdf')
True
>>> os.remove('someFile.pdf')

to save the figure to file automatically.

Note: For backwards compatibility reasons, noShow option will return list of figures for multiple
figures but a single figure (rather than list with 1 element) if there is only 1 figure.

yade.plot.plotSyncLock = <unlocked _thread.lock object>
A lock (mutex) used for synchronizing live drawing (happens every liveInterval seconds) and
adding more plot data. Also see https://gitlab.com/yade-dev/trunk/-/issues/110

yade.plot.plots = {'i': ('t',), 'i ': ('z1', 'v1')}
dictionary x-name -> (yspec,…), where yspec is either y-name or (y-name,’line-specification’). If
(yspec,...) is None, then the plot has meaning of image, which will be taken from respective field
of plot.imgData.

yade.plot.reset()
Reset all plot-related variables (data, plots, labels)

yade.plot.resetData()
Reset all plot data; keep plots and labels intact.

yade.plot.reverseData()
Reverse yade.plot.data order.

Useful for tension-compression test, where the initial (zero) state is loaded and, to make data
continuous, last part must end in the zero state.

yade.plot.saveDataTxt(fileName, vars=None, headers=None)
Save plot data into a (optionally compressed) text file. The first line contains a comment (starting
with #) giving variable name for each of the columns. This format is suitable for being loaded for
further processing (outside yade) with numpy.genfromtxt function, which recognizes those variable
names (creating numpy array with named entries) and handles decompression transparently.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.reset()
>>> plot.addData(a=1,b=11,c=21,d=31) # add some data here
>>> plot.addData(a=2,b=12,c=22,d=32)
>>> pprint(plot.data)
{'a': [1, 2], 'b': [11, 12], 'c': [21, 22], 'd': [31, 32]}
>>> plot.saveDataTxt('/tmp/dataFile.txt.tar.gz',vars=('a','b','c'))
>>> import numpy

(continues on next page)

1396 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/-/issues/110

Yade Documentation, Release 3rd ed.

(continued from previous page)

>>> d=numpy.genfromtxt('/tmp/dataFile.txt.tar.gz',dtype=None,names=True)
>>> d['a']
array([1, 2])
>>> d['b']
array([11, 12])
>>> import os # cleanup
>>> os.remove('/tmp/dataFile.txt.tar.gz')

Parameters

• fileName – file to save data to; if it ends with .bz2 / .gz, the file will be
compressed using bzip2 / gzip.

• vars – Sequence (tuple/list/set) of variable names to be saved. If None (default),
all variables in plot.plot are saved.

• headers – Set of parameters to write on header

yade.plot.saveGnuplot(baseName, term=’wxt’, extension=None, timestamp=False, comment=None,
title=None, varData=False)

Save data added with plot.addData into (compressed) file and create .gnuplot file that attempts to
mimick plots specified with plot.plots.

Parameters

• baseName – used for creating baseName.gnuplot (command file for gnuplot),
associated baseName.data.bz2 (data) and output files (if applicable) in the form
baseName.[plot number].extension

• term – specify the gnuplot terminal; defaults to x11, in which case gnuplot will
draw persistent windows to screen and terminate; other useful terminals are png,
cairopdf and so on

• extension – extension for baseName defaults to terminal name; fine for png for
example; if you use cairopdf, you should also say extension='pdf' however

• timestamp (bool) – append numeric time to the basename

• varData (bool) – whether file to plot will be declared as variable or be in-place
in the plot expression

• comment – a user comment (may be multiline) that will be embedded in the
control file

Returns
name of the gnuplot file created.

yade.plot.savePlotSequence(fileBase, stride=1, imgRatio=(5, 7), title=None, titleFrames=20,
lastFrames=30)

Save sequence of plots, each plot corresponding to one line in history. It is especially meant to be
used for utils.makeVideo.

Parameters

• stride – only consider every stride-th line of history (default creates one frame
per each line)

• title – Create title frame, where lines of title are separated with newlines (\n)
and optional subtitle is separated from title by double newline.

• titleFrames (int) – Create this number of frames with title (by repeating its
filename), determines how long the title will stand in the movie.

2.4. Yade modules reference 1397

Yade Documentation, Release 3rd ed.

• lastFrames (int) – Repeat the last frame this number of times, so that the
movie does not end abruptly.

Returns
List of filenames with consecutive frames.

yade.plot.savePylab(baseName, timestamp=False, title=None)
This function is not finished, do not use it.

yade.plot.scatterMarkerKw = {'marker': [(0.0, 0.0), (-30.0, 10.0), (-25, 0), (-30.0,
-10.0)]}

Parameters for the current position marker

yade.plot.scientific = True
Use scientific notation for axes ticks.

yade.plot.setLiveForceAlwaysUpdate(forceLiveUpdate)
The plot.liveInterval and plot.live control live refreshing of the plot during calculations. The re-
freshing is done in a separate thread, so that it does not interfere with calculations. Drawing
the data will not work when at exactly the same time it is being updated in other thread. Use
yade.plot.setLiveForceAlwaysUpdate(True) if you want calculations to PAUSE during the
plot updates. This function returns current bool value of forced updates if the call was a success,
otherwise it returns a str with explanation why it failed. It is guaranteed to work if simulation
was paused with O.pause() call.

yade.plot.splitData()
Make all plots discontinuous at this point (adds nan’s to all data fields)

yade.plot.tuplifyYAxis(pp)
convert one variable to a 1-tuple

yade.plot.xlateLabel(l)
Return translated label; return l itself if not in the labels dict.

yade.plot.xylabels = {}
Dictionary of 2-tuples specifying (xlabel,ylabel) for respective plots; if either of them is None, the
default auto-generated title is used.

2.4.14 yade.polyhedra_utils module

Auxiliary functions for polyhedra

yade.polyhedra_utils.fillBox(mincoord, maxcoord, material, sizemin=[1, 1, 1], sizemax=[1, 1, 1],
ratio=[0, 0, 0], seed=None, mask=1)

fill box [mincoord, maxcoord] by non-overlaping polyhedrons with random geometry and sizes
within the range (uniformly distributed) :param Vector3 mincoord: first corner :param Vector3
maxcoord: second corner :param Vector3 sizemin: minimal size of bodies :param Vector3 sizemax:
maximal size of bodies :param Vector3 ratio: scaling ratio :param float seed: random seed

yade.polyhedra_utils.fillBoxByBalls(mincoord, maxcoord, material, sizemin=[1, 1, 1],
sizemax=[1, 1, 1], ratio=[0, 0, 0], seed=None, mask=1,
numpoints=60)

yade.polyhedra_utils.polyhedra(material, size=Vector3(1, 1, 1), seed=None, v=[], mask=1,
fixed=False, color=[-1, -1, -1])

create polyhedra, one can specify vertices directly, or leave it empty for random shape.

Parameters

• material (Material) – material of new body

• size (Vector3) – size of new body (see Polyhedra docs)

1398 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• seed (float) – seed for random operations

• v ([Vector3]) – list of body vertices (see Polyhedra docs)

yade.polyhedra_utils.polyhedraSnubCube(radius, material, centre, mask=1)

yade.polyhedra_utils.polyhedraTruncIcosaHed(radius, material, centre, mask=1)

yade.polyhedra_utils.polyhedralBall(radius, N , material, center, mask=1)
creates polyhedra having N vertices and resembling sphere

Parameters

• radius (float) – ball radius

• N (int) – number of vertices

• material (Material) – material of new body

• center (Vector3) – center of the new body

yade._polyhedra_utils.MaxCoord((Shape)arg1, (State)arg2) → Vector3
returns max coordinates

yade._polyhedra_utils.MinCoord((Shape)arg1, (State)arg2) → Vector3
returns min coordinates

yade._polyhedra_utils.PrintPolyhedra((Shape)arg1) → None
Print list of vertices sorted according to polyhedrons facets.

yade._polyhedra_utils.PrintPolyhedraActualPos((Shape)arg1, (State)arg2) → None
Print list of vertices sorted according to polyhedrons facets.

yade._polyhedra_utils.SieveCurve() → None
save sieve curve coordinates into file

yade._polyhedra_utils.SieveSize((Shape)arg1) → float
returns approximate sieve size of polyhedron

yade._polyhedra_utils.SizeOfPolyhedra((Shape)arg1) → Vector3
returns max, middle an min size in perpendicular directions

yade._polyhedra_utils.SizeRatio() → None
save sizes of polyhedra into file

yade._polyhedra_utils.Split((Body)arg1, (Vector3)arg2, (Vector3)arg3) → None
split polyhedron perpendicularly to given direction through given point

yade._polyhedra_utils.convexHull((object)arg1) → bool
TODO

yade._polyhedra_utils.do_Polyhedras_Intersect((Shape)arg1, (Shape)arg2, (State)arg3,
(State)arg4) → bool

check polyhedras intersection

yade._polyhedra_utils.fillBoxByBalls_cpp((Vector3)arg1, (Vector3)arg2, (Vector3)arg3,
(Vector3)arg4, (Vector3)arg5, (int)arg6,
(Material)arg7 , (int)arg8) → object

Generate non-overlaping ‘spherical’ polyhedrons in box

yade._polyhedra_utils.fillBox_cpp((Vector3)arg1, (Vector3)arg2, (Vector3)arg3, (Vector3)arg4,
(Vector3)arg5, (int)arg6, (Material)arg7) → object

Generate non-overlaping polyhedrons in box

2.4. Yade modules reference 1399

Yade Documentation, Release 3rd ed.

2.4.15 yade.post2d module

Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways, providing
basic but flexible framework for extracting arbitrary scalar values from bodies/interactions and plotting
the results. There are 2 basic components: flatteners and extractors.

The algorithms operate on bodies (default) or interactions, depending on the intr parameter of
post2d.data.

Flatteners

Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is defined
by the post2d.Flatten class (__call__, planar, normal).

Extractors

Callable objects returning scalar or vector value, given a body/interaction object. If a 3d vector is
returned, Flattener.planar is called, which should return only in-plane components of the vector.

Example

This example can be found in examples/concrete/uniax-post.py

from yade import post2d
import pylab # the matlab-like interface of matplotlib

O.load('/tmp/uniax-tension.xml.bz2')

flattener that project to the xz plane
flattener=post2d.AxisFlatten(useRef=False,axis=1)
return scalar given a Body instance
extractDmg=lambda b: b.state.normDmg
will call flattener.planar implicitly
the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
extractVelocity=lambda b: b.state.vel

create new figure
pylab.figure()
plot raw damage
post2d.plot(post2d.data(extractDmg,flattener))

plot smooth damage into new figure
pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3))
show color scale
pylab.colorbar(map,orientation='horizontal')

raw velocity (vector field) plot
pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener))

smooth velocity plot; data are sampled at regular grid
pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3))
save last (current) figure to file
pylab.gcf().savefig('/tmp/foo.png')

show the figures
pylab.show()

1400 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.post2d.AxisFlatten(inherits Flatten → object)

__init__(useRef=False, axis=2)

Parameters

• useRef (bool) – use reference positions rather than actual positions (only
meaningful when operating on Bodies)

• axis ({0,1,2}) – axis normal to the plane; the return value will be simply
position with this component dropped.

normal(pos, vec)
Given position and vector value, return lenght of the vector normal to the flat plane.

planar(pos, vec)
Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

class yade.post2d.CylinderFlatten(inherits Flatten → object)
Class for converting 3d point to 2d based on projection onto plane from circle. The y-axis in the
projection corresponds to the rotation axis; the x-axis is distance form the axis.

__init__(useRef , axis=2)

Parameters

• useRef – (bool) use reference positions rather than actual positions

• axis – axis of the cylinder, �{0,1,2}

normal(b, vec)
Given position and vector value, return lenght of the vector normal to the flat plane.

planar(b, vec)
Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

class yade.post2d.Flatten(inherits object)
Abstract class for converting 3d point into 2d. Used by post2d.data2d.

normal(pos, vec)
Given position and vector value, return lenght of the vector normal to the flat plane.

planar(pos, vec)
Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

class yade.post2d.HelixFlatten(inherits Flatten → object)
Class converting 3d point to 2d based on projection from helix. The y-axis in the projection
corresponds to the rotation axis

__init__(useRef , thetaRange, dH_dTheta, axis=2, periodStart=0)

Parameters

• useRef (bool) – use reference positions rather than actual positions

• thetaRange ((�min,�max)) – bodies outside this range will be discarded

• dH_dTheta (float) – inclination of the spiral (per radian)

• axis ({0,1,2}) – axis of rotation of the spiral

• periodStart (float) – height of the spiral for zero angle

2.4. Yade modules reference 1401

Yade Documentation, Release 3rd ed.

normal(pos, vec)
Given position and vector value, return lenght of the vector normal to the flat plane.

planar(b, vec)
Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

yade.post2d.data(extractor, flattener, intr=False, onlyDynamic=True, stDev=None,
relThreshold=3.0, perArea=0, div=(50, 50), margin=(0, 0), radius=1)

Filter all bodies/interactions, project them to 2d and extract required scalar value; return either
discrete array of positions and values, or smoothed data, depending on whether the stDev value is
specified.

The intr parameter determines whether we operate on bodies or interactions; the extractor pro-
vided should expect to receive body/interaction.

Parameters

• extractor (callable) – receives Body (or Interaction, if intr is True) in-
stance, should return scalar, a 2-tuple (vector fields) or None (to skip that
body/interaction)

• flattener (callable) – post2d.Flatten instance, receiving body/interaction, re-
turns its 2d coordinates or None (to skip that body/interaction)

• intr (bool) – operate on interactions rather than bodies

• onlyDynamic (bool) – skip all non-dynamic bodies

• stDev (float/None) – standard deviation for averaging, enables smoothing; None
(default) means raw mode, where discrete points are returned

• relThreshold (float) – threshold for the gaussian weight function relative to
stDev (smooth mode only)

• perArea (int) – if 1, compute weightedSum/weightedArea rather than weighted
average (weightedSum/sumWeights); the first is useful to compute average stress;
if 2, compute averages on subdivision elements, not using weight function

• div ((int,int)) – number of cells for the gaussian grid (smooth mode only)

• margin ((float,float)) – x,y margins around bounding box for data (smooth
mode only)

• radius (float/callable) – Fallback value for radius (for raw plotting) for non-
spherical bodies or interactions; if a callable, receives body/interaction and re-
turns radius

Returns
dictionary

Returned dictionary always containing keys ‘type’ (one of
‘rawScalar’,’rawVector’,’smoothScalar’,’smoothVector’, depending on value of smooth and on
return value from extractor), ‘x’, ‘y’, ‘bbox’.

Raw data further contains ‘radii’.

Scalar fields contain ‘val’ (value from extractor), vector fields have ‘valX’ and ‘valY’ (2 components
returned by the extractor).

yade.post2d.plot(data, axes=None, alpha=0.5, clabel=True, cbar=False, aspect=’equal’, **kw)
Given output from post2d.data, plot the scalar as discrete or smooth plot.

For raw discrete data, plot filled circles with radii of particles, colored by the scalar value.

For smooth discrete data, plot image with optional contours and contour labels.

For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude.

1402 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Parameters

• axes – matplotlib.axesinstance where the figure will be plotted; if None, will be
created from scratch.

• data – value returned by post2d.data

• clabel (bool) – show contour labels (smooth mode only), or annotate cells with
numbers inside (with perArea==2)

• cbar (bool) – show colorbar (equivalent to calling pylab.colorbar(mappable) on
the returned mappable)

Returns
tuple of (axes,mappable); mappable can be used in further calls to pylab.colorbar.

2.4.16 yade.potential_utils module

Auxiliary functions for the Potential Blocks

yade.potential_utils.aabbPlates(material, extrema=None, thickness=0.0, r=0.0, R=0.0, mask=1,
isBoundary=False, fixed=True, color=None)

Return 6 cuboids that will wrap existing packing as walls from all sides. #FIXME: Correct this
comment

Parameters

• material (Material) – material of new bodies (FrictMat)

• extrema ([Vector3, Vector3]) – extremal points of the Aabb of the packing,
as a list of two Vector3, or any equivalent type (will not be calculated if not
specified)

• thickness (float) – wall thickness (equal to 1/10 of the smallest dimension if
not specified)

• r (float) – radius of inner Potential Particle (see PotentialBlock docs)

• R (float) – distance R of the Potential Blocks (see PotentialBlock docs)

• mask (int) – groupMask for the new bodies

Returns
a list of 6 PotentialBlock Bodies enclosing the packing, in the order
minX,maxX,minY,maxY,minZ,maxZ.

yade.potential_utils.cuboid(material, edges=Vector3(1, 1, 1), r=0.0, R=0.0, center=[0, 0, 0],
mask=1, isBoundary=False, fixed=False, color=[-1, -1, -1])

creates cuboid using the Potential Blocks

Parameters

• edges (Vector3) – edges of the cuboid

• material (Material) – material of new body (FrictMat)

• center (Vector3) – center of the new body

yade.potential_utils.cylindricalPlates(material, radius=0.0, height=0.0, thickness=0.0,
numFaces=3, r=0.0, R=0.0, mask=1,
isBoundary=False, fixed=True, lid=[True, True],
color=None)

Return numFaces cuboids that will wrap existing packing as walls from all sides. #FIXME: Correct
this comment

Parameters

2.4. Yade modules reference 1403

Yade Documentation, Release 3rd ed.

• material (Material) – material of new bodies (FrictMat)

• radius (float) – radius of the cylinder

• height (float) – height of cylinder

• thickness (float) – thickness of cylinder faces (equal to 1/10 of the cylinder
inradius if not specified)

• numFaces (int) – number of cylinder faces (>3)

• r (float) – radius of inner Potential Particle (see PotentialBlock docs)

• R (float) – distance R of the Potential Blocks (see PotentialBlock docs)

• mask (int) – groupMask for the new bodies

• [bool] (lid) – list of booleans, whether to create the bottom and top lids of
the cylindrical plates

Returns
a list of cuboidal Potential Blocks forming a hollow cylinder

yade.potential_utils.platonic_solid(material, numFaces, edge=0.0, ri=0.0, rm=0.0, rc=0.0,
volume=0.0, r=0.0, R=None, center=[0, 0, 0], mask=1,
isBoundary=False, fixed=False, color=[-1, -1, -1])

yade.potential_utils.potentialblock(material, a=[], b=[], c=[], d=[], r=0.0, R=0.0, mask=1,
isBoundary=False, fixed=False, color=[-1, -1, -1])

creates potential block.

Parameters

• material (Material) – material of new body

• a,b,c,d ([float]) – lists of plane coefficients of the particle faces (see Poten-
tialBlock docs)

• r (float) – radius of inner Potential Particle (see PotentialBlock docs)

• R (float) – distance R of the Potential Blocks (see PotentialBlock docs)

• isBoundary (bool) – whether this is a boundary body (see PotentialBlock docs)

yade.potential_utils.prism(material, radius1=0.0, radius2=-1, thickness=0.0, numFaces=3,
r=0.0, R=0.0, center=None, color=[1, 0, 0], mask=1,
isBoundary=False, fixed=False)

Return regular prism with numFaces

Parameters

• material (Material) – material of new bodies (FrictMat)

• radius1 (float) – inradius of the start cross-section of the prism

• radius2 (float) – inradius of the end cross-section of the prism (equal to radius1
if not specified)

• thickness (float) – thickness of the prism (equal to radius1 if not specified)

• numFaces (int) – number of prisms’ faces (>3)

• r (float) – radius of inner Potential Particle (see PotentialBlock docs)

• R (float) – distance R of the Potential Blocks (see PotentialBlock docs)

• center (Vector3) – center of the Potential Blocks (not currently used)

• mask (int) – groupMask for the new bodies

1404 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Returns
an axial-symmetric Potential Block with variable cross-section, which can become
either a regular prism (radius1=radius2), a pyramid (radius2=0) or a cylinder or
cone respectively, for a large enough numFaces value.

2.4.17 yade.qt module

Common initialization core for yade.

This file is executed when anything is imported from yade for the first time. It loads yade plugins and
injects c++ class constructors to the __builtins__ (that might change in the future, though) namespace,
making them available everywhere.

class yade.qt._GLViewer.GLViewer

__init__()
Raises an exception This class cannot be instantiated from Python

property axes
Show arrows for axes.

center((GLViewer)arg1[, (bool)median=True[, (float)suggestedRadius=-1.0]]) → None :
Center view. View is centered either so that all bodies fit inside (median = False), or so that
75% of bodies fit inside (median = True). If radius cannot be determined automatically then
suggestedRadius is used.

close((GLViewer)arg1) → None

property eyePosition
Camera position.

fitAABB((GLViewer)arg1, (Vector3)mn, (Vector3)mx) → None :
Adjust scene bounds so that Axis-aligned bounding box given by its lower and upper corners
mn, mx fits in.

fitSphere((GLViewer)arg1, (Vector3)center, (float)radius) → None :
Adjust scene bounds so that sphere given by center and radius fits in.

property fps
Show frames per second indicator.

property grid
Display square grid in zero planes, as 3-tuple of bools for yz, xz, xy planes.

loadState((GLViewer)arg1[, (str)stateFilename=’.qglviewer.xml’]) → None :
Load display parameters from file saved previously into.

property lookAt
Point at which camera is directed.

property ortho
Whether orthographic projection is used; if false, use perspective projection.

saveSnapshot((GLViewer)arg1, (str)filename) → None :
Save the current view to image file

saveState((GLViewer)arg1[, (str)stateFilename=’.qglviewer.xml’]) → None :
Save display parameters into a file. Saves state for both GLViewer and associated OpenGLRen-
derer.

2.4. Yade modules reference 1405

Yade Documentation, Release 3rd ed.

property scale
Scale of the view (?)

property sceneRadius
Visible scene radius.

property screenSize
Size of the viewer’s window, in screen pixels

property selection

showEntireScene((GLViewer)arg1) → None

property timeDisp
Time displayed on in the vindow; is a string composed of characters r, v, i standing respectively
for real time, virtual time, iteration number.

property upVector
Vector that will be shown oriented up on the screen.

property viewDir
Camera orientation (as vector).

yade.qt._GLViewer.Renderer() → OpenGLRenderer
Return the active OpenGLRenderer object.

yade.qt._GLViewer.View([(float)timeout=5.0]) → GLViewer
Create a new 3d view.

yade.qt._GLViewer.center([(float)suggestedRadius=-1.0[, (Vector3)gridOrigin=Vector3(0, 0, 0)[,
(Vector3)suggestedCenter=Vector3(0, 0, 0)[, (int)gridDecimalPlaces=4]]
]]) → None

Center all views.

Parameters

• suggestedRadius – optional parameter, if provided and positive then it will be
used instead of automatic radius detection. This parameter affects the (1) size
of grid being drawn (2) the Z-clipping distance in OpenGL, it means that if
clipping is too large and some of your scene is not being drawn but is “cut” or
“sliced” then this parameter needs to be bigger.

• gridOrigin – optional parameter, if provided it will be used as the origin for
drawing the grid. Meaning the intersection of all three grids will not be at 0,0,0;
but at the provided coordinate rounded to the nearest gridStep.

• suggestedCenter – optional parameter, if provided other than (0,0,0) then it
will be used instead of automatic calculation of scene center using bounding
boxes. This parameter affects the drawn rotation-center. If you try to rotate the
view, and the rotation is around some strange point, then this parameter needs
to be changed.

• gridDecimalPlaces – default value=4, determines the number of decimal places
to be shown on grid labels using stringstream (extra zeros are not shown).

Note: You can get the current values of all these four arguments by invoking command:
qt.centerValues()

yade.qt._GLViewer.centerValues() → dict

1406 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Returns
a dictionary with all parameters currently used by yade.qt.center(…), see qt.center
or type yade.qt.center? for details. Returns zeros if view is closed.

yade.qt._GLViewer.views() → list

Returns
a list of all open qt.GLViewer objects

If one needs to exactly copy camera position and settings between two different yade sessions, the
following commands can be used:

v=yade.qt.views()[0] ## to obtain a handle of␣
↪→currently opened view.
v.lookAt, v.viewDir, v.eyePosition, v.upVector ## to print the current camera␣
↪→parameters of the view.

Then copy the output of this command into the second yade session to␣
↪→reposition the camera.
v.lookAt, v.viewDir, v.eyePosition, v.upVector = (Vector3(-0.5,1.6,0.47),
↪→Vector3(-0.5,0.6,0.4),Vector3(0.015,0.98,-0.012),Vector3(0.84,0.46,0.27))
Since these parameters depend on each other it might be necessary to execute␣
↪→this command twice.

Also one can call qt.centerValues() to obtain current settings of axis and scene radius (if defaults
are not used) and apply them via call to qt.center in the second yade session.

This cumbersome method above may be improved in the future.

2.4.18 yade.timing module

Functions for accessing timing information stored in engines and functors.

See Timing section of the programmer’s manual for some examples (https://yade-dem.org/doc/prog.
html#timing).

yade.timing.reset()
Zero all timing data.

yade.timing.runtime()
Return total running time (same as last line in the output of stats()) in nanoseconds

yade.timing.stats()
Print summary table of timing information from engines and functors. Absolute times as well as
percentages are given. Sample output:

Name Count ␣
↪→Time Rel. time

↪→----------------------
ForceResetter 102 2150us ␣
↪→ 0.02%
"collider" 5 64200us ␣
↪→ 0.60%
InteractionLoop 102 10571887us ␣
↪→ 98.49%
"combEngine" 102 8362us ␣
↪→ 0.08%
"newton" 102 73166us ␣
↪→ 0.68%

(continues on next page)

2.4. Yade modules reference 1407

https://yade-dem.org/doc/prog.html#timing
https://yade-dem.org/doc/prog.html#timing

Yade Documentation, Release 3rd ed.

(continued from previous page)

"cpmStateUpdater" 1 9605us ␣
↪→ 0.09%
PyRunner 1 136us ␣
↪→ 0.00%
"plotDataCollector" 1 291us ␣
↪→ 0.00%
TOTAL 10733564us ␣
↪→ 100.00%

sample output (compiled with -DENABLE_PROFILING=1 option):

Name Count ␣
↪→Time Rel. time

↪→----------------------
ForceResetter 102 2150us ␣
↪→ 0.02%
"collider" 5 64200us ␣
↪→ 0.60%
InteractionLoop 102 10571887us ␣
↪→ 98.49%
Ig2_Sphere_Sphere_ScGeom 1222186 1723168us ␣

↪→ 16.30%
Ig2_Sphere_Sphere_ScGeom 1222186 1723168us␣

↪→ 100.00%
Ig2_Facet_Sphere_ScGeom 753 1157us ␣

↪→ 0.01%
Ig2_Facet_Sphere_ScGeom 753 1157us␣

↪→ 100.00%
Ip2_CpmMat_CpmMat_CpmPhys 11712 26015us ␣

↪→ 0.25%
end of Ip2_CpmPhys 11712 26015us␣

↪→ 100.00%
Ip2_FrictMat_CpmMat_FrictPhys 0 0us ␣

↪→ 0.00%
Law2_ScGeom_CpmPhys_Cpm 3583872 4819289us ␣

↪→ 45.59%
GO A 1194624 1423738us␣

↪→ 29.54%
GO B 1194624 1801250us␣

↪→ 37.38%
rest 1194624 1594300us␣

↪→ 33.08%
TOTAL 3583872 4819289us␣

↪→ 100.00%
Law2_ScGeom_FrictPhys_CundallStrack 0 0us ␣

↪→ 0.00%
"combEngine" 102 8362us ␣
↪→ 0.08%
"newton" 102 73166us ␣
↪→ 0.68%
"cpmStateUpdater" 1 9605us ␣
↪→ 0.09%
PyRunner 1 136us ␣
↪→ 0.00%
"plotDataCollector" 1 291us ␣

(continues on next page)

1408 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

(continued from previous page)

↪→ 0.00%
TOTAL 10733564us ␣
↪→ 100.00%

2.4.19 yade.utils module

Heap of functions that don’t (yet) fit anywhere else.

Devs: please DO NOT ADD more functions here, it is getting too crowded!

yade.utils.NormalRestitution2DampingRate(en)
Compute the normal damping rate as a function of the normal coefficient of restitution en. For
en ∈ ⟨0, 1⟩ damping rate equals

−
log en√
e2n + π2

yade.utils.SpherePWaveTimeStep(radius, density, young)
Compute P-wave critical timestep for a single (presumably representative) sphere, using formula
for P-Wave propagation speed ∆tc = r√

E/ρ
. If you want to compute minimum critical timestep

for all spheres in the simulation, use utils.PWaveTimeStep instead.

>>> SpherePWaveTimeStep(1e-3,2400,30e9)
2.8284271247461903e-07

class yade.utils.TableParamReader(inherits object)
Class for reading simulation parameters from text file.

Each parameter is represented by one column, each parameter set by one line. Colums are separated
by blanks (no quoting).

First non-empty line contains column titles (without quotes). You may use special column named
‘description’ to describe this parameter set; if such colum is absent, description will be built by
concatenating column names and corresponding values (param1=34,param2=12.22,param4=foo)

• from columns ending in ! (the ! is not included in the column name)

• from all columns, if no columns end in !.

Empty lines within the file are ignored (although counted); # starts comment till the end of line.
Number of blank-separated columns must be the same for all non-empty lines.

A special value = can be used instead of parameter value; value from the previous non-empty line
will be used instead (works recursively).

This class is used by utils.readParamsFromTable.

__init__(file)
Setup the reader class, read data into memory.

paramDict()
Return dictionary containing data from file given to constructor. Keys are line numbers (which
might be non-contiguous and refer to real line numbers that one can see in text editors), values
are dictionaries mapping parameter names to their values given in the file. The special value
‘=’ has already been interpreted, ! (bangs) (if any) were already removed from column titles,
description column has already been added (if absent).

class yade.utils.YadeColorStyle(inherits object)
Parameters for default colors and 3D view parameters. Switch between styles with col-
orStyle.setStyle(“styleName”). See also the rendering section of user manual.

2.4. Yade modules reference 1409

Yade Documentation, Release 3rd ed.

__init__(bgColor=(0.2, 0.2, 0.2), rgbMin=Vector3(0.4050000000000000266,
0.3599999999999999867, 0.1350000000000000089),
rgbRange=Vector3(0.2399999999999999911, 0.2399999999999999911,
0.3599999999999999867), uniScale=False,
wallColor=Vector3(0.8000000000000000444, 0.8000000000000000444,
0.5999999999999999778), stripes=True, quality=1)

Generic data class for defining color styles. rgbRange is the length of interval [min,max] for
each (rgb) color. If uniScale=True the random color is rgbMin+random*rgbRange, else each
component is generated randomly.

applyAll(ids=None)

applyBodyStyle(ids=None)

randomColor()
Generate a random RGB color between rgbMin and rgbMax.

setBackgroundColor()

yade.utils.aabbDim(cutoff=0.0, centers=False)
Return dimensions of the axis-aligned bounding box, optionally with relative part cutoff cut away.

yade.utils.aabbExtrema2d(pts)
Return 2d bounding box for a sequence of 2-tuples.

yade.utils.aabbWalls(extrema=None, thickness=0, oversizeFactor=1.5, **kw)
Return 6 boxes that will wrap existing packing as walls from all sides.

Parameters

• extrema – extremal points of the Aabb of the packing, as a list of two Vector3,
or any equivalent type (will be calculated if not specified)

• thickness (float) – is wall thickness (will be 1/10 of the X-dimension if not
specified)

• oversizeFactor (float) – factor to enlarge walls in their plane.

Returns
a list of 6 wall Bodies enclosing the packing, in the order
minX,maxX,minY,maxY,minZ,maxZ.

yade.utils.avgNumInteractions(cutoff=0.0, skipFree=False, considerClumps=False)
Return average numer of interactions per particle, also known as coordination number Z. This
number is defined as

Z = 2C/N

where C is number of contacts and N is number of particles. When clumps are present, number of
particles is the sum of standalone spheres plus the sum of clumps. Clumps are considered in the
calculation if cutoff != 0 or skipFree = True. If cutoff=0 (default) and skipFree=False (default)
one needs to set considerClumps=True to consider clumps in the calculation.

With skipFree, particles not contributing to stable state of the packing are skipped, following
equation (8) given in [Thornton2000]:

Zm =
2C−N1

N−N0 −N1

Parameters

• cutoff – cut some relative part of the sample’s bounding box away.

• skipFree – see above.

1410 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• considerClumps – also consider clumps if cutoff=0 and skipFree=False; for fur-
ther explanation see above.

yade.utils.box(center, extents, orientation=Quaternion((1, 0, 0), 0), dynamic=None, fixed=False,
wire=False, color=Vector3(0.8000000000000000444, 0.8000000000000000444,
0.5999999999999999778), highlight=False, material=-1, mask=1)

Create box (cuboid) with given parameters.

Parameters

• extents (Vector3) – half-sizes along x,y,z axes. Use can be made of orientation
parameter in case those box-related axes do not conform the simulation axes

• orientation (Quaternion) – assigned to the body’s orientation, which corre-
sponds to rotating the extents axes

See utils.sphere’s documentation for meaning of other parameters.

class yade.utils.clumpTemplate(inherits object)
Create a clump template by a list of relative radii and a list of relative positions. Both lists must
have the same length.

Parameters

• relRadii ([float,float,...]) – list of relative radii (minimum length = 2)

• relPositions ([Vector3,Vector3,...]) – list of relative positions (minimum
length = 2)

yade.utils.defaultMaterial()
Return default material, when creating bodies with utils.sphere and friends, material is unspecified
and there is no shared material defined yet. By default, this function returns

FrictMat(density=1e3,young=1e7,poisson=.3,frictionAngle=.5,label='defaultMat')

yade.utils.facet(vertices, dynamic=None, fixed=True, wire=True,
color=Vector3(0.8000000000000000444, 0.8000000000000000444,
0.5999999999999999778), highlight=False, noBound=False, material=-1, mask=1)

Create a Facet-shaped body with given parameters. Body center is chosen as the center of the
inscribed circle of the vertices triangle

Parameters

• vertices ([Vector3,Vector3,Vector3]) – coordinates of vertices in the global
coordinate system.

• wire (bool) – if True, facets are shown as skeleton; otherwise facets are filled

• noBound (bool) – set Body.bounded

• color (Vector3-or-None) – color of the facet; random color will be assigned if
None.

See utils.sphere’s documentation for meaning of other parameters.

yade.utils.fractionalBox(fraction=1.0, minMax=None)
Return (min,max) that is the original minMax box (or aabb of the whole simulation if not specified)
linearly scaled around its center to the fraction factor

yade.utils.levelSetBody(shape=’’, center=Vector3(0, 0, 0), radius=0, extents=Vector3(0, 0, 0),
epsilons=Vector2(0, 0), clump=None, spacing=0.1, grid=None,
distField=[], smearCoeff=1.5, nSurfNodes=102, surfNodes=[],
nodesPath=2, nodesTol=50, orientation=Quaternion((1, 0, 0), 0),
hasAABE=False, axesAABE=Vector3(0, 0, 0), dynamic=True,
material=-1, starLike=False)

2.4. Yade modules reference 1411

Yade Documentation, Release 3rd ed.

Creates a LevelSet shaped body through various workflows: one can choose to define the discrete
distance field from pre-defined shapes (through shape and related arguments), or to mimick a Clump
instance (clump argument, for comparison purposes), or directly assign the discrete distance field
on some grid (distField and grid arguments). Surface nodes can also be either ray traced (see
nSurfNodes, nodesPath and nodesTol) or directly assigned (see surfNodes)

Parameters

• shape (string) – use this argument to enjoy predefined shapes among ‘sphere’,
‘box’ (for a rectangular parallelepiped), ‘disk’ (for a 2D analysis in (x,y) plane), or
‘superellipsoid’; in conjunction with extents or radius attributes. Superellipsoid
surfaces are defined in local axes (inertial frame) by the following equation:
f(x, y, z) = (|x/rx|

2/εe + |y/ry|
2/εe)εe/εn + |z/rz|

2/εn = 1 and their distance field
is obtained thanks to a Fast Marching Method.

• center (Vector3) – (initial) position of that body

• clump (Clump) – pass here a multi-sphere (other cases of Clump not supported)
instance to mimick, if desired

• radius (Real) – imposed radius in case shape = ‘sphere’ or ‘disk’

• extents (Vector3) – half extents along the local axes in case shape = ‘box’ or
‘superellipsoid’ (rx, ry, rz for the latter)

• epsilons (Vector2) – in case shape = ‘superellipsoid’, the (εe, εn) exponents

• spacing (Real) – spatial increment of the level set grid, if you picked a pre-
defined shape or a clump

• distField (list) – the discrete distance field on grid (if given) as a list (of
list of list; use .tolist() if working initially with 3D numpy arrays), where dist-
Field[i][j][k] is the distance value at grid.gridPoint(i,j,k)

• grid (RegularGrid) – the grid carrying the distance field, when the latter is
directly assigned through distField

• smearCoeff (Real) – passed to LevelSet.smearCoeff

• nSurfNodes (int) – number of requested surface nodes when ray tracing them
(number of rays, actually), passed to the corresponding argument of Lev-
elSet.rayTraceSurfNodes together with nodesPath and nodesTol (exclusive of
surfNodes)

• nodesPath (int) – path for ray tracing the surface nodes, passed to the corre-
sponding argument of LevelSet.rayTraceSurfNodes (has to be used exclusive of
surfNodes)

• surfNodes (list) – surface nodes as a list of Vector3r for a direct assignment
of those, instead of ray tracing them while using nSurfNodes and nodesPath (a
non-empty surfNodes is actually enough to bypass ray tracing and those other
attributes and trigger direct assignment)

• nodesTol (Real) – tolerance while ray tracing the surface nodes (and not as-
signing them with surfNodes), passed to to the corresponding argument of Lev-
elSet.rayTraceSurfNodes

• orientation (Quaternion) – the initial orientation of the body

• hasAABE (bool) – flag indicating if the axis-aligned bounding ellipsoid (AABE)
was set, passed to LevelSet.hasAABE

• axesAABE (Vector3) – principal half-axes of the axis aligned bounding ellipsoid
(AABE) when hasAABE, passed to LevelSet.axesAABE

• dynamic (bool) – passed to Body.dynamic

1412 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• material (Material) – passed to Body.material

• starLike (bool) – passed to LevelSet.starLike when the function is also passed
grid and distField (otherwise, LevelSet.starLike is automatically set)

Returns
a corresponding body instance

yade.utils.loadVars(mark=None)
Load variables from utils.saveVars, which are saved inside the simulation. If mark==None, all save
variables are loaded. Otherwise only those with the mark passed.

yade.utils.makeVideo(frameSpec, out, renameNotOverwrite=True, fps=24, kbps=6000, bps=None)
Create a video from external image files using mencoder. Two-pass encoding using the default
mencoder codec (mpeg4) is performed, running multi-threaded with number of threads equal to
number of OpenMP threads allocated for Yade.

Parameters

• frameSpec – wildcard | sequence of filenames. If list or tuple, filenames to be
encoded in given order; otherwise wildcard understood by mencoder’s mf:// URI
option (shell wildcards such as /tmp/snap-*.png or and printf-style pattern like
/tmp/snap-%05d.png)

• out (str) – file to save video into

• renameNotOverwrite (bool) – if True, existing same-named video file will have
-number appended; will be overwritten otherwise.

• fps (int) – Frames per second (-mf fps=…)

• kbps (int) – Bitrate (-lavcopts vbitrate=…) in kb/s

yade.utils.perpendicularArea(axis)
Return area perpendicular to given axis (0=x,1=y,2=z) generated by bodies for which the function
consider returns True (defaults to returning True always) and which is of the type Sphere.

yade.utils.phiIniPy(ioPyFn, grid)
Returns a 3D discrete field appropriate to serve as FastMarchingMethod.phiIni (LS_DEM feature
required), applying a user-made Python function ioPyFn

Parameters

• ioPyFn – an existing inside-outside Python function that takes three numbers
(cartesian coordinates) as arguments

• grid (RegularGrid) – the RegularGrid instance to operate on

Return list
an appropriate 3D discrete field to pass at FastMarchingMethod.phiIni

yade.utils.plotDirections(aabb=(), mask=0, bins=20, numHist=True, noShow=False,
sphSph=False)

Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and (optional but
default) histogram of number of interactions per body. If sphSph only sphere-sphere interactions
are considered for the 3 directions histograms.

Returns
If noShow is False, displays the figure and returns nothing. If noShow, the figure
object is returned without being displayed (works the same way as plot.plot).

yade.utils.plotNumInteractionsHistogram(cutoff=0.0)
Plot histogram with number of interactions per body, optionally cutting away cutoff relative axis-
aligned box from specimen margin.

2.4. Yade modules reference 1413

http://www.mplayerhq.hu

Yade Documentation, Release 3rd ed.

yade.utils.polyhedron(vertices, fixed=False, wire=True, color=None, highlight=False,
noBound=False, material=-1, mask=1)

Create polyhedron with given parameters.

Parameters
vertices ([Vector3]) – coordinates of vertices in the global coordinate system.

See utils.sphere’s documentation for meaning of other parameters.

yade.utils.psd(bins=5, mass=True, mask=-1)
Calculates particle size distribution.

Parameters

• bins (int) – number of bins

• mass (bool) – if true, the mass-PSD will be calculated

• mask (int) – Body.mask for the body

Returns

• binsSizes: list of bin’s sizes

• binsProc: how much material (in percents) are in the bin, cumulative

• binsSumCum: how much material (in units) are in the bin, cumulative

binsSizes, binsProc, binsSumCum

yade.utils.randomColor(seed=None)
Return random color from current style

yade.utils.randomOrientation()
Returns (uniformly distributed) random orientation. Taken from
Eigen::Quaternion::UnitRandom() source code. Uses standard Python random.random()
function(s), you can random.seed() it

yade.utils.randomizeColors(onlyDynamic=False)
Assign random colors to Shape::color.

If onlyDynamic is true, only dynamic bodies will have the color changed.

yade.utils.readParamsFromTable(tableFileLine=None, noTableOk=True, unknownOk=False, **kw)
Read parameters from a file and assign them to __builtin__ variables.

The format of the file is as follows (commens starting with # and empty lines allowed):

commented lines allowed anywhere
name1 name2 … # first non-blank line are column headings

empty line is OK, with or without comment
val1 val2 … # 1st parameter set
val2 val2 … # 2nd
…

Assigned tags (the description column is synthesized if absent,see utils.TableParamReader);

O.tags[‘description’]=… # assigns the description column; might be synthe-
sized O.tags[‘params’]=”name1=val1,name2=val2,…” # all explicitly assigned pa-
rameters O.tags[‘defaultParams’]=”unassignedName1=defaultValue1,…” # parameters
that were left at their defaults O.tags[‘d.id’]=O.tags[‘id’]+’.’+O.tags[‘description’]
O.tags[‘id.d’]=O.tags[‘description’]+’.’+O.tags[‘id’]

All parameters (default as well as settable) are saved using utils.saveVars('table').

Parameters

1414 Chapter 2. Yade for users

https://eigen.tuxfamily.org/dox-devel/Quaternion_8h_source.html

Yade Documentation, Release 3rd ed.

• tableFileLine – string attribute to define which line number (as seen in a
text editor) from wich text file (with one value per blank-separated columns)
to get the values from. A ‘:’ should appear between the two informations, e.g.
‘file.table:4’ to read the 4th line from file.table file

• noTableOk (bool) – if False, raise exception if the file cannot be open; use default
values otherwise

• unknownOk (bool) – do not raise exception if unknown column name is found in
the file, and assign it as well

Returns
number of assigned parameters

yade.utils.replaceCollider(colliderEngine)
Replaces collider (Collider) engine with the engine supplied. Raises error if no collider is in engines.

yade.utils.runningInBatch()
Tell whether we are running inside the batch or separately.

yade.utils.saveVars(mark=’’, loadNow=True, **kw)
Save passed variables into the simulation so that it can be recovered when the simulation is loaded
again.

For example, variables a, b and c are defined. To save them, use:

>>> saveVars('something',a=1,b=2,c=3)
>>> from yade.params.something import *
>>> a,b,c
(1, 2, 3)

those variables will be save in the .xml file, when the simulation itself is saved. To recover those
variables once the .xml is loaded again, use loadVars('something') and they will be defined in the
yade.params.mark module. The loadNow parameter calls utils.loadVars after saving automatically.
If ‘something’ already exists, given variables will be inserted.

yade.utils.sphere(center, radius, dynamic=None, fixed=False, wire=False, color=None,
highlight=False, material=-1, mask=1)

Create sphere with given parameters; mass and inertia computed automatically.

Last assigned material is used by default (material = -1), and utils.defaultMaterial() will be used
if no material is defined at all.

Parameters

• center (Vector3) – center

• radius (float) – radius

• dynamic (float) – deprecated, see “fixed”

• fixed (float) – generate the body with all DOFs blocked?

• material –

specify Body.material; different types are accepted:

– int: O.materials[material] will be used; as a special case, if material==-
1 and there is no shared materials defined, utils.defaultMaterial() will be
assigned to O.materials[0]

– string: label of an existing material that will be used

– Material instance: this instance will be used

– callable: will be called without arguments; returned Material value will be
used (Material factory object, if you like)

2.4. Yade modules reference 1415

Yade Documentation, Release 3rd ed.

• mask (int) – Body.mask for the body

• wire – display as wire sphere?

• highlight – highlight this body in the viewer?

• Vector3-or-None – body’s color, as normalized RGB; random color will be
assigned if None.

Returns
A Body instance with desired characteristics.

Creating default shared material if none exists neither is given:

>>> O.reset()
>>> from yade import utils
>>> len(O.materials)
0
>>> s0=utils.sphere([2,0,0],1)
>>> len(O.materials)
1

Instance of material can be given:

>>> s1=utils.sphere([0,0,0],1,wire=False,color=(0,1,0),
↪→material=ElastMat(young=30e9,density=2e3))
>>> s1.shape.wire
False
>>> s1.shape.color
Vector3(0,1,0)
>>> s1.mat.density
2000.0

Material can be given by label:

>>> O.materials.append(FrictMat(young=10e9,poisson=.11,label='myMaterial'))
1
>>> s2=utils.sphere([0,0,2],1,material='myMaterial')
>>> s2.mat.label
'myMaterial'
>>> s2.mat.poisson
0.11

Finally, material can be a callable object (taking no arguments), which returns a Material instance.
Use this if you don’t call this function directly (for instance, through yade.pack.randomDensePack),
passing only 1 material parameter, but you don’t want material to be shared.

For instance, randomized material properties can be created like this:

>>> import random
>>> def matFactory(): return ElastMat(young=1e10*random.random(),
↪→density=1e3+1e3*random.random())
...
>>> s3=utils.sphere([0,2,0],1,material=matFactory)
>>> s4=utils.sphere([1,2,0],1,material=matFactory)

yade.utils.tetra(vertices, strictCheck=True, fixed=False, wire=True, color=None, highlight=False,
noBound=False, material=-1, mask=1)

Create tetrahedron with given parameters.

Parameters

1416 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• vertices ([Vector3,Vector3,Vector3,Vector3]) – coordinates of vertices in
the global coordinate system.

• strictCheck (bool) – checks vertices order, raise RuntimeError for negative
volume

See utils.sphere’s documentation for meaning of other parameters.

yade.utils.tetraPoly(vertices, fixed=False, wire=True, color=None, highlight=False,
noBound=False, material=-1, mask=1)

Create tetrahedron (actually simple Polyhedra) with given parameters.

Parameters
vertices ([Vector3,Vector3,Vector3,Vector3]) – coordinates of vertices in the
global coordinate system.

See utils.sphere’s documentation for meaning of other parameters.

yade.utils.trackPerfomance(updateTime=5)
Track perfomance of a simulation. (Experimental) Will create new thread to produce some plots.
Useful for track perfomance of long run simulations (in bath mode for example).

yade.utils.typedEngine(name)
Return first engine from current O.engines, identified by its type (as string). For example:

>>> from yade import utils
>>> O.engines=[InsertionSortCollider(),NewtonIntegrator(),GravityEngine()]
>>> utils.typedEngine("NewtonIntegrator") == O.engines[1]
True

yade.utils.uniaxialTestFeatures(filename=None, areaSections=10, axis=-1, distFactor=2.2,
**kw)

Get some data about the current packing useful for uniaxial test:

1. Find the dimensions that is the longest (uniaxial loading axis)

2. Find the minimum cross-section area of the specimen by examining several (areaSections)
sections perpendicular to axis, computing area of the convex hull for each one. This will work
also for non-prismatic specimen.

3. Find the bodies that are on the negative/positive boundary, to which the straining condition
should be applied.

Parameters

• filename – if given, spheres will be loaded from this file (ASCII format); if not,
current simulation will be used.

• areaSection (float) – number of section that will be used to estimate cross-
section

• axis (�{0,1,2}) – if given, force strained axis, rather than computing it from
predominant length

Returns
dictionary with keys negIds, posIds, axis, area.

Warning: The function utils.approxSectionArea uses convex hull algorithm to find the area,
but the implementation is reported to be buggy (bot works in some cases). Always check this
number, or fix the convex hull algorithm (it is documented in the source, see py/_utils.cpp).

2.4. Yade modules reference 1417

https://gitlab.com/yade-dev/trunk/blob/master/py/_utils.cpp

Yade Documentation, Release 3rd ed.

yade.utils.vmData()
Return memory usage data from Linux’s /proc/[pid]/status, line VmData.

yade.utils.voxelPorosityTriaxial(triax, resolution=200, offset=0)
Calculate the porosity of a sample, given the TriaxialCompressionEngine.

A function utils.voxelPorosity is invoked, with the volume of a box enclosed by TriaxialCompres-
sionEngine walls. The additional parameter offset allows using a smaller volume inside the box,
where each side of the volume is at offset distance from the walls. By this way it is possible to find
a more precise porosity of the sample, since at walls’ contact the porosity is usually reduced.

A recommended value of offset is bigger or equal to the average radius of spheres inside.

The value of resolution depends on size of spheres used. It can be calibrated by invoking voxel-
PorosityTriaxial with offset=0 and comparing the result with TriaxialCompressionEngine.porosity.
After calibration, the offset can be set to radius, or a bigger value, to get the result.

Parameters

• triax – the TriaxialCompressionEngine handle

• resolution – voxel grid resolution

• offset – offset distance

Returns
the porosity of the sample inside given volume

Example invocation:

from yade import utils
rAvg=0.03
TriaxialTest(numberOfGrains=200,radiusMean=rAvg).load()
O.dt=-1
O.run(1000)
O.engines[4].porosity
0.44007807740143889
utils.voxelPorosityTriaxial(O.engines[4],200,0)
0.44055412500000002
utils.voxelPorosityTriaxial(O.engines[4],200,rAvg)
0.36798199999999998

yade.utils.waitIfBatch()
Block the simulation if running inside a batch. Typically used at the end of script so that it does
not finish prematurely in batch mode (the execution would be ended in such a case).

yade.utils.wall(position, axis, sense=0, color=Vector3(0.8000000000000000444,
0.8000000000000000444, 0.5999999999999999778), material=-1, mask=1)

Return ready-made wall body.

Parameters

• position (float-or-Vector3) – center of the wall. If float, it is the position
along given axis, the other 2 components being zero

• axis (�{0,1,2}) – orientation of the wall normal (0,1,2) for x,y,z (sc. planes yz,
xz, xy)

• sense (�{-1,0,1}) – sense in which to interact (0: both, -1: negative, +1:
positive; see Wall)

See utils.sphere’s documentation for meaning of other parameters.

1418 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade.utils.xMirror(half)
Mirror a sequence of 2d points around the x axis (changing sign on the y coord). The sequence
should start up and then it will wrap from y downwards (or vice versa). If the last point’s x coord
is zero, it will not be duplicated.

yade._utils.PWaveTimeStep() → float
Get timestep accoring to the velocity of P-Wave propagation; computed for spheres and/or poly-
hedra based on their sizes, rigidities and masses.

yade._utils.RayleighWaveTimeStep() → float
Determination of time step according to Rayleigh wave speed of force propagation.

yade._utils.TetrahedronCentralInertiaTensor((object)arg1) → Matrix3
TODO

yade._utils.TetrahedronInertiaTensor((object)arg1) → Matrix3
TODO

yade._utils.TetrahedronSignedVolume((object)arg1) → float
TODO

yade._utils.TetrahedronVolume((object)arg1) → float
TODO

yade._utils.TetrahedronWithLocalAxesPrincipal((Body)arg1) → Quaternion
TODO

yade._utils.aabbExtrema([(float)cutoff=0.0[, (bool)centers=False]]) → tuple
Return coordinates of box enclosing all spherical bodies

Parameters

• centers (bool) – do not take sphere radii in account, only their centroids

• cutoff (float�〈0…1〉) – relative dimension by which the box will be cut away
at its boundaries.

Returns
[lower corner, upper corner] as [Vector3,Vector3]

yade._utils.angularMomentum([(Vector3)origin=Vector3(0, 0, 0)]) → Vector3
TODO

yade._utils.approxSectionArea((float)arg1, (int)arg2) → float
Compute area of convex hull when when taking (swept) spheres crossing the plane at coord, per-
pendicular to axis.

yade._utils.bodyNumInteractionsHistogram((tuple)aabb) → tuple

yade._utils.bodyStressTensors() → list
Compute and return a table with per-particle stress tensors. Each tensor represents the average
stress in one particle, obtained from the contour integral of applied load as detailed below. This
definition is considering each sphere as a continuum. It can be considered exact in the context of
spheres at static equilibrium, interacting at contact points with negligible volume changes of the
solid phase (this last assumption is not restricting possible deformations and volume changes at
the packing scale).

Proof:

First, we remark the identity: σij = δikσkj = xi,kσkj = (xiσkj),k − xiσkj,k.

At equilibrium, the divergence of stress is null: σkj,k = 0. Consequently, after divergence theorem:
1
V

∫
V
σijdV = 1

V

∫
V
(xiσkj),kdV = 1

V

∫
∂V

xiσkjnkdS = 1
V

∑
b xbi f

b
j .

2.4. Yade modules reference 1419

Yade Documentation, Release 3rd ed.

The last equality is implicitely based on the representation of external loads as Dirac distributions
whose zeros are the so-called contact points: 0-sized surfaces on which the contact forces are applied,
located at xi in the deformed configuration.

A weighted average of per-body stresses will give the average stress inside the solid phase. There is
a simple relation between the stress inside the solid phase and the stress in an equivalent continuum
in the absence of fluid pressure. For porosity n, the relation reads: σequ.

ij = (1− n)σsolid
ij .

This last relation may not be very useful if porosity is not homogeneous. If it happens, one can
define the equivalent bulk stress a the particles scale by assigning a volume to each particle. This
volume can be obtained from TesselationWrapper (see e.g. [Catalano2014a])

yade._utils.calm([(int)mask=-1]) → None
Set translational and rotational velocities of bodies to zero. Applied to all dynamic bodies by
default. To calm only some of them, use mask parameter, it will calm only dynamic bodies with
groupMask compatible to given value

yade._utils.cart2spher((Vector3)vec) → Vector3
Converts cartesian coordinates to spherical ones.

Parameters
vec (Vector3) – the (x, y, z) cartesian coordinates

Returns
a (r, ϑ,φ) Vector3 of spherical coordinates, with ϑ = (ez,er) ∈ [0;π] and φ ∈ [0; 2π]
measured in (x, y) plane from x-axis

yade._utils.coordsAndDisplacements((int)axis[, (tuple)Aabb=()]) → tuple
Return tuple of 2 same-length lists for coordinates and displacements (coordinate minus reference
coordinate) along given axis (1st arg); if the Aabb=((x_min,y_min,z_min),(x_max,y_max,z_-
max)) box is given, only bodies within this box will be considered.

yade._utils.createInteraction((int)id1, (int)id2[, (bool)virtualI=False]) → Interaction
Create interaction between given bodies by hand.

If virtualI=False, current engines are searched for IGeomDispatcher and IPhysDispatcher (might
be both hidden in InteractionLoop). Geometry is created using force parameter of the geometry
dispatcher, wherefore the interaction will exist even if bodies do not spatially overlap and the
functor would return false under normal circumstances.

If virtualI=True the interaction is left in a virtual state.

Warning: This function will very likely behave incorrectly for periodic simulations (though
it could be extended it to handle it farily easily).

yade._utils.distApproxRose((Vector3)pt) → float
An approximate distance value to a rose-like flaky surface defined in spherical coordinates as
r = 3+ 1.5

sin(5
theta)
sin(4
phi) (see cart2spher function for spherical <→ cartesian convention).

Parameters
pt (Vector3) – the pt of interest given in (x, y, z) cartesian coordinates.

Returns
a 0-approximation distance value.

1420 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade._utils.distApproxSE((Vector3)pt, (Vector3)radii, (Vector2)epsilons) → float
An approximate distance value to a superellipsoid surface defined (in local axes) as f(x, y, z) =
(|x/rx|

2/εe + |y/ry|
2/εe)εe/εn + |z/rz|

2/εn = 1.

Parameters

• pt (Vector3) – the (x, y, z) of interest

• radii (Vector3) – the (rx, ry, rz)

• epsilons (Vector2) – the (εe, εn) exponents

Returns
a 0-approximation distance value.

yade._utils.distIniClump((Clump)clump, (RegularGrid)grid) → object
An appropriate discrete field to serve as a Fast Marching Method input in FastMarching-
Method.phiIni in order to compute distance to a clump.

Parameters

• clump (Clump) – considered clump instance

• grid (RegularGrid) – the RegularGrid instance to consider

Returns
an appropriate 3D discrete field for FastMarchingMethod.phiIni.

yade._utils.distIniSE((Vector3)radii, (Vector2)epsilons, (RegularGrid)grid) → object
An appropriate discrete field to serve as a Fast Marching Method input in FastMarching-
Method.phiIni in order to compute distance to a superellipsoid.

Parameters

• radii (Vector3) – the (rx, ry, rz)

• epsilons (Vector2) – the (εe, εn) exponents

• grid (RegularGrid) – the RegularGrid instance to consider

Returns
an appropriate 3D discrete field for FastMarchingMethod.phiIni.

yade._utils.fabricTensor([(float)cutoff=0.0[, (bool)splitTensor=False[, (float)thresholdForce=nan[,
(object)extrema=[]]]]]) → tuple

Computes the fabric tensor Fij = 1
nc

∑
c ninj [Satake1982] over all interactions c with nc the total

number of interactions and ni and nj the i and j components of the contact normal, respectively.

Parameters

• cutoff (Real) – intended to disregard boundary effects: to define in [0;1] to
focus on the interactions located in the centered inner (1-cutoff)^3*V part of the
spherical packing V .

• splitTensor (bool) – split the fabric tensor into two parts related to the strong
(greatest compressive normal forces) and weak contact forces respectively.

• thresholdForce (Real) – if the fabric tensor is split into two parts, a threshold
value can be specified otherwise the mean contact force is considered by default.
Use negative signed values for compressive states. To note that this value could
be set to zero if one wanted to make distinction between compressive and tensile
forces.

• extrema (list) – defines through a two-Vector3-list (min,max) an axis aligned
box that restricts the interactions to consider. A value has to be given for the
function to be effective with non-spherical particles.

2.4. Yade modules reference 1421

Yade Documentation, Release 3rd ed.

yade._utils.flipCell() → Matrix3
utils.flipCell is deprecated, use O.cell.flipCell or O.cell.flipFlippable

yade._utils.forcesOnCoordPlane((float)arg1, (int)arg2) → Vector3

yade._utils.forcesOnPlane((Vector3)planePt, (Vector3)normal) → Vector3
Find all interactions deriving from NormShearPhys that cross given plane and sum forces (both
normal and shear) on them.

Parameters

• planePt (Vector3) – a point on the plane

• normal (Vector3) – plane normal (will be normalized).

yade._utils.getBodyIdsContacts([(int)bodyID=0]) → list
Get a list of body-ids, which contacts the given body.

yade._utils.getCapillaryStress([(float)volume=0[, (bool)mindlin=False]]) → Matrix3
Compute and return Love-Weber capillary stress tensor:

σ
cap
ij = 1

V

∑
b lbi f

cap,b
j , where the sum is over all interactions, with l the branch vector

(joining centers of the bodies) and fcap is the capillary force. V can be passed to
the function. If it is not, it will be equal to one in non-periodic cases, or equal to the
volume of the cell in periodic cases. Only the CapillaryPhys interaction type is supported
presently. Using this function with physics MindlinCapillaryPhys needs to pass True as
second argument.

yade._utils.getDepthProfiles((float)volume, (int)nCell, (float)dz, (float)zRef [,
(bool)activateCond=False[, (float)radiusPy=0[, (int)direction=2]]
]) → tuple

Compute and return the particle velocity and solid volume fraction (porosity) depth profile along
the direction specified (default is z; 0=>x,1=>y,2=>z). For each defined cell z, the k component
of the average particle velocity reads:

< vk >z=
∑

p Vpv
p
k/

∑
p Vp,

where the sum is made over the particles contained in the cell, vpk is the k component of the velocity
associated to particle p, and Vp is the part of the volume of the particle p contained inside the cell.
This definition allows to smooth the averaging, and is equivalent to taking into account the center
of the particles only when there is a lot of particles in each cell. As for the solid volume fraction,
it is evaluated in the same way: for each defined cell z, it reads:

< φ >z= 1
Vcell

∑
p Vp, where Vcell is the volume of the cell considered, and Vp is the

volume of particle p contained in cell z.
This function gives depth profiles of average velocity and solid volume fraction, returning the
average quantities in each cell of height dz, from the reference horizontal plane at elevation
zRef (input parameter) until the plane of elevation zRef+nCell*dz (input parameters). If
the argument activateCond is set to true, do the average only on particles of radius equal to
radiusPy (input parameter)

yade._utils.getDepthProfiles_center((float)volume, (int)nCell, (float)dz, (float)zRef [,
(bool)activateCond=False[, (float)radiusPy=0]]) → tuple

Same as getDepthProfiles but taking into account particles as points located at the particle center.

yade._utils.getDynamicStress() → list
Compute the dynamic stress tensor for each body: σp

D = − 1
Vpm

pu ′p ⊗ u ′p

yade._utils.getSlicedProfiles((float)vCell, (int)nCell, (float)dP, (object)sliceCenters,
(object)sliceWidths, (float)refP, (float)refS[, (int)dirP=2[,
(int)dirS=1[, (bool)activateCond=False[, (float)radiusPy=0[,
(float)nSimpson=50]]]]]) → tuple

1422 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Compute and return the particle solid volume fraction (porosity) and velocity profiles along a
specific direction dirP and for a given subdomain. In the direction dirP, the subdomain is divided
into nCell of size dP. For each cell, the averaged solid volume fraction reads:

< φ >= 1
Vcell

∑
p Vp

and the averaged particle velocity reads:

< vk >=
∑

p Vpv
p
k/

∑
p Vp,

where the sum is made over the particles p contained in the cell, vpk is the k component
of the velocity associated to particle p, Vp is the part of the volume of the particle
p contained inside the cell, and Vcell is the volume of the cell (all subdomain slices
combined). The volume of the sliced particle Vp is computed analytically when the
particle is not sliced by the subdomain boundaries. Otherwise, Vp is computed using a
Simpson integration of the sliced area of the sliced sphere.

This function allows to define a discontinuous subdomain made of different slices in direction dirS.
This can be useful to exclude specific zones from the averaging procedure or to target similar zones
like symmetric boundaries.

Arguments are: vCell : volume of a cell, all slices combined. (e.g.
dP*length*(slicewidth1+slicewidth2)) nCell : number of cells in the profile direction dP :
discretisation interval in the Profile direction, sliceCenters : array containing the position of the
center of each slice from refS in the S direction, sliceWidths : array containing the width of each
slice, refP : reference position in the Profile direction, refS : reference position in the slice direction,
dirP : direction of the profile (0:x, 1:y, 2:z), (default:2), dirS : direction of the slices (0:x, 1:y,
2:z), must be different from dirP, (default:1), activateCond : if true, will only consider particle of
radius equal radiusPy, (default:false), nSimpson : number of intervals per particle radius for the
Simpson integration, (default:50),

yade._utils.getSpheresMass([(int)mask=-1]) → float
Compute the total mass of spheres in the simulation, mask parameter is considered

yade._utils.getSpheresVolume([(int)mask=-1]) → float
Compute the total volume of spheres in the simulation, mask parameter is considered

yade._utils.getSpheresVolume2D([(int)mask=-1]) → float
Compute the total volume of discs in the simulation, mask parameter is considered

yade._utils.getStress([(float)volume=0]) → Matrix3
Compute and return Love-Weber stress tensor:

σij =
1
V

∑
b fbi l

b
j , where the sum is over all interactions, with f the contact force and l

the branch vector (joining centers of the bodies). Stress is negativ for repulsive contact
forces, i.e. compression. V can be passed to the function. If it is not, it will be equal to
the volume of the cell in periodic cases, or to the one deduced from utils.aabbDim() in
non-periodic cases.

yade._utils.getStressAndTangent([(float)volume=0[, (bool)symmetry=True]]) → tuple
Compute overall stress of periodic cell using the same equation as function getStress. In addition,
the tangent operator is calculated using the equation published in [Kruyt and Rothenburg1998]_:

Sijkl =
1

V

∑
c

(knniljnkll + kttiljtkll)

Althoughtheaboveformulagivestheelementsofthefourth− orderstiffnesstensor, thistangentoperatorwillbereturnedinVoigtnotation, givinga6by6tensor,whereelementsof : math : ‘Sijkl‘ mappingtothesameVoigtelementwillbeaveraged.

Parameters

• volume (float) – same as in function getStress

• symmetry (bool) – make the tensors symmetric.

2.4. Yade modules reference 1423

Yade Documentation, Release 3rd ed.

Returns
macroscopic stress tensor and tangent operator as py::tuple

yade._utils.getStressProfile((float)volume, (int)nCell, (float)dz, (float)zRef ,
(object)vPartAverageX, (object)vPartAverageY ,
(object)vPartAverageZ) → tuple

Compute and return the stress tensor depth profile, including the contribution from Love-Weber
stress tensor and the dynamic stress tensor taking into account the effect of particles inertia. For
each defined cell z, the stress tensor reads:

σz
ij =

1
V

∑
c f

c
i l

c,z
j − 1

V

∑
p mpu

′p
i u

′p
j ,

where the first sum is made over the contacts which are contained or cross the cell z, f^c is the
contact force from particle 1 to particle 2, and l^{c,z} is the part of the branch vector from particle
2 to particle 1, contained in the cell. The second sum is made over the particles, and u’^p is the
velocity fluctuations of the particle p with respect to the spatial averaged particle velocity at this
point (given as input parameters). The expression of the stress tensor is the same as the one given in
getStress plus the inertial contribution. Apart from that, the main difference with getStress stands
in the fact that it gives a depth profile of stress tensor, i.e. from the reference horizontal plane at
elevation zRef (input parameter) until the plane of elevation zRef+nCell*dz (input parameters), it
is computing the stress tensor for each cell of height dz. For the love-Weber stress contribution, the
branch vector taken into account in the calculations is only the part of the branch vector contained
in the cell considered. To validate the formulation, it has been checked that activating only the
Love-Weber stress tensor, and suming all the contributions at the different altitude, we recover the
same stress tensor as when using getStress. For my own use, I have troubles with strong overlap
between fixed object, so that I made a condition to exclude the contribution to the stress tensor
of the fixed objects, this can be desactivated easily if needed (and should be desactivated for the
comparison with getStress).

yade._utils.getStressProfile_contact((float)volume, (int)nCell, (float)dz, (float)zRef) → tuple
same as getStressProfile, only contact contribution.

yade._utils.getTotalDynamicStress([(float)volume=0]) → Matrix3
Compute the total dynamic stress tensor : σD = − 1

V

∑
p mpu ′p ⊗ u ′p. The volume have to be

provided for non-periodic simulations. It is computed from cell volume for periodic simulations.

yade._utils.getViscoelasticFromSpheresInteraction((float)tc, (float)en, (float)es) → dict
Attention! The function is deprecated! Compute viscoelastic interaction parameters from analytical
solution of a pair spheres collision problem:

kn =
m

t2c

(
π2 + (ln en)2

)
cn = −

2m

tc
ln en

kt =
2

7

m

t2c

(
π2 + (ln et)2

)
ct = −

2

7

m

tc
ln et

where kn, cn are normal elastic and viscous coefficients and kt, ct shear elastic and viscous coeffi-
cients. For details see [Pournin2001].

Parameters

• m (float) – sphere mass m

• tc (float) – collision time tc

• en (float) – normal restitution coefficient en
• es (float) – tangential restitution coefficient es

Returns
dictionary with keys kn (the value of kn), cn (cn), kt (kt), ct (ct).

1424 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade._utils.growParticle((int)bodyID, (float)multiplier[, (bool)updateMass=True]) → None
Change the size of a single sphere (to be implemented: single clump). If updateMass=True, then
the mass is updated.

yade._utils.growParticles((float)multiplier[, (bool)updateMass=True[, (bool)dynamicOnly=True]
]) → None

Change the size of spheres and clumps of spheres by the multiplier. If updateMass=True, then the
mass and inertia are updated. dynamicOnly=True will select dynamic bodies.

yade._utils.highlightNone() → None
Reset highlight on all bodies.

yade._utils.initMPI() → None
Initialize MPI communicator, for Foam Coupling

yade._utils.inscribedCircleCenter((Vector3)v1, (Vector3)v2, (Vector3)v3) → Vector3
Return center of inscribed circle for triangle given by its vertices v1, v2, v3.

yade._utils.insideClump((Vector3)pt, (Clump)clump) → bool
Tells whether some point is inside or outside a clump

Parameters

• pt (Vector3) – the point of interest expressed in local coordinates

• clump (Clump) – the clump instance to consider

Return bool
True when strictly inside, False otherwise

yade._utils.interactionAnglesHistogram((int)axis[, (int)mask=0[, (int)bins=20[,
(tuple)aabb=()[, (bool)sphSph=0[,
(float)minProjLen=1e-06]]]]]) → tuple

yade._utils.intrsOfEachBody() → list
returns list of lists of interactions of each body

yade._utils.kineticEnergy([(bool)findMaxId=False]) → object
Compute overall kinetic energy of the simulation as∑ 1

2

(
miv

2
i +ω(IωT)

)
.

For aspherical bodies, necessary frame transformations are applied to the inertia tensor I as stored
in state.inertia.

yade._utils.lsSimpleShape((int)shape, (AlignedBox3)aabb[, (float)step=0.1[,
(float)smearCoeff=1.5[, (Vector2)epsilons=Vector2(0, 0)[,
(Clump)clump=<Clump instance at 0x25580d0>]]]]) → LevelSet

Creates a LevelSet shape among pre-defined ones. Not intended to be used directly, see levelSet-
Body() instead.

Parameters

• shape (int) – a shape index among supported choices

• aabb (AlignedBox3) – the axis-aligned surrounding box of the body

• step (Real) – the LevelSet grid step size

• smearCoeff (Real) – passed to LevelSet.smearCoeff

• epsilons (Vector2) – the epsilon exponents in case shape = 3 (superellipsoid)

2.4. Yade modules reference 1425

Yade Documentation, Release 3rd ed.

• clump (Clump) – the Clump instance to mimick in case shape = 4

Returns
a LevelSet instance.

yade._utils.maxOverlapRatio() → float
Return maximum overlap ration in interactions (with ScGeom) of two spheres. The ratio is com-
puted as uN

2(r1r2)/r1+r2
, where uN is the current overlap distance and r1, r2 are radii of the two

spheres in contact.

yade._utils.momentum() → Vector3
TODO

yade._utils.nGP((float)min, (float)max, (float)step) → int

Defines how many gridpoints are necessary to go from min to (at least) max, by step
increments, eg when constructing a RegularGrid

param Real min
lowest grid extremity as (min,min,min) in case you just give a number, or
as (min[0],min[1],min[2]) in case you give a tuple/list/Vector3

param Real max
highest gridpoint as (max,max,max) in case you give a number, or as
(max[0],max[1],max[2]) in case you give a tuple/list/Vector3. The actual
highest point of the grid may be beyond max by something like step.

param Real step
the distance between two consecutive grid points (the same along each axis).

return
either an integer, or a Vector3 of, depending on usage

nGP((Vector3)min, (Vector3)max, (float)step) → Vector3i :
Type-overloaded version of the above, to allow for both types of max/min attributes.

yade._utils.negPosExtremeIds((int)axis, (float)distFactor) → tuple
Return list of ids for spheres (only) that are on extremal ends of the specimen along given axis;
distFactor multiplies their radius so that sphere that do not touch the boundary coordinate can
also be returned.

yade._utils.normalShearStressTensors([(bool)compressionPositive=False[,
(bool)splitNormalTensor=False[, (float)thresholdForce=nan
]]]) → tuple

Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal
forces, the other by shear forces. The formulation can be found in [Thornton2000], eq. (3):

σij =
2

V

∑
RNninj +

2

V

∑
RTnitj

where V is the cell volume, R is “contact radius” (in our implementation, current distance between
particle centroids), n is the normal vector, t is a vector perpendicular to n, N and T are norms of
normal and shear forces.

Parameters

• splitNormalTensor (bool) – if true the function returns normal stress tensor
split into two parts according to the two subnetworks of strong an weak forces.

• thresholdForce (Real) – threshold value according to which the normal stress
tensor can be split (e.g. a zero value would make distinction between tensile and
compressive forces).

1426 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade._utils.numIntrsOfEachBody() → list
returns list of number of interactions of each body

yade._utils.phiIniCppPy((RegularGrid)grid) → object
A possibly handy function to construct a FastMarchingMethod.phiIni after applying on grid an
inside-outside Python function. The latter necessarily names ioFn and takes three floating numbers
(cartesian coordinates) as arguments. Code source of the present function is both C++ and Python,
and execution should be faster and heavier in memory than the pure Python version utils.phiIniPy,
both being under the second and few MB for grids with ~ 104 gridpoints.

Parameters
grid (RegularGrid) – the yref:RegularGrid instance to operate on with a preexisting
ioFn Python function

Returns
an appropriate 3D discrete field for FastMarchingMethod.phiIni

yade._utils.pointInsidePolygon((tuple)arg1, (object)arg2) → bool

yade._utils.porosity([(float)volume=-1]) → float
Compute packing porosity V−Vs

V
where V is overall volume and Vs is volume of spheres.

Parameters
volume (float) – overall volume V . For periodic simulations, current volume of the
Cell is used. For aperiodic simulations, the value deduced from utils.aabbDim() is
used. For compatibility reasons, positive values passed by the user are also accepted
in this case.

yade._utils.ptInAABB((Vector3)arg1, (Vector3)arg2, (Vector3)arg3) → bool
Return True/False whether the point p is within box given by its min and max corners

yade._utils.scalarOnColorScale((float)x[, (float)xmin=0[, (float)xmax=1]]) → Vector3
Map scalar variable to color scale.

Parameters

• x (float) – scalar value which the function applies to.

• xmin (float) – minimum value for the color scale, with a return value of (0,0,1)
for x ≤ xmin, i.e. blue color in RGB.

• xmax (float) – maximum value, with a return value of (1,0,0) for x ≥ xmax, i.e.
red color in RGB.

Returns
a Vector3 depending on the relative position of x on a [xmin;*xmax*] scale.

yade._utils.setBodyAngularVelocity((int)id, (Vector3)angVel) → None
Set a body angular velocity from its id and a new Vector3r.

Parameters

• id (int) – the body id.

• angVel (Vector3) – the desired updated angular velocity.

yade._utils.setBodyColor((int)id, (Vector3)color) → None
Set a body color from its id and a new Vector3r.

Parameters

• id (int) – the body id.

• color (Vector3) – the desired updated color.

2.4. Yade modules reference 1427

Yade Documentation, Release 3rd ed.

yade._utils.setBodyOrientation((int)id, (Quaternion)ori) → None
Set a body orientation from its id and a new Quaternionr.

Parameters

• id (int) – the body id.

• ori (Quaternion) – the desired updated orientation.

yade._utils.setBodyPosition((int)id, (Vector3)pos[, (str)axis=’xyz’]) → None
Set a body position from its id and a new vector3r.

Parameters

• id (int) – the body id.

• pos (Vector3) – the desired updated position.

• axis (str) – the axis along which the position has to be updated (ex: if
axis==”xy” and pos==Vector3r(r0,r1,r2), r2 will be ignored and the position
along z will not be updated).

yade._utils.setBodyVelocity((int)id, (Vector3)vel[, (str)axis=’xyz’]) → None
Set a body velocity from its id and a new vector3r.

Parameters

• id (int) – the body id.

• vel (Vector3) – the desired updated velocity.

• axis (str) – the axis along which the velocity has to be updated (ex: if
axis==”xy” and vel==Vector3r(r0,r1,r2), r2 will be ignored and the velocity
along z will not be updated).

yade._utils.setContactFriction((float)angleRad) → None
Modify the friction angle (in radians) inside the material classes and existing contacts. The friction
for non-dynamic bodies is not modified.

yade._utils.setNewVerticesOfFacet((Body)b, (Vector3)v1, (Vector3)v2, (Vector3)v3) → None
Sets new vertices (in global coordinates) to given facet.

yade._utils.setRefSe3() → None
Set reference positions and orientations of all bodies equal to their current positions and orienta-
tions.

yade._utils.shiftBodies((list)ids, (Vector3)shift) → float
Shifts bodies listed in ids without updating their velocities.

yade._utils.spher2cart((Vector3)vec) → Vector3
Converts spherical coordinates to cartesian ones.

Parameters
vec (Vector3) – the (r, ϑ,φ) spherical coordinates, see cart2spher function for con-
ventions

Returns
a (x, y, z) Vector3 of cartesian coordinates

yade._utils.spiralProject((Vector3)pt, (float)dH_dTheta[, (int)axis=2[, (float)periodStart=nan[,
(float)theta0=0]]]) → tuple

yade._utils.sumFacetNormalForces((object)ids[, (int)axis=-1]) → float
Sum force magnitudes on given bodies (must have shape of the Facet type), considering only part
of forces perpendicular to each facet’s face; if axis has positive value, then the specified axis (0=x,
1=y, 2=z) will be used instead of facet’s normals.

1428 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

yade._utils.sumForces((list)ids, (Vector3)direction) → float
Return summary force on bodies with given ids, projected on the direction vector.

yade._utils.sumTorques((list)ids, (Vector3)axis, (Vector3)axisPt) → float
Sum forces and torques on bodies given in ids with respect to axis specified by a point axisPt and
its direction axis.

yade._utils.totalForceInVolume() → tuple
Return summed forces on all interactions and average isotropic stiffness, as tuple (Vector3,float)

yade._utils.unbalancedForce([(bool)useMaxForce=False]) → float
Compute the ratio of mean (or maximum, if useMaxForce) summary force on bodies and mean force
magnitude on interactions. For perfectly static equilibrium, summary force on all bodies is zero
(since forces from interactions cancel out and induce no acceleration of particles); this ratio will tend
to zero as simulation stabilizes, though zero is never reached because of finite precision computation.
Sufficiently small value can be e.g. 1e-2 or smaller, depending on how much equilibrium it should
be.

yade._utils.voidratio2D([(float)zlen=1]) → float
Compute 2D packing void ratio V−Vs

Vs
where V is overall volume and Vs is volume of disks.

Parameters
zlen (float) – length in the third direction.

yade._utils.voxelPorosity([(int)resolution=200[, (Vector3)start=Vector3(0, 0, 0)[,
(Vector3)end=Vector3(0, 0, 0)]]]) → float

Compute packing porosity V−Vv

V
where V is a specified volume (from start to end) and Vv is volume

of voxels that fall inside any sphere. The calculation method is to divide whole volume into a dense
grid of voxels (at given resolution), and count the voxels that fall inside any of the spheres. This
method allows one to calculate porosity in any given sub-volume of a whole sample. It is properly
excluding part of a sphere that does not fall inside a specified volume.

Parameters

• resolution (int) – voxel grid resolution, values bigger than resolution=1600
require a 64 bit operating system, because more than 4GB of RAM is used, a
resolution=800 will use 500MB of RAM.

• start (Vector3) – start corner of the volume.

• end (Vector3) – end corner of the volume.

yade._utils.wireAll() → None
Set Shape::wire on all bodies to True, rendering them with wireframe only.

yade._utils.wireNoSpheres() → None
Set Shape::wire to True on non-spherical bodies (Facets, Walls).

yade._utils.wireNone() → None
Set Shape::wire on all bodies to False, rendering them as solids.

2.4. Yade modules reference 1429

Yade Documentation, Release 3rd ed.

2.4.20 yade.ymport module

Import geometry from various formats (‘import’ is python keyword, hence the name ‘ymport’).

yade.ymport.blockMeshDict(path, patchasWall=True, emptyasWall=True, **kw)
Load openfoam’s blockMeshDict file’s “boundary” section as facets.

Parameters

• path (str) – file name. Typical value is: “system/blockMeshDict”.

• patchasWall (bool) – load “patch”-es as walls.

• emptyasWall (bool) – load “empty”-es as walls.

• **kw – (unused keyword arguments) is passed to utils.facet

Returns
list of facets.

yade.ymport.ele(nodeFileName, eleFileName, shift=(0, 0, 0), scale=1.0, **kw)
Import tetrahedral mesh from .ele file, return list of created tetrahedrons.

Parameters

• nodeFileName (string) – name of .node file

• eleFileName (string) – name of .ele file

• shift ((float,float,float)|Vector3) – (X,Y,Z) parameter moves the speci-
men.

• scale (float) – factor scales the given data.

• **kw – (unused keyword arguments) is passed to utils.polyhedron

yade.ymport.gengeo(mntable, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Imports geometry from LSMGenGeo library and creates spheres. Since 2012 the package is
available in Debian/Ubuntu and known as python-demgengeo http://packages.qa.debian.org/p/
python-demgengeo.html

Parameters

mntable: mntable
object, which creates by LSMGenGeo library, see example

shift: [float,float,float]
[X,Y,Z] parameter moves the specimen.

scale: float
factor scales the given data.

**kw: (unused keyword arguments)
is passed to utils.sphere

LSMGenGeo library allows one to create pack of spheres with given [Rmin:Rmax] with null stress
inside the specimen. Can be useful for Mining Rock simulation.

Example: examples/packs/packs.py, usage of LSMGenGeo library in exam-
ples/test/genCylLSM.py.

• https://answers.launchpad.net/esys-particle/+faq/877

• http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/
GenGeo-module.html

• https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/

1430 Chapter 2. Yade for users

http://packages.qa.debian.org/p/python-demgengeo.html
http://packages.qa.debian.org/p/python-demgengeo.html
https://gitlab.com/yade-dev/trunk/blob/master/examples/packs/packs.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/genCylLSM.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/

Yade Documentation, Release 3rd ed.

yade.ymport.gengeoFile(fileName=’file.geo’, shift=Vector3(0, 0, 0), scale=1.0,
orientation=Quaternion((1, 0, 0), 0), **kw)

Imports geometry from LSMGenGeo .geo file and creates spheres. Since 2012 the package is
available in Debian/Ubuntu and known as python-demgengeo http://packages.qa.debian.org/p/
python-demgengeo.html

Parameters

filename: string
file which has 4 colums [x, y, z, radius].

shift: Vector3
Vector3(X,Y,Z) parameter moves the specimen.

scale: float
factor scales the given data.

orientation: quaternion
orientation of the imported geometry

**kw: (unused keyword arguments)
is passed to utils.sphere

Returns
list of spheres.

LSMGenGeo library allows one to create pack of spheres with given [Rmin:Rmax] with null stress
inside the specimen. Can be useful for Mining Rock simulation.

Example: examples/packs/packs.py, usage of LSMGenGeo library in exam-
ples/test/genCylLSM.py.

• https://answers.launchpad.net/esys-particle/+faq/877

• http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/
GenGeo-module.html

• https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/

yade.ymport.gmsh(meshfile=’file.mesh’, shift=Vector3(0, 0, 0), scale=1.0,
orientation=Quaternion((1, 0, 0), 0), **kw)

Imports geometry from .mesh file and creates facets.

Parameters

shift: [float,float,float]
[X,Y,Z] parameter moves the specimen.

scale: float
factor scales the given data.

orientation: quaternion
orientation of the imported mesh

**kw: (unused keyword arguments)
is passed to utils.facet

Returns
list of facets forming the specimen.

mesh files can easily be created with GMSH. Example added to examples/packs/packs.py

Additional examples of mesh-files can be downloaded from http://www-roc.inria.fr/gamma/
download/download.php

yade.ymport.gts(meshfile, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Read given meshfile in gts format.

Parameters

2.4. Yade modules reference 1431

http://packages.qa.debian.org/p/python-demgengeo.html
http://packages.qa.debian.org/p/python-demgengeo.html
https://gitlab.com/yade-dev/trunk/blob/master/examples/packs/packs.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/genCylLSM.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
http://www.geuz.org/gmsh/
https://gitlab.com/yade-dev/trunk/blob/master/examples/packs/packs.py
http://www-roc.inria.fr/gamma/download/download.php
http://www-roc.inria.fr/gamma/download/download.php

Yade Documentation, Release 3rd ed.

meshfile: string
name of the input file.

shift: [float,float,float]
[X,Y,Z] parameter moves the specimen.

scale: float
factor scales the given data.

**kw: (unused keyword arguments)
is passed to utils.facet

Returns
list of facets.

yade.ymport.iges(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw)
Import triangular mesh from .igs file, return list of created facets.

Parameters

• fileName (string) – name of iges file

• shift ((float,float,float)|Vector3) – (X,Y,Z) parameter moves the speci-
men.

• scale (float) – factor scales the given data.

• **kw – (unused keyword arguments) is passed to utils.facet

• returnConnectivityTable (bool) – if True, apart from facets returns also nodes
(list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3) element nodes
ids). If False (default), returns only facets

yade.ymport.polyMesh(path, patchasWall=True, emptyasWall=True, **kw)
Load openfoam’s polyMesh directory as facets.

Parameters

• path (str) – directory path. Typical value is: “constant/polyMesh”.

• patchAsWall (bool) – load “patch”-es as walls.

• emptyAsWall (bool) – load “empty”-es as walls.

• **kw – (unused keyword arguments) is passed to utils.facet

Returns
list of facets.

yade.ymport.stl(file, dynamic=None, fixed=True, wire=True, color=None, highlight=False,
noBound=False, material=-1, scale=1.0, shift=Vector3(0, 0, 0))

Import a .stl geometry in the form of a set of Facet-shaped bodies.

Parameters

• file (string) – the .stl file serving as geometry input

• dynamic (bool) – controls Body.dynamic

• fixed (bool) – controls Body.dynamic (with fixed = True imposing
Body.dynamic = False) if dynamic attribute is not given

• wire (bool) – rendering option, passed to Facet.wire

• color – rendering option, passed to Facet.color

• highlight (bool) – rendering option, passed to Facet.highlight

• noBound (bool) – sets Body.bounded to False if True, preventing collision detec-
tion (and vice-versa)

1432 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

• material – defines material properties, see Defining materials for usage

• scale (float) – scaling factor to e.g. dilate the geometry if > 1

• shift (Vector3) – for translating the geometry

Returns
a corresponding list of Facet-shaped bodies

yade.ymport.text(fileName, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Load sphere coordinates from file, returns a list of corresponding bodies; that may be inserted to
the simulation with O.bodies.append().

Parameters

• filename (string) – file which has 4 colums [x, y, z, radius].

• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.

• scale (float) – factor scales the given data.

• **kw – (unused keyword arguments) is passed to utils.sphere

Returns
list of spheres.

Lines starting with # are skipped

yade.ymport.textClumps(fileName, shift=Vector3(0, 0, 0), discretization=0,
orientation=Quaternion((1, 0, 0), 0), scale=1.0, **kw)

Load clumps-members from file in a format selected by the format argument, insert them to the
simulation.

Parameters

• filename (str) – file name

• format (str) – selected input format. Supported 'x_y_z_r'``(default),
``'x_y_z_r_clumpId'

• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.

• scale (float) – factor scales the given data.

• **kw – (unused keyword arguments) is passed to utils.sphere

Returns
list of spheres.

Lines starting with # are skipped

yade.ymport.textExt(fileName, format=’x_y_z_r’, shift=Vector3(0, 0, 0), scale=1.0, attrs=[],
**kw)

Load sphere coordinates from file in a format selected by the format argument, returns a list of
corresponding bodies; that may be inserted to the simulation with O.bodies.append().

Parameters

• filename (str) – file name

• format (str) – selected input format. Supported 'x_y_z_r'``(default),
``'x_y_z_r_matId', 'x_y_z_r_attrs'

• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.

• scale (float) – factor scales the given data.

• attrs (list) – attrs read from file if export.textExt(format=’x_y_z_r_attrs’)
were used (‘passed by reference’ style)

• **kw – (unused keyword arguments) is passed to utils.sphere

2.4. Yade modules reference 1433

Yade Documentation, Release 3rd ed.

Returns
list of spheres.

Lines starting with # are skipped

yade.ymport.textFacets(fileName, format=’x1_y1_z1_x2_y2_z2_x3_y3_z3’, shift=Vector3(0, 0,
0), scale=1.0, attrs=[], **kw)

Load facet coordinates from file in a format selected by the format argument, returns a list of
corresponding bodies; that may be inserted to the simulation with O.bodies.append().

Parameters

• filename (str) – file name

• format (str) – selected input format. Supported 'x1_y1_z1_x2_y2_-
z2_x3_y3_z3'``(default), ``'x1_y1_z1_x2_y2_z2_x3_y3_z3_matId',
'id_x1_y1_z1_x2_y2_z2_x3_y3_z3_matId' or 'x1_y1_z1_x2_y2_z2_x3_y3_-
z3_attrs'

• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.

• scale (float) – factor scales the given data.

• attrs (list) – attrs read from file (‘passed by reference’ style)

• **kw – (unused keyword arguments) is passed to utils.facet

Returns
list of facets.

Lines starting with # are skipped

yade.ymport.textPolyhedra(fileName, material, shift=Vector3(0, 0, 0), scale=1.0,
orientation=Quaternion((1, 0, 0), 0), **kw)

Load polyhedra from a text file.

Parameters

• filename (str) – file name. Expected file format is the one output by ex-
port.textPolyhedra.

• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.

• scale (float) – factor scales the given data.

• orientation (quaternion) – orientation of the imported polyhedra

• **kw – (unused keyword arguments) is passed to polyhedra_utils.polyhedra

Returns
list of polyhedras.

Lines starting with # are skipped

yade.ymport.unv(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw)
Import geometry from unv file, return list of created facets.

param string fileName
name of unv file

param (float,float,float)|Vector3 shift
(X,Y,Z) parameter moves the specimen.

param float scale
factor scales the given data.

param **kw
(unused keyword arguments) is passed to utils.facet

1434 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

param bool returnConnectivityTable
if True, apart from facets returns also nodes (list of (x,y,z) nodes coordinates)
and elements (list of (id1,id2,id3) element nodes ids). If False (default),
returns only facets

unv files are mainly used for FEM analyses (are used by OOFEM and Abaqus), but triangular
elements can be imported as facets. These files cen be created e.g. with open-source free software
Salome.

Example: examples/test/unv-read/unvRead.py.

2.5 Installation

• Linux systems: Yade can be installed from packages (pre-compiled binaries) or source code. The
choice depends on what you need: if you don’t plan to modify Yade itself, package installation is
easier. In the contrary case, you must download and install the source code.

• Other Operating Systems: Emulating Linux systems including Yade is proposed in this case,
through docker images as well flash-drive or virtual machines images.

• 64 bit Operating Systems required; no support for 32 bit (i386).

2.5.1 Packages

Stable packages

Since 2011, all Ubuntu (starting from 11.10, Oneiric; and with the exception of Ubuntu 24.04 noble
which requires using either daily packages or source code, see below) and Debian (starting from Wheezy)
versions have Yade in their main repositories. There are only stable releases in place. To install Yade,
run the following:

sudo apt-get install yade

After that you can normally start Yade using the command yade or yade-batch.

This image shows versions and up to date status of Yade in some repositories.

Daily packages

Pre-built packages updated more frequently than the stable versions are provided for all currently sup-
ported Debian and Ubuntu versions and available on yade-dem.org/packages .

These are “daily” versions of the packages which are being updated regularly and, hence, include all the
newly added features.

To install the daily-version you need to add the repository to your /etc/apt/sources.list.

• Debian 11 bullseye:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ bullseye main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

• Debian 12 bookworm also with high precision long double, float128 and mpfr150 packages:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ bookworm main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

• Debian 13 trixie also with high precision long double, float128 and mpfr150 packages:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ trixie main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

2.5. Installation 1435

http://www.oofem.org/
http://www.simulia.com/products/abaqus_fea.html
http://salome-platform.org
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/unv-read/unvRead.py
https://yade-dem.org/doc/installation.html#yubuntu
https://repology.org/badge/vertical-allrepos/yade.svg
http://yade-dem.org/packages/

Yade Documentation, Release 3rd ed.

• Ubuntu 18.04 bionic:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ bionic main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

• Ubuntu 20.04 focal:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ focal main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

• Ubuntu 22.04 jammy also with high precision long double, float128 and mpfr150 packages:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ jammy main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

• Ubuntu 24.04 noble:

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ noble main" >> /etc/
↪→apt/sources.list.d/yadedaily.list'

Add the PGP-key AA915EEB as trusted and install yadedaily:

wget -O - http://www.yade-dem.org/packages/yadedev_pub.gpg | sudo tee /etc/apt/
↪→trusted.gpg.d/yadedaily.asc
sudo apt-get update
sudo apt-get install yadedaily

After that you can normally start Yade using the command yadedaily or yadedaily-batch. yadedaily
on older distributions can have some disabled features due to older library versions, shipped with par-
ticular distribution.

The Git-repository for packaging stuff is available on GitLab.

If you do not need yadedaily-package anymore, just remove the corresponding line in
/etc/apt/sources.list and the package itself:

sudo apt-get remove yadedaily

To remove our key from keyring, execute the following command:

sudo apt-key remove AA915EEB

Daily and stable Yade versions can coexist without any conflicts, i.e., you can use yade and yadedaily
at the same time.

2.5.2 Docker

Yade can be installed using docker images, which are daily built. Images contain both stable and daily
versions of packages, except for Ubuntu 24.04 (see below). Docker images are based on supported
distributions:

• Debian 11 bullseye:

docker run -it registry.gitlab.com/yade-dev/docker-prod:debian-bullseye

• Debian 12 bookworm:

docker run -it registry.gitlab.com/yade-dev/docker-prod:debian-bookworm

• Debian 13 trixie:

1436 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/tree/master/scripts/ppa_ci

Yade Documentation, Release 3rd ed.

docker run -it registry.gitlab.com/yade-dev/docker-prod:debian-trixie

• Ubuntu 18.04 bionic:

docker run -it registry.gitlab.com/yade-dev/docker-prod:ubuntu18.04

• Ubuntu 20.04 focal:

docker run -it registry.gitlab.com/yade-dev/docker-prod:ubuntu20.04

• Ubuntu 22.04 jammy:

docker run -it registry.gitlab.com/yade-dev/docker-prod:ubuntu22.04

• Ubuntu 24.04 noble:: (with only the yadedaily version)

docker run -it registry.gitlab.com/yade-dev/docker-prod:ubuntu24.04

After the container is pulled and is running, Yade functionality can be checked:

yade --test
yade --check
yadedaily --test
yadedaily --check

2.5.3 Source code

Installation from source code is reasonable, when you want to add or modify constitutive laws, engines,
functions etc., or use the recently added features, which are not yet available in packaged versions.

Doing so, we recommend to separate source-code-folder from a build-place-folder, where Yade will be
configured and where the source code will be compiled. Here is an example for a folder structure:

myYade/ ## base directory
trunk/ ## folder for git-handled source code, see "Download" section␣

↪→below
build/ ## folder in which the sources will be compiled; build-

↪→directory; use cmake here, see "Compilation.." sections below
install/ ## install folder; contains the executables

Download

Installing from source, you can adopt either a release (numbered version, which is frozen) or the current
development version (updated by the developers frequently). You should download the development
version (called trunk) if you want to modify the source code, as you might encounter problems that will
be fixed by the developers. Release versions will not be updated (except for updates due to critical and
easy-to-fix bugs), but generally they are more stable than the trunk.

1. Releases can be downloaded from the download page, as compressed archive. Uncompressing the
archive gives you a directory with the sources.

2. The development version (trunk) can be obtained from the code repository at GitLab.

We use GIT (the git command) for code management (install the git package on your system and
create a GitLab account). From the top of of the above folder structure:

git clone git@gitlab.com:yade-dev/trunk.git

2.5. Installation 1437

https://gitlab.com/yade-dev/trunk/-/releases
https://gitlab.com/yade-dev/
http://git-scm.com/
https://gitlab.com/users/sign_in

Yade Documentation, Release 3rd ed.

will download the whole code repository into trunk folder. Check out Yade on GitLab for more details
on how to collaborate using git.

Alternatively, a read-only checkout is possible via https without a GitLab account (easier if you don’t
want to modify the trunk version):

git clone https://gitlab.com/yade-dev/trunk.git

For those behind a firewall, you can download the sources from our GitLab repository as compressed
archive.

Release and trunk sources are compiled in exactly the same way.

Prerequisites

Yade compilation and execution rely on a number of mandatory and optional external softwares; they
are checked before the compilation starts. Following dependencies are for instance mandatory:

• cmake build system

• gcc compiler (g++); other compilers will not work; you need g++>=4.2 for openMP support

• boost 1.47 or later

• Qt library

• freeglut3

• libQGLViewer

• python, numpy, ipython, sphinx

• matplotlib

• eigen algebra library (minimal required version 3.2.1)

• gdb debugger

• sqlite3 database engine

They can be installed from the command line of your Linux distribution, assuming you have root privi-
leges.

For Ubuntu 20.04, 18.04, Debian 9, 10, 11 and their derivatives, just copy&paste to the terminal
the following code block for installing all mandatory and optional dependencies:

sudo apt install cmake git freeglut3-dev libboost-all-dev fakeroot \
dpkg-dev build-essential g++ python3-dev python3-ipython python3-matplotlib \
libsqlite3-dev python3-numpy python3-tk gnuplot libgts-dev python3-pygraphviz \
libvtk6-dev libeigen3-dev python3-xlib python3-pyqt5 pyqt5-dev-tools python3-mpi4py \
python3-pyqt5.qtwebkit gtk2-engines-pixbuf python3-pyqt5.qtsvg libqglviewer-dev-qt5 \
python3-pil libjs-jquery python3-sphinx python3-git libxmu-dev libxi-dev libcgal-dev \
help2man libbz2-dev zlib1g-dev libopenblas-dev libsuitesparse-dev \
libmetis-dev python3-bibtexparser python3-future coinor-clp coinor-libclp-dev \
python3-mpmath libmpfr-dev libmpfrc++-dev libmpc-dev texlive-xetex python3-
↪→pickleshare python3-ipython-genutils

Note: on Ubuntu 22.04 and newer, the VTK library should be libvtk9-dev instead of libvtk6-dev.

Most of the list above is very likely already packaged for your distribution. In case you are still confronted
with some errors concerning not available packages (e.g., package libmetis-dev is not available) it may
be necessary to add yade external ppa from https://launchpad.net/~yade-users/+archive/external (see
below) as well as http://www.yade-dem.org/packages (see the top of this page):

sudo add-apt-repository ppa:yade-users/external
sudo apt-get update

1438 Chapter 2. Yade for users

https://gitlab.com/yade-dev
http://www.cmake.org/
https://gcc.gnu.org/
http://www.boost.org/
http://www.qt.io/
http://freeglut.sourceforge.net
http://www.libqglviewer.com
http://www.python.org
https://www.numpy.org/
https://ipython.org/
https://www.sphinx-doc.org/en/master/
http://matplotlib.sf.net
http://eigen.tuxfamily.org
http://www.gnu.org/software/gdb
http://www.sqlite.org
https://launchpad.net/~yade-users/+archive/external
http://www.yade-dem.org/packages

Yade Documentation, Release 3rd ed.

If you are using other distributions than Debian or its derivatives you should install by yourself the
software packages listed above. Their names in other distributions can differ from the names of the
Debian-packages.

Some of the above packages are only required for some choice of Yade compilation options, for desired
Yade features, in the subsequent cmake configuration of compilation. If a required package is eventu-
ally not installed the related features will be disabled automatically with a message appearing during
cmake output (at the end, in particular). Generally speaking, it is advised to watch for notes and
warnings/errors, which are shown by cmake in the following.

Compilation configuration

Then, inside the build-directory of the above folder structure, you should call cmake to configure the
compilation process, passing a path to install folder (as an option) and the path to sources:

cmake -DCMAKE_INSTALL_PREFIX=../install ../trunk

In the above, note the cmake -DOPTION1=VALUE1 -DOPTION2=VALUE2 syntax which is here applied to
the lone CMAKE_INSTALL_PREFIX option, being part of a first group of cmake options that control the
compilation process in itself or just slightly modify the behavior of the executable:

• CMAKE_INSTALL_PREFIX: path where Yade should be installed (/usr/local by default)

• CMAKE_VERBOSE_MAKEFILE: output additional information during compiling (OFF by de-
fault)

• CHOLMOD_GPU link Yade to custom SuiteSparse installation and activate GPU accelerated
PFV, see Accelerating Yade’s FlowEngine with GPU (OFF by default)

• DEBUG: compile in debug-mode, enabling a more convenient debugging or profiling by the user
and leading to a much (1 or 2 orders of magnitude) slower executable (OFF by default)

• DISABLE_ALL: for switching off all available boolean options, before possibly enabling explicitely
just some of them, e.g. cmake -DDISABLE_ALL=ON -DENABLE_VTK=ON (OFF by default)

• DISABLE_PKGS: comma-separated list of disabled packages i.e. names of source subdirectories
under pkg, preprocessing or postprocessing, e.g. cmake -DDISABLE_PKGS=fem,pfv,image. If empty
all packages will be built. The packages common and dem are required to run, but the project can
be compiled without them. (EMPTY by default)

• ENABLE_ASAN: AddressSanitizer allows detection of memory errors, memory leaks, heap cor-
ruption errors and out-of-bounds accesses but it is slow (OFF by default)

• ENABLE_FAST_NATIVE: use maximum optimization compiler flags including -Ofast and
-mtune=native. Note: native means that code will only run on the same processor type on
which it was compiled. Observed speedup was 2% (below standard deviation measurement error)
and above 5% if clang compiler was used. (OFF by default)

• ENABLE_OAR: generate a script for oar-based task scheduler, as discussed here (OFF by default)

• ENABLE_USEFUL_ERRORS: enable useful compiler errors which help a lot in error-free devel-
opment (ON by default)

• LIBRARY_OUTPUT_PATH: path to install libraries (lib by default)

• MAX_LOG_LEVEL: set maximum level for LOG_* macros compiled with below ENABLE_LOGGER,
(default is 5)

• NOSUFFIX: do not add a suffix after binary-name, see also SUFFIX option (OFF by default)

• PYTHON_VERSION: force Python version to the given one, e.g. -DPYTHON_VERSION=3.5. Set
to -1 to automatically use the last version on the system (-1 by default)

• REAL_PRECISION_BITS, REAL_DECIMAL_PLACES: specify either of them to use a custom
calculation precision of Real type. By default double (64 bits, 15 decimal places) precision is used
as the Real type. See high precision documentation for additional details.

2.5. Installation 1439

Yade Documentation, Release 3rd ed.

• runtimePREFIX: used for packaging, when install directory is not the same as runtime directory
(/usr/local by default)

• SUFFIX: suffix, added after binary-names, see also NOSUFFIX option (version number by default)

• SUITESPARSEPATH: define this variable with the path to a custom suitesparse install

• USE_QT5: use QT5 for GUI. It is actually the only choice when GUI is requested through
ENABLE_GUI option below, since libQGLViewer of version 2.6.3 and higher are compiled against
Qt5 on Debian/Ubuntu operating systems (ON by default)

• VECTORIZE: enables vectorization and alignment in Eigen3 library, experimental (OFF by de-
fault)

• YADE_VERSION: explicitly set version number (is defined from git-directory by default)

As a more precise alternative to the above DISABLE_* options, other cmake options will select or unse-
lect specific Yade classes for compilation, enabling or disabling additional Yade features while possibly
requiring additional dependencies in form of external packages. They obey a ENABLE_OPTION=ON or OFF
syntax as follows (see also the source code for a most up-to-date list):

• ENABLE_CGAL: enables a number of code sections using the CGAL library, requires
libcgal-dev package (ON by default)

• ENABLE_COMPLEX_MP: use boost multiprecision complex and mpc (as an extension to MPFR,
see ENABLE_MPFR) for ComplexHP<N>, otherwise use std::complex<RealHP<N>>. See high precision
documentation for additional details. Requires libmpc-dev (ON by default if possible: requires
boost >= 1.71)

• ENABLE_DEFORM: enable the constant volume deformation approach for bodies [Haustein2017]
(OFF by default)

• ENABLE_FEMLIKE: enable FEM-like meshed solids (ON by default)

• ENABLE_GL2PS: enable GL2PS-option (ON by default)

• ENABLE_GTS: enable GTS-option (ON by default)

• ENABLE_GUI: enable a Qt5 GUI. Requires python-pyqt5 pyqt5-dev-tools (ON by default)

• ENABLE_LBMFLOW: enable LBM computations, e.g. the use of HydrodynamicsLawLBM (ON
by default)

• ENABLE_LS_DEM: enable a LevelSet shape description (ON by default)

• ENABLE_LINSOLV: enable the use of optimized algebra libraries SuiteSparse (sparse alge-
bra, requires eigen>=3.1), OpenBLAS (optimized and parallelized alternative to the standard
blas+lapack) and Metis (matrix preconditioning) for the optional fluid coupling FlowEngine, see
ENABLE_PFVFLOW below. Requires libopenblas-dev libsuitesparse-dev libmetis-dev pack-
ages (ON by default)

• ENABLE_LIQMIGRATION: enable LIQMIGRATION-option, see [Mani2013] for details (OFF
by default)

• ENABLE_LOGGER: provides logging possibilities for each class thanks to boost::log library. See
also MAX_LOG_LEVEL in the above (ON by default)

• ENABLE_MASK_ARBITRARY: enable arbitrary precision of bitmask variables (only
Body::groupMask yet implemented) (experimental). If ON, use -DMASK_ARBITRARY_-
SIZE=int to set number of used bits (256 by default) (OFF by default)

• ENABLE_MPFR: use mpfr in C++ and mpmath in python for higher precision Real or for CGAL
exact predicates, see high precision documentation for more details. Requires python3-mpmath
libmpfr-dev libmpfrc++-dev packages (OFF by default)

• ENABLE_MPI: enable MPI environment and communication thanks to OpenMPI and python3-
mpi4py (see also there), for parallel distributed computing (distributed memory) and Yade-
OpenFOAM coupling. Requires python3-mpi4py (ON by default)

1440 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/CMakeLists.txt
http://www.cgal.org/
https://www.boost.org/doc/libs/1_77_0/libs/multiprecision/doc/html/boost_multiprecision/tut/complex.html
http://www.multiprecision.org/mpc/
http://www.suitesparse.com
http://www.openblas.net/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/
https://www.boost.org/doc/libs/release/libs/log/
https://www.mpfr.org/
http://mpmath.org/
https://www.open-mpi.org/software/
https://bitbucket.org/mpi4py/
https://bitbucket.org/mpi4py/
https://mpi4py.readthedocs.io/en/stable/

Yade Documentation, Release 3rd ed.

• ENABLE_MULTI_REAL_HP: allow using twice, quadruple or higher precisions of Real as
RealHP<2>, RealHP<4> or RealHP<N> in computationally demanding sections of C++ code. See
high precision documentation for additional details (ON by default).

• ENABLE_OPENMP: enable OpenMP-parallelizing of Yade execution (ON by default)

• ENABLE_PARTIALSAT : enable the partially saturated clay engine PartialSatClayEngine, under
construction (ON by default)

• ENABLE_PFVFLOW: enable PFV FlowEngine (ON by default)

• ENABLE_POTENTIAL_BLOCKS: enable PotentialBlock shape description thanks for in-
stance to the COIN-OR Linear Programming Solver, requires coinor-clp coinor-libclp-dev
libopenblas-dev (ON by default)

• ENABLE_POTENTIAL_PARTICLES: enable PotentialParticle shape description, requires
libopenblas-dev (ON by default)

• ENABLE_PROFILING: enable profiling, e.g., shows some more metrics, which can define bottle-
necks of the code (OFF by default)

• ENABLE_SPH: enable Smoothed Particle Hydrodynamics (OFF by default)

• ENABLE_THERMAL : enable ThermalEngine (ON by default, experimental)

• ENABLE_TWOPHASEFLOW: enable TwoPhaseFlowEngine (ON by default)

• ENABLE_VTK: enable exports of data using the VTK library, e.g. VTKRecorder engine, requires
a libvtk*-dev (e.g., libvtk9-dev on Ubuntu 22.04) package (ON by default)

Maintaining a consistent choice for options values, in addition to using the same version of source code,
is often necessary for successfully reloading previous Yade saves, see O.load.

For using more extended parameters of cmake, please follow the corresponding documentation on
https://cmake.org/documentation.

Warning: If you have Ubuntu 14.04 Trusty, you need to add -DCMAKE_CXX_FLAGS=-
frounding-math during the configuration step of compilation (see below) or to install libcgal-dev
from our external PPA. Otherwise the following error occurs on AMD64 architectures:

terminate called after throwing an instance of 'CGAL::Assertion_exception'
what(): CGAL ERROR: assertion violation!
Expr: -CGAL_IA_MUL(-1.1, 10.1) != CGAL_IA_MUL(1.1, 10.1)
File: /usr/include/CGAL/Interval_nt.h
Line: 209
Explanation: Wrong rounding: did you forget the -frounding-math option if you␣
↪→use GCC (or -fp-model strict for Intel)?
Aborted

Compilation and usage

If cmake finishes without errors, you will see all enabled and disabled options at the end. Then start the
actual compilation process with:

make

The compilation process can take a considerable amount of time, be patient. If you are using a multi-core
system you can use the parameter -j to speed-up the compilation and split the compilation onto many
cores. For example, on 4-core machines it would be reasonable to set the parameter -j4. Note, Yade
requires approximately 3GB RAM per core for compilation, otherwise the swap-file will be used and
compilation time dramatically increases.

The installation is performed with the following command:

2.5. Installation 1441

https://github.com/coin-or/Clp
http://www.vtk.org/
https://cmake.org/documentation/
https://launchpad.net/~yade-users/+archive/external/

Yade Documentation, Release 3rd ed.

make install

The install command will in fact also recompile if source files have been modified. Hence there is no
absolute need to type the two commands separately. You may receive make errors if you don’t have
permission to write into the target folder. These errors are not critical but without writing permissions
Yade won’t be installed in /usr/local/bin/.

After the compilation finished successfully, the new built can be started by navigating to
/path/to/installfolder/bin and calling yade via (based on version yade-2014-02-20.git-a7048f4):

cd /path/to/installfolder/bin
./yade-2014-02-20.git-a7048f4

For building the documentation you should at first execute the command make install and then make
doc to build it, provided that package texlive-xetex is present. On some multi-language systems
an error Building format(s) --all. This may take some time... fmtutil failed. may occur,
in that case a package locales-all is required.

The generated files will be stored in your current install directory /path/to/installfolder/share/doc/yade-
your-version. Once again writing permissions are necessary for installing into /usr/local/share/doc/. To
open your local documentation go into the folder html and open the file index.html with a browser.

make manpage command generates and moves manpages in a standard place. make check command
executes standard test to check the functionality of the compiled program.

Yade can be compiled not only by GCC-compiler, but also by CLANG front-end for the LLVM compiler.
For that you set the environment variables CC and CXX upon detecting the C and C++ compiler to
use:

export CC=/usr/bin/clang
export CXX=/usr/bin/clang++
cmake -DOPTION1=VALUE1 -DOPTION2=VALUE2

Clang does not support OpenMP-parallelizing for the moment, that is why the feature will be disabled.

Supported linux releases

Currently supported1 linux releases and their respective docker files are:

• Ubuntu 18.04 bionic

• openSUSE 15

These are the bash commands used to prepare the linux distribution and environment for installing and
testing yade. These instructions are automatically performed using the gitlab continuous integration
service after each merge to master. This makes sure that yade always works correctly on these linux
distributions. In fact yade can be installed manually by following step by step these instructions in
following order:

1. Bash commands in the respective Dockerfile to install necessary packages,

2. do git clone https://gitlab.com/yade-dev/trunk.git,

3. then the cmake_* commands in the .gitlab-ci.yml file for respective distribution,

4. then the make_* commands to compile yade,

5. and finally the --check and --test commands.

6. Optionally documentation can be built with make doc command, however currently it is not guar-
anteed to work on all linux distributions due to frequent interface changes in sphinx.

These instructions use ccache and ld.gold to speed-up compilation as described below.
1 To see details of the latest build log click on the master branch.

1442 Chapter 2. Yade for users

http://clang.llvm.org/
https://gitlab.com/yade-dev/trunk/pipelines?scope=branches
https://docs.docker.com/
https://docs.docker.com/engine/reference/builder/
https://gitlab.com/yade-dev/docker-yade/blob/ubuntu18.04/Dockerfile
https://gitlab.com/yade-dev/docker-yade/blob/suse15/Dockerfile
https://docs.gitlab.com/ee/ci/quick_start/
https://gitlab.com/yade-dev/trunk/blob/master/.gitlab-ci.yml
http://www.sphinx-doc.org/en/master/

Yade Documentation, Release 3rd ed.

Python 2 backward compatibility

Following the end of Python 2 support (beginning of 2020), Yade compilation on a Python 2 ecosystem
is no longer garanteed since the 6e097e95 trunk version. Python 2-compilation of the latter is still
possible using the above PYTHON_VERSION cmake option, requiring Python 2 version of prerequisites
packages whose list can be found in the corresponding paragraph (Python 2 backward compatibility) of
the historical doc.

Ongoing development of Yade now assumes a Python 3 environment, and you may refer to some notes
about converting Python 2 scripts into Python 3 if needed.

2.5.4 Speed-up compilation

Compile with ccache

Caching previous compilations with ccache can significantly speed up re-compilation:

cmake -DCMAKE_CXX_COMPILER_LAUNCHER=ccache [options as usual]

Additionally one can check current ccache status with command ccache --show-stats (ccache -s for
short) or change the default cache size stored in file ~/.ccache/ccache.conf.

Compile with distcc

When spliting the compilation on many cores (make -jN), N is limited by the available cores and memory.
It is possible to use more cores if remote computers are available, distributing the compilation with distcc
(see distcc documentation for configuring slaves and master):

export CC="distcc gcc"
export CXX="distcc g++"
cmake [options as usual]
make -jN

The two tools can be combined, adding to the above exports:

export CCACHE_PREFIX="distcc"

Compile with cmake UNITY_BUILD

This option concatenates source files in batches containing several *.cpp each, in order to share the
overhead of include directives (since most source files include the same boost headers, typically). It
accelerates full compilation from scratch (quite significantly). It is activated by adding the following to
cmake command, CMAKE_UNITY_BUILD_BATCH_SIZE defines the maximum number of files to be concate-
nated together (the higher the better, main limitation might be available RAM):

-DCMAKE_UNITY_BUILD=ON -DCMAKE_UNITY_BUILD_BATCH_SIZE=18

This method is helpless for incremental re-compilation and might even be detrimental since a full batch
has to be recompiled each time a single file is modified. If it is anticipated that specific files will need
incremental compilation they can be excluded from the unity build by assigning their full path to cmake
flag NO_UNITY (a single file or a comma-separated list):

-DCMAKE_UNITY_BUILD=ON -DCMAKE_UNITY_BUILD_BATCH_SIZE=18 -DNO_UNITY=../trunk/pkg/dem/
↪→CohesiveFrictionalContactLaw.cpp

2.5. Installation 1443

https://gitlab.com/yade-dev/trunk/-/tree/6e097e95368a9c63ce169a040f418d30c7ba307c
https://gitlab.com/yade-dev/trunk/-/blob/6e097e95368a9c63ce169a040f418d30c7ba307c/doc/sphinx/installation.rst
https://ccache.samba.org/
https://wiki.archlinux.org/index.php/ccache#Set_maximum_cache_size
https://wiki.archlinux.org/index.php/Distcc

Yade Documentation, Release 3rd ed.

Link time

The link time can be reduced by changing the default linker from ld to ld.gold. They are both in the
same package binutils (on opensuse15 it is package binutils-gold). To perform the switch execute
these commands as root:

ld --version
update-alternatives --install "/usr/bin/ld" "ld" "/usr/bin/ld.gold" 20
update-alternatives --install "/usr/bin/ld" "ld" "/usr/bin/ld.bfd" 10
ld --version

To switch back run the commands above with reversed priorities 10 � 20. Alternatively a manual selection
can be performed by command: update-alternatives --config ld.

Note: ld.gold is incompatible with the compiler wrapper mpicxx in some distributions, which is mani-
fested as an error in the cmake stage. We do not use mpicxx for our gitlab builds currently. If you want
to use it then disable ld.gold. Cmake MPI-related failures have also been reported without the mpicxx
compiler, if it happens then the only solution is to disable either ld.gold or the MPI feature.

2.5.5 Cloud Computing

It is possible to exploit cloud computing services to run Yade. The combo Yade/Amazon Web Service
has been found to work well, namely. Detailed instructions for migrating to amazon can be found in the
section Using YADE with cloud computing on Amazon EC2.

2.5.6 GPU Acceleration

The FlowEngine can be accelerated with CHOLMOD’s GPU accelerated solver. The specific hardware
and software requirements are outlined in the section Accelerating Yade’s FlowEngine with GPU .

2.5.7 Special builds

The software can be compiled by a special way to find some specific bugs and problems in it: memory
corruptions, data races, undefined behaviour etc.

The listed sanitizers are runtime-detectors. They can only find the problems in the code, if the particular
part of the code is executed. If you have written a new C++ class (constitutive law, engine etc.) try to
run your Python script with the sanitized software to check, whether the problem in your code exist.

AddressSanitizer

AddressSanitizer is a memory error detector, which helps to find heap corruptions, out-of-bounds errors
and many other memory errors, leading to crashes and even wrong results.

To compile Yade with this type of sanitizer, use ENABLE_ASAN option:

cmake -DENABLE_ASAN=1

The compilation time, memory consumption during build and the size of build-files are much higher
than during the normall build. Monitor RAM and disk usage during compilation to prevent out-of-RAM
problems.

To find the proper libasan library in your particular distribution, use locate or find /usr -iname
"libasan*so" command. Then, launch your yade executable in connection with that libasan library,
e.g.:

1444 Chapter 2. Yade for users

https://clang.llvm.org/docs/AddressSanitizer.html

Yade Documentation, Release 3rd ed.

LD_PRELOAD=/some/path/to/libasan.so yade

By default the leak detector is enabled in the asan build. Yade is producing a lot of leak warnings at the
moment. To mute those warnings and concentrate on other memory errors, one can use detect_leaks=0
option. Accounting for the latter, the full command to run tests with the AddressSanitized-Yade on
Debian 10 Buster is:

ASAN_OPTIONS=detect_leaks=0:verify_asan_link_order=false yade --test

If you add a new check script, it is being run automatically through the AddressSanitizer in the CI-
pipeline.

2.5.8 Yubuntu

If you are not running a Linux system there is a way to create an Ubuntu live-usb on any usb mass-
storage device (minimum size 10GB). It is a way to boot the computer on a linux system with Yadedaily
pre-installed without affecting the original system. More informations about this alternative are available
here (see the README file first). Note that the images there date back from 2018 and use ubuntu16.04,
for newer versions of yade see below.

Alternatively, images of a linux virtual machine can be downloaded here (ubuntu20.04) , or for older
(ubuntu16.04) versions here. They should run on any system with a virtualization software (tested with
VirtualBox and VMWare).

2.6 Acknowledging Yade

We kindly ask YADE users to cite the documentation in scientific publications as a way to assess YADE’s
contribution to their field.

For the YADE project in general, please reference the documentation as a whole:

• V. Šmilauer et al. (2021), Yade Documentation 3rd ed. The Yade Project.
DOI:10.5281/zenodo.5705394

@article{yade2021,
title = {Yade Documentation (3rd edition)},
author = {Smilauer, Vaclav and Angelidakis, Vasileios and Catalano,␣

↪→Emanuele and Caulk, Robert and Chareyre, Bruno and Ch{\ifmmode\grave{e}\else\`
↪→{e}\fi}vremont, William and Dorofeenko, Sergei and Duriez, J{\ifmmode\acute{e}\
↪→else\'{e}\fi}r{\ifmmode\hat{o}\else\^{o}\fi}me and Dyck, Nolan and Elias, Jan␣
↪→and Er, Burak and Eulitz, Alexander and Gladky, Anton and Guo, Ning and Jakob,␣
↪→Christian and Kneib, Francois and Kozicki, Janek and Marzougui, Donia and␣
↪→Maurin, Raphael and Modenese, Chiara and Pekmezi, Gerald and Scholt{\ifmmode\
↪→grave{e}\else\`{e}\fi}s, Luc and Sibille, Luc and Stransky, Jan and Sweijen,␣
↪→Thomas and Thoeni, Klaus and Yuan, Chao},
year = {2021},
journal = {Zenodo},
doi = {10.5281/zenodo.5705394}

}

For newer features of YADE, please reference the review article:

• V. Angelidakis et al. “YADE - An extensible framework for the interactive simulation of multi-
scale, multiphase, and multiphysics particulate systems”, Computer Physics Communications
304 (2024): 109293. DOI:10.1016/j.cpc.2024.109293

2.6. Acknowledging Yade 1445

http://en.wikipedia.org/wiki/Live_USB
http://people.3sr-grenoble.fr/users/bchareyre/pubs/yubuntu/
https://yade-dem.org/publi/virtual/
http://people.3sr-grenoble.fr/users/bchareyre/pubs/yubuntu/
https://dx.doi.org/10.5281/zenodo.5705394
https://doi.org/10.1016/j.cpc.2024.109293

Yade Documentation, Release 3rd ed.

@article{yade2024,
author = {Angelidakis, Vasileios and Boschi, Katia and Brzezi{\ifmmode\acute

↪→{n}\else\'{n}\fi}ski, Karol and Caulk, Robert A. and Chareyre, Bruno and del␣
↪→Valle, Carlos Andr{\ifmmode\acute{e}\else\'{e}\fi}s and Duriez, J{\ifmmode\
↪→acute{e}\else\'{e}\fi}r{\ifmmode\hat{o}\else\^{o}\fi}me and Gladky, Anton and␣
↪→van der Haven, Dingeman L. H. and Kozicki, Janek and Pekmezi, Gerald and Scholt
↪→{\ifmmode\grave{e}\else\`{e}\fi}s, Luc and Thoeni, Klaus},
title = {{YADE - An extensible framework for the interactive simulation of␣

↪→multiscale, multiphase, and multiphysics particulate systems}},
journal = {Computer Physics Communications},
volume = {304},
pages = {109293},
year = {2024},
month = nov,
issn = {0010-4655},
publisher = {North-Holland},
doi = {10.1016/j.cpc.2024.109293},
url = {https://doi.org/10.1016/j.cpc.2024.109293}

}

Ideally, users cite both documents to acknowledge the work of both earlier and later developers of
YADE. Beyond acknowledgment, proper referencing helps find new use cases and new users by tracking
the citations on Yade’s Scholar profile.

1446 Chapter 2. Yade for users

https://scholar.google.com/citations?user=hZB8GGcAAAAJ&hl=en

Chapter 3

Yade for programmers

3.1 Programmer’s manual

3.1.1 Build system

Yade uses cmake the cross-platform, open-source build system for managing the build process. It takes
care of configuration, compilation and installation. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files. CMake generates native
makefiles and workspaces that can be used in the compiler environment of your choice.

Building

The structure of Yade source tree is presented below. We shall call each top-level component module (ex-
cluding, doc, examples and scripts which don’t participate in the build process). Some subdirectories
of modules are skipped for brevity, see README.rst files therein for more information:

cMake/ ## cmake files used to detect compilation requirements
core/ ## core simulation building blocks
data/ ## data files used by yade, packaged separately
doc/ ## this documentation
examples/ ## examples directory
gui/ ## user interfaces

qt5/ ## same, but for qt5
lib/ ## support libraries, not specific to simulations
preprocessing/ ## files associated with creation or generation of the simulation

dem/ ## creating a DEM simulation
potential/ ## creating a PotentialBlocks or PotentialParticles simulation
README.rst ## more information about this directory

pkg/ ## simulation-specific files
common/ ## generally useful classes
dem/ ## classes for Discrete Element Method
README.rst ## more information about this directory

postprocessing/ ## files associated with extracting results for postprocessing
dem/ ## general data extraction from DEM, no particular data target
image/ ## creating images from simulation
vtk/ ## extracting data for VTK
README.rst ## more information about this directory

py/ ## python modules
scripts/ ## helper scripts including packaging and checks-and-tests

1447

http://www.cmake.org/

Yade Documentation, Release 3rd ed.

Header installation

CMAKE uses the original source layout and it is advised to use #include <module/Class.hpp> style of
inclusion rather than #include "Class.hpp" even if you are in the same directory. The following table
gives a few examples:

Original header location Included as
core/Scene.hpp #include <core/Scene.hpp>
lib/base/Logging.hpp #include <lib/base/Logging.hpp>
lib/serialization/Serializable.hpp #include <lib/serialization/Serializable.hpp>
pkg/dem/SpherePack.hpp #include <pkg/dem/SpherePack.hpp>

Automatic compilation

In the pkg/ directory, situation is different. In order to maximally ease addition of modules to yade, all
*.cpp files are automatically scanned recursively by CMAKE and considered for compilation.

To enable/disable some component use the cmake flags ENABLE_FEATURE, which are listed in:

1. compilation instructions.

2. CMakeLists.txt.

When some component is enabled an extra #define flag YADE_FEATURE is passed from cmake to the
compiler. Then inside the code both the .cpp and .hpp files which contain the FEATURE feature should
have an #ifdef YADE_FEATURE guard at the beginning.

Linking

The order in which modules might depend on each other is given as follows:

mod-
ule

resulting shared library dependencies

lib libyade-support.so can depend on external libraries, may not depend on any other
part of Yade.

core libcore.so yade-support; may depend on external libraries.
pkg libplugins.so core, yade-support
gui libQtGUI.so,

libPythonUI.so
lib, core, pkg

py (many files) lib, core, pkg, external

3.1.2 Development tools

Integrated Development Environment and other tools

A frequently used IDE is Kdevelop. We recommend using this software for navigating in the sources,
compiling and debugging. Other useful tools for debugging and profiling are Valgrind and KCachegrind.
A series of wiki pages is dedicated to these tools in the development section of the wiki.

Yade is agnostic to the IDE used; it can be compiled and run directly from the command line. You
can modify the source code using any text editor, such as vim https://www.vim.org/, emacs https:
//www.gnu.org/software/emacs/, vscode https://code.visualstudio.com/, or any other editor of your
choice.

1448 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/trunk/blob/master/CMakeLists.txt
https://valgrind.org/
https://kcachegrind.github.io/html/Home.html
https://yade-dem.org/wiki/Yade#Development
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/

Yade Documentation, Release 3rd ed.

Hosting and versioning

The Yade project is kindly hosted at Launchpad and GitLab:

• source code on gitlab

• issue and bug tracking on gitlab

• release downloads on GitLab

• yade-dev mailing list on launchpad: yade-dev@lists.launchpad.net

• yade-users mailing list on launchpad: yade-users@lists.launchpad.net

• questions and answers on GitLab

The versioning software used is GIT, for which a short tutorial can be found in Yade on GitLab. GIT is
a distributed revision control system. It is available packaged for all major linux distributions.

The source code is periodically imported to Launchpad for building PPA-packages. The repository can
be http-browsed.

Development process

Git is used for version control. The main development branch is called master and is hosted at GitLab.
For the development process, the following steps are recommended:

1. Clone the repository to your local machine: git clone https://gitlab.com/yade-dev/trunk.
git

2. Create a new branch for your work: git checkout -b my-new-feature

3. Make your changes and commit them: git commit -am 'Add some feature'

4. Push to the branch: git push origin my-new-feature

5. Submit a merge request on GitLab: Merge Request

The merge request will be reviewed by the developers and, if accepted, merged into the main branch.
Yade has a wide range of pipelines that are automatically triggered by GitLab when a new commit is
pushed to the repository. These pipelines include building the software, running tests, and generating the
documentation. The results of these pipelines can be viewed on the GitLab CI/CD page or by clicking
on the green checkmark next to a commit in the GitLab interface. If some tests fail, the developers will
be notified and the merge request will not be accepted until the issues are resolved.

It is required to add at least one line into the ChangeLog file in the root directory of the repository for
each merge request. This file is used to generate the release notes for each new version of Yade.

How to make a release

The release process is automated using GitLab CI/CD pipelines. The release process is triggered by
creating a new tag in the repository. The tag should be named according to the semver convention, (e.g.,
2025.2.0), whre the first number is the year, the second number is the month, and the third number is
the patch version. The release process will build the software, run tests, and generate the documentation.

1. Create RELEASE file in the root folder with the version number in it.

2. Update Changelog file, put the proper date and version number in the top of the file.

3. Create branch using the following command and format:

git checkout -b YYYY.M.0

4. Tag release “git tag -as YYYY.M.0 -m”YYYY.M.0”

5. Return to master branch and remove RELEASE file

3.1. Programmer’s manual 1449

https://launchpad.net/yade/
https://gitlab.com/yade-dev/
https://gitlab.com/yade-dev/trunk
https://gitlab.com/yade-dev/trunk/issues
https://gitlab.com/yade-dev/trunk/-/releases
https://launchpad.net/~yade-dev
mailto:yade-dev@lists.launchpad.net
https://launchpad.net/~yade-users
mailto:yade-users@lists.launchpad.net
https://gitlab.com/yade-dev/answers
http://git-scm.com/
https://gitlab.com/yade-dev/
https://gitlab.com/yade-dev/trunk
https://gitlab.com/yade-dev/trunk
https://gitlab.com/yade-dev/trunk
https://gitlab.com/yade-dev/trunk/merge_requests
https://gitlab.com/yade-dev/trunk/-/pipelines
https://gitlab.com/yade-dev/trunk/blob/master/ChangeLog
https://gitlab.com/yade-dev/trunk/-/releases
https://semver.org/

Yade Documentation, Release 3rd ed.

6. Push master, new branch and tags to gitlab

7. Download tar.gz

8. Create asc-file (signature): gpg --armor --sign --detach-sig tarball.tar.gz

9. Upload new tarball on Launchpad

10. Make announcement on mailing list and on Launchpad.

RELEASE file should contain the version number in the following format:

YYYY.MM.0

where YYYY is the year and MM is the month of the release. For example, the release file for the February
2025 release should contain the following text:

2025.2.0

Build robot

A build robot hosted at UMS Gricad is tracking source code changes via gitlab pipeline mechanism.
Each time a change in the source code is committed to the main development branch via GIT, or a
Merge Request (MR) is submitted the “buildbot” downloads and compiles the new version, and then
starts a series of tests.

If a compilation error has been introduced, it will be notified to the yade-dev mailing list and to the
committer, thus helping to fix problems quickly. If the compilation is successful, the buildbot starts
unit regression tests and “check tests” (see below) and report the results. If all tests are passed, a new
version of the documentation is generated and uploaded to the website in html and pdf formats. As a
consequence, those two links always point to the documentation (the one you are reading now) of the last
successful build, and the delay between commits and documentation updates are very short (minutes).
The buildbot activity and logs can be browsed online.

The output of each particular build is directly accessible by clicking the green “Passed” button, and then
clicking “Browse” in the “Job Artifacts” on the right.

3.1.3 Debugging

For yade debugging two tools are available:

1. Use the debug build so that the stack trace provides complete information about potential crash.
This can be achieved in two ways:

a) Compiling yade with cmake option -DDEBUG=ON,

b) Installing yade-dbgsym debian/ubuntu package (this option will be available after this task
is completed).

2. Use Logging framework described below.

These tools can be used in conjunction with other software. A detailed discussion of these is on yade
wiki. These tools include: kdevelop, valgrind, alleyoop, kcachegrind, ddd, gdb, kompare, kdiff3, meld.

Note: On some linux systems stack trace will not be shown and a message ptrace: Operation
not permitted will appear instead. To enable stack trace issue command: sudo echo 0 > /proc/
sys/kernel/yama/ptrace_scope. To disable stack trace issue command sudo echo 1 > /proc/sys/
kernel/yama/ptrace_scope.

Hint: When debugging make sure there is enough free space in /tmp.

1450 Chapter 3. Yade for programmers

https://launchpad.net/yade
https://gricad-gitlab.univ-grenoble-alpes.fr/
https://gitlab.com/yade-dev/trunk/pipelines
https://gitlab.com/yade-dev/trunk/merge_requests
https://www.yade-dem.org/doc/
https://yade-dem.org/doc/Yade.pdf
https://gitlab.com/yade-dev/trunk/-/jobs
https://gitlab.com/yade-dev/trunk/-/jobs
https://gitlab.com/yade-dev/trunk/issues/58
https://yade-dem.org/wiki/Introduction_to_debugging
https://yade-dem.org/wiki/Debugging_using_Kdevelop
https://www.kdevelop.org/
http://valgrind.org/
http://alleyoop.sourceforge.net/
http://kcachegrind.sourceforge.net/html/Home.html
http://www.gnu.org/software/ddd/
https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Kompare
http://kdiff3.sourceforge.net/
https://meldmerge.org/

Yade Documentation, Release 3rd ed.

Logging

Yade uses boost::log library for flexible logging levels and per-class debugging. See also description of
log module. A cmake compilation option -DENABLE_LOGGER=ON must be supplied during compilation1.

Figure imgLogging shows example use of logging framework. Usually a ClassName appears in place
of _log.cpp shown on the screenshot. It is there because the yade.log module uses CREATE_CPP_-
LOCAL_LOGGER macro instead of the regular DECLARE_LOGGER and CREATE_LOGGER, which are discussed
below.

Note: Default format of log message is:

<severity level> ClassName:LineNumber FunctionName: Log Message

special macro LOG_NOFILTER is printed without ClassName because it lacks one.

Config files can be saved and loaded via readConfigFile and saveConfigFile. The defaultConfigFileName
is read upon startup if it exists. The filter level setting -f supplied from command line will override the
setting in config file.

Log levels

Following debug levels are supported:
1 Without -DENABLE_LOGGER=ON cmake option the debug macros in /lib/base/Logging.hpp use regular std::cerr for

output, per-class logging and log levels do not work.

3.1. Programmer’s manual 1451

https://www.boost.org/doc/libs/release/libs/log/
https://gitlab.com/yade-dev/trunk/blob/master//lib/base/Logging.hpp

Yade Documentation, Release 3rd ed.

Table 1: Yade logging verbosity levels.

macro name filter name op-
tion

explanation

LOG_NOFILTER log.NOFILTER -f0 Will print only the unfiltered messages. The LOG_-
NOFILTER macro is for developer use only, so basically
-f0 means that nothing will be printed. This log level is
not useful unless a very silent mode is necessary.

LOG_FATAL log.FATAL -f1 Will print only critical errors. Even a throw to yade
python interface will not recover from this situation. This
is usually followed by yade exiting to shell.

LOG_ERROR log.ERROR -f2 Will also print errors which do not require to throw to
yade python interface. Calculations will continue, but
very likely the results will be all wrong.

LOG_WARN log.WARN -f3 Will also print warnings about recoverable problems that
you should be notified about (e.g., invalid value in a con-
figuration file, so yade fell back to the default value).

LOG_INFO log.INFO -f4 Will also print all informational messages (e.g. something
was loaded, something was called, etc.).

LOG_DEBUG log.DEBUG -f5 Will also print debug messages. A yade developer puts
them everywhere, and yade user enables them on per-
class basis to provide some extra debug info.

LOG_TRACE log.TRACE -f6 Trace messages, they capture every possible detail about
yade behavior.

Yade default log level is yade.log.WARN which is the same as invoking yade -f3.

Setting a filter level

Warning: The messages (such as a << b << " message.") given as arguments to LOG_* macros
are used only if the message passes the filter level. Do not use such messages to perform mission
critical calculations.

There are two settings for the filter level, the Default level used when no ClassName (or "filename.
cpp") specific filter is set and a filter level set for specific ClassName (or "filename.cpp"). They can
be set with following means:

1. When starting yade with yade -fN command, where N sets the Default filter level. The default
value is yade.log.WARN (3).

2. To change Default filter level during runtime invoke command log.setLevel("Default",value)
or log.setDefaultLogLevel(value):

Yade [1]: import log

Yade [2]: log.setLevel("Default",log.WARN)

Yade [3]: log.setLevel("Default",3)

Yade [4]: log.setDefaultLogLevel(log.WARN)

Yade [5]: log.setDefaultLogLevel(3)

3. To change filter level for SomeClass invoke command:

1452 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

Yade [6]: import log

Yade [7]: log.setLevel("NewtonIntegrator",log.TRACE)

Yade [8]: log.setLevel("NewtonIntegrator",6)

4. To change the filter level for "filename.cpp" use the name specified when creating it. For example
manipulating filter log level of "_log.cpp" might look like following:

Yade [9]: import log

Yade [10]: log.getUsedLevels()
Out[10]: {'Default': 3, 'NewtonIntegrator': 6}

Yade [11]: log.setLevel("_log.cpp",log.WARN)

Yade [12]: log.getUsedLevels()
Out[12]: {'Default': 3, 'NewtonIntegrator': 6, '_log.cpp': 3}

Yade [13]: log.getAllLevels()["_log.cpp"]
Out[13]: 3

Debug macros

To enable debugging for particular class the DECLARE_LOGGER; macro should be put in class definition
inside header to create a separate named logger for that class. Then the CREATE_LOGGER(ClassName);
macro must be used in the class implementation .cpp file to create the static variable. Sometimes a logger
is necessary outside the class, such named logger can be created inside a .cpp file and by convention its
name should correspond to the name of the file, use the macro CREATE_CPP_LOCAL_LOGGER("filename.
cpp"); for this. On rare occasions logging is necessary inside .hpp file outside of a class (where the local
class named logger is unavailable), then the solution is to use LOG_NOFILTER(…) macro, because it is the
only one that can work without a named logger. If the need arises this solution can be improved, see
Logging.cpp for details.

All debug macros (LOG_TRACE, LOG_DEBUG, LOG_INFO, LOG_WARN, LOG_ERROR, LOG_FATAL, LOG_NOFILTER)
listed in section above accept the std::ostream syntax inside the brackets, such as LOG_TRACE(a <<
b << " text"). The LOG_NOFILTER is special because it is always printed regardless of debug level,
hence it should be used only in development branches.

Additionally seven macros for printing variables at LOG_TRACE level are available: TRVAR1, TRVAR2,
TRVAR3, TRVAR4, TRVAR5, TRVAR6 and TRVARn. They print the variables, e.g.: TRVAR3(testInt,testStr,
testReal); or TRVARn((testInt)(testStr)(testReal)). See function testAllLevels for example use.

The macro TRACE; prints a "Been here" message at TRACE log filter level, and can be used for quick
debugging.

Utility debug macros

The LOG_TIMED_* family of macros:

In some situations it is useful to debug variables inside a very fast, or maybe a multithreaded, loop.
In such situations it would be useful to:

1. Avoid spamming console with very fast printed messages and add some print timeout to them,
preferably specified with units of seconds or milliseconds.

2. Make sure that each separate thread has opportunity to print message, without interleaving such
messages with other threads.

3.1. Programmer’s manual 1453

https://gitlab.com/yade-dev/trunk/blob/cc2e0c2038411ce845c/lib/base/Logging.cpp#L37
https://gitlab.com/yade-dev/trunk/blob/cc2e0c2038411ce845c/py/_log.cpp#L128

Yade Documentation, Release 3rd ed.

To use above functionality one must #include <lib/base/LoggingUtils.hpp> in the .cpp file which
provides the LOG_TIMED_* and TIMED_TRVAR* macro family. Example usage can be found in function
testTimedLevels.

To satisfy the first requirement all LOG_TIMED_*macros accept two arguments, where the first argument
is the wait timeout, using standard C++14 / C++20 time units, example use is LOG_TIMED_INFO(2s
, "test int: " << testInt++); to print every 2 seconds. But only seconds and milliseconds are
accepted (this can be changed if necessary).

To satisfy the second requirement a thread_local static Timer variable is used. This way each thread in
a parallel loop can print a message every 500ms or 10s e.g. in this parallel loop. The time of last print to
console is stored independently for each thread and an extra code block which checks time is added. It
means that a bit more checks are done than typical LOG_* which only perform an integer comparison to
check filter level. Therefore suggested use is only during heavy debugging. When debugging is finished
then better to remove them.

Note: The *_TRACE family of macros are removed by compiler during the release builds, because the
default -DMAX_LOG_LEVEL is 5. So those are very safe to use, but to have them working locally make
sure to compile yade with cmake -DMAX_LOG_LEVEL=6 option.

The LOG_ONCE_* family of macros:

In a similar manner a LOG_ONCE_* and ONCE_TRVAR* family of macros is provided inside file Log-
gingUtils.hpp. Then the message is printed only once.

All debug macros are summarized in the table below:

1454 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/trunk/blob/master//lib/base/LoggingUtils.hpp
https://gitlab.com/yade-dev/trunk/blob/cc2e0c2038411ce845c/py/_log.cpp#L181
https://gitlab.com/yade-dev/trunk/blob/cc2e0c2038411ce845c/py/_log.cpp#L181
https://en.cppreference.com/w/cpp/header/chrono#Literals
https://gitlab.com/yade-dev/trunk/blob/d4195d3571a76/lib/base/TimedLogging.hpp#L87
https://en.cppreference.com/w/cpp/language/storage_duration
https://gitlab.com/yade-dev/trunk/blob/cc2e0c2038411ce845c/lib/base/Timer.hpp#L30
https://gitlab.com/yade-dev/trunk/blob/cc2e0c2038411ce845c/pkg/common/InsertionSortCollider.cpp#L115
https://gitlab.com/yade-dev/trunk/blob/master//lib/base/LoggingUtils.hpp
https://gitlab.com/yade-dev/trunk/blob/master//lib/base/LoggingUtils.hpp

Yade Documentation, Release 3rd ed.

Table 2: Yade debug macros.

macro name explanation
DECLARE_LOGGER; Declares logger variable inside class definition in

.hpp file.
CREATE_LOGGER(ClassName); Creates logger static variable (with name

"ClassName") inside class implementation in .
cpp file.

TEMPLATE_CREATE_-
LOGGER(ClassName<OtherClass>);

Creates logger static variable (with name
"ClassName<OtherClass>") inside class imple-
mentation in a .cpp file. Use this for templated
classes.

CREATE_CPP_LOCAL_LOGGER("filename.cpp"); Creates logger static variable outside of any
class (with name "filename.cpp") inside the
filename.cpp file.

LOG_TRACE, LOG_TIMED_TRACE, LOG_ONCE_TRACE,
LOG_DEBUG, LOG_TIMED_DEBUG, LOG_ONCE_DEBUG,
LOG_INFO, LOG_TIMED_INFO, LOG_ONCE_INFO,
LOG_WARN, LOG_TIMED_WARN, LOG_ONCE_WARN,
LOG_ERROR, LOG_TIMED_ERROR, LOG_ONCE_ERROR,
LOG_FATAL, LOG_TIMED_FATAL, LOG_ONCE_FATAL,
LOG_NOFILTER, LOG_TIMED_NOFILTER,
LOG_ONCE_NOFILTER

Prints message using std::ostream syntax, like:
LOG_TRACE(a << b << " text")
LOG_TIMED_TRACE(5s , a << b << " text"
); , prints every 5 seconds
LOG_TIMED_DEBUG(500ms , a);, prints every
500 milliseconds
LOG_ONCE_TRACE(a << b << " text"); ,
prints just once
LOG_ONCE_DEBUG(a);, prints only once

TRVAR1, TIMED_TRVAR1, ONCE_TRVAR1,
TRVAR2, TIMED_TRVAR2, ONCE_TRVAR2,
TRVAR3, TIMED_TRVAR3, ONCE_TRVAR3,
TRVAR4, TIMED_TRVAR4, ONCE_TRVAR4,
TRVAR5, TIMED_TRVAR5, ONCE_TRVAR5,
TRVAR6, TIMED_TRVAR6, ONCE_TRVAR6,
TRVARn, TIMED_TRVARn, ONCE_TRVARn

Prints provided variables like:
TRVAR3(testInt,testStr,testReal);
TRVARn((testInt)(testStr)(testReal));
TIMED_TRVAR3(10s , testInt , testStr ,
testReal);
ONCE_TRVARn(
(testInt)(testStr)(testReal));
See file py/_log.cpp for example use.

TRACE; Prints a "Been here" message at TRACE log filter
level.

LOG_TIMED_6, LOG_6_TRACE, LOG_ONCE_6,
LOG_TIMED_5, LOG_5_DEBUG, LOG_ONCE_5,
LOG_TIMED_4, LOG_4_INFO, LOG_ONCE_4,
LOG_TIMED_3, LOG_3_WARN, LOG_ONCE_3,
LOG_TIMED_2, LOG_2_ERROR, LOG_ONCE_2,
LOG_TIMED_1, LOG_1_FATAL, LOG_ONCE_1,
LOG_TIMED_0, LOG_0_NOFILTER, LOG_ONCE_0,
LOG_TIMED_6_TRACE, LOG_6, LOG_ONCE_6_TRACE,
LOG_TIMED_5_DEBUG, LOG_5, LOG_ONCE_5_DEBUG,
LOG_TIMED_4_INFO, LOG_4, LOG_ONCE_4_INFO,
LOG_TIMED_3_WARN, LOG_3, LOG_ONCE_3_WARN,
LOG_TIMED_2_ERROR, LOG_2, LOG_ONCE_2_ERROR,
LOG_TIMED_1_FATAL, LOG_1, LOG_ONCE_1_FATAL,
LOG_TIMED_0_NOFILTER, LOG_0
LOG_ONCE_0_NOFILTER,

Additional macro aliases for easier use in editors
with tab completion. They have have a filter level
number in their name.

3.1. Programmer’s manual 1455

https://gitlab.com/yade-dev/trunk/blob/master/py/_log.cpp

Yade Documentation, Release 3rd ed.

Maximum log level

Using boost::log for log filtering means that each call to LOG_* macro must perform a single integer
comparison to determine if the message passes current filter level. For production use calculations
should be as fast as possible and this filtering is not optimal, because the macros are not optimized
out, as they can be re-enabled with a simple call to log.setLevel("Default",log.TRACE) or log.
setLevel("Default",6). The remedy is to use the cmake compilation option MAX_LOG_LEVEL=4 (or 3)
which will remove macros higher than the specified level during compilation. The code will run slightly
faster and the command log.setLevel("Default",6) will only print a warning that such high log level
(which can be checked with log.getMaxLevel() call) is impossible to obtain with current build.

Note: At the time when logging was introduced into yade the speed-up gain was so small, that
it turned out to be impossible to measure with yade -f0 --stdperformance command. Hence this
option MAX_LOG_LEVEL was introduced only on principle.

The upside of this approach is that yade can be compiled in a non-debug build, and the log filtering
framework can be still used.

3.1.4 Regression tests

Yade contains two types of regression tests, some are unit tests while others are testing more complex
simulations. Although both types can be considered regression tests, the usage is that we name the first
simply “regression tests”, while the latest are called “check tests”. Both series of tests can be ran at yade
startup by passing the options “test” or “checkall”

yade --test
yade --checkall

The yade --checkall is a complete check. To skip checks lasting more than 30 seconds one can use
this command

yade --check

Unit regression tests

Unit regression tests are testing the output of individual functors and engines in well defined conditions.
They are defined in the folder py/tests/. The purpose of unit testing is to make sure that the behaviour
of the most important classes remains correct during code development. Since they test classes one by
one, unit tests can’t detect problems coming from the interaction between different engines in a typical
simulation. That is why check tests have been introduced.

To add a new test, the following steps must be performed:

1. Place a new file such as py/tests/dummyTest.py.

2. Add the file name such as dummyTest to the py/tests/__init__.py file.

3. If necessary modify the import and allModules lines in py/tests/__init__.py.

4. According to instructions in python unittest documentation use commands such as self.
assertTrue(…), self.assertFalse(…) or self.assertRaises(…,…) to report possible errors.

Note: It is important that all variables used in the test are stored inside the class (using the self.
accessor), and that all preparations are done inside the function setUp().

1456 Chapter 3. Yade for programmers

https://www.boost.org/doc/libs/release/libs/log/
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/dummyTest.py
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/__init__.py
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/__init__.py
https://docs.python.org/3/library/unittest.html

Yade Documentation, Release 3rd ed.

Check tests

Check tests (also see README) perform comparisons of simulation results between different versions of
yade, as discussed here. They differ with regression tests in the sense that they simulate more complex
situations and combinations of different engines, and usually don’t have a mathematical proof (though
there is no restriction on the latest). They compare the values obtained in version N with values obtained
in a previous version or any other “expected” results. The reference values must be hardcoded in the
script itself or in data files provided with the script. Check tests are based on regular yade scripts, so
that users can easily commit their own scripts to trunk in order to get some automatized testing after
commits from other developers.

When check fails the script should return an error message via python command raise
YadeCheckError(messageString) telling what went wrong. If the script itself fails for some reason
and can’t generate an output, the log will contain only “scriptName failure”. If the script defines differ-
ences on obtained and awaited data, it should print some useful information about the problem. After
this occurs, the automatic test will stop the execution with error message.

An example dummy check test scripts/checks-and-tests/checks/checkTestDummy.py demonstrates a
minimal empty test. A little more functional example check test can be found in scripts/checks-and-
tests/checks/checkTestTriax.py. It shows results comparison, output, and how to define the path to
data files using checksPath. Users are encouraged to add their own scripts into the scripts/checks-and-
tests/checks/ folder. Discussion of some specific checktests design in questions and answers is welcome.
Note that re-compiling is required before the newly added scripts can be launched by yade --check (or
direct changes have to be performed in “lib” subfolders). A check test should never need more than a few
seconds to run. If your typical script needs more, try to reduce the number of elements or the number
of steps.

To add a new check, the following steps must be performed:

1. Place a new file such as scripts/checks-and-tests/checks/checkTestDummy.py,

2. Inside the new script use checksPath when it is necessary to load some data file, like scripts/checks-
and-tests/checks/data/100spheres

3. When error occurs raise exception with command raise YadeCheckError(messageString)

Warning: Due to the limitation of execfile the local variables created in one check script are
passed down to the check scripts executed after it. Hence creating a local variable in one script called
e.g. Body will break the scripts executed after it, when they will try to create a new Body(). The
workaround is to use unique non-trivial variable names in the check scripts.

GUI Tests

In order to add a new GUI test one needs to add a file to scripts/checks-and-tests/gui directory. File
must be named according to the following convention: testGuiName.py with an appropriate test Name
in place (the testGui.sh script is searching for files matching this pattern). The scripts/checks-and-
tests/gui/testGuiBilliard.py may serve as a boilerplate example. The important “extra” parts of the
code (taken from e.g. example directory) are:

1. from testGuiHelper import TestGUIHelper

2. scr = TestGUIHelper("Billiard"), make sure to put the chosen test Name in place of Billiard.

3. Establish a reasonable value of guiIterPeriod which makes the test finish in less than 30 seconds.

4. Inside O.engines there has to be a call at the end of the loop to
PyRunner(iterPeriod=guiIterPeriod, command='scr.screenshotEngine()').

5. The last command in the script should be O.run(guiIterPeriod * scr.getTestNum() + 1) to
start the test process.

3.1. Programmer’s manual 1457

https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/README.rst
http://www.mail-archive.com/yade-dev@lists.launchpad.net/msg05784.html
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/checkTestDummy.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/checkTestTriax.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/checkTestTriax.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/
https://answers.launchpad.net/yade/
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/checkTestDummy.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/data/100spheres
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/data/100spheres
https://gitlab.com/yade-dev/trunk/blob/942c1712671adf3b2cda6c0b/scripts/checks-and-tests/checks/checkList.py#L74
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/gui
https://gitlab.com/yade-dev/trunk/blob/6a3ac07fbfb734a60a/scripts/checks-and-tests/gui/testGui.sh#L64
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/gui/testGuiBilliard.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/gui/testGuiBilliard.py
https://gitlab.com/yade-dev/trunk/blob/master/examples

Yade Documentation, Release 3rd ed.

6. Make sure to push to yade-data repository the reference screenshots (for dealing with ./data dir
see Yade on GitLab). These screenshots can be also obtained from artifacts by clicking “Download”
button in the gitlab pipeline, next to the “Browse” button in the right pane.

These tests can be run locally, after adjusting the paths at the start of testGui.sh script. Two modes of
operation are possible:

1. Launch on the local desktop via command: scripts/checks-and-tests/gui/testGui.sh, in this
case the screenshots will be different from those used during the test.

2. Or launch inside a virtual xserver via command: xvfb-run -a -s "-screen 0 1600x1200x24"
scripts/checks-and-tests/gui/testGui.sh, then the screenshots will be similar to those used
in the test, but still there may be some differences in the font size. In such case it is recommended
to use the reference screenshots downloaded from the artifacts in the gitlab pipeline (see point 6.
above).

Care should be taken to not use random colors of bodies used in the test. Also no windows such as 3d
View or Inspector view should be opened in the script testGuiName.py, because they are opened during
the test by the TestGUIHelper class.

Note: It is not possible to call GUI tests from a call such as yade --test because of the necessity to
launch YADE inside a virtual xserver.

3.1.5 Conventions

The following coding rules should be respected; documentation is treated separately.

• general

– C++ source files have .hpp and .cpp extensions (for headers and implementation, respec-
tively). In rare cases .ipp is used for pure template code.

– All header files should have the #pragma once multiple-inclusion guard.

– Do not type using namespace … in header files, this can lead to obscure bugs due to names-
pace pollution.

– Avoid using std::something in .hpp files. Feel free to use them as much as you like inside
.cpp files. But remember that the usual problems with this practice still apply: wrong type
or function might be used instead of the one that you would expect. But since it’s limited to a
single .cpp file, it will be easier to debug and the convenience might outweight the associated
dangers.

– Use tabs for indentation. While this is merely visual in C++, it has semantic meaning in
python; inadvertently mixing tabs and spaces can result in syntax errors.

• capitalization style

– Types should be always capitalized. Use CamelCase for composed class and typenames
(GlobalEngine). Underscores should be used only in special cases, such as functor names.

– Class data members and methods must not be capitalized, composed names should use low-
ercase camelCase (glutSlices). The same applies for functions in python modules.

– Preprocessor macros are uppercase, separated by underscores; those that are used outside the
core take (with exceptions) the form YADE_*, such as YADE_CLASS_BASE_DOC_* macro
family.

• programming style

– Be defensive, if it has no significant performance impact. Use assertions abundantly: they
don’t affect performance (in the optimized build) and make spotting error conditions much
easier.

1458 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/yade-data
https://gitlab.com/yade-dev/trunk/blob/6a3ac07fbfb734a60a/scripts/checks-and-tests/gui/testGui.sh#L6

Yade Documentation, Release 3rd ed.

– Use YADE_CAST and YADE_PTR_CAST where you want type-check during debug builds, but fast
casting in optimized build.

– Initialize all class variables in the default constructor. This avoids bugs that may manifest
randomly and are difficult to fix. Initializing with NaN’s will help you find otherwise unitialized
variable. (This is taken care of by YADE_CLASS_BASE_DOC_* macro family macros for
user classes)

Using clang-format

The file .clang-format contains the config which should produce always the same results. It works with
clang-format --version >= 10. The aim is to eliminate commits that change formatting. The script
scripts/clang-formatter.sh can be invoked on either file or a directory and will do the reformatting.
Usually this can be integrated with the editor, see clang-format documentation (except that for vim
py3f command has to be used), and in kdevelop it is added as a custom formatter.

The script scripts/python-formatter.sh applies our coding conventions to formatting of python scripts.
It should be used before committing changes to python scripts.

For more help see:

1. clang-format documentation

2. yapf3 documentation

Sometimes it is useful to disable formatting in a small section of the file. In order to do so, put the
guards around this section:

1. In C++ use:

// clang-format off
……
// clang-format on

2. In Python use:

yapf: disable
……
yapf: enable

Class naming

Although for historical reasons the naming scheme is not completely consistent, these rules should be
obeyed especially when adding a new class.

GlobalEngines and PartialEngines
GlobalEngines should be named in a way suggesting that it is a performer of certain action (like
ForceResetter, InsertionSortCollider, Recorder); if this is not appropriate, append the Engine to
the characteristics name (e.g. GravityEngine). PartialEngines have no special naming convention
different from GlobalEngines.

Dispatchers
Names of all dispatchers end in Dispatcher. The name is composed of type it creates or, in case
it doesn’t create any objects, its main characteristics. Currently, the following dispatchers2 are
defined:

2 Not considering OpenGL dispatchers, which might be replaced by regular virtual functions in the future.

3.1. Programmer’s manual 1459

https://gitlab.com/yade-dev/trunk/blob/master/.clang-format
https://gitlab.com/yade-dev/trunk/blob/master/scripts/clang-formatter.sh
https://clang.llvm.org/docs/ClangFormat.html
https://www.kdevelop.org/features
https://gitlab.com/yade-dev/trunk/blob/master/scripts/python-formatter.sh
https://clang.llvm.org/docs/ClangFormat.html
https://github.com/google/yapf#readme

Yade Documentation, Release 3rd ed.

dispatcher arity dispatch
types

created
type

functor type functor pre-
fix

BoundDis-
patcher

1 Shape Bound BoundFunc-
tor

Bo1

IGeomDis-
patcher

2 (symetric) 2 × Shape IGeom IGeomFunc-
tor

Ig2

IPhysDis-
patcher

2 (symetric) 2 × Mate-
rial

IPhys IPhysFunc-
tor

Ip2

LawDispatcher 2 (asymet-
ric)

IGeom
IPhys

(none) LawFunctor Law2

Respective abstract functors for each dispatchers are BoundFunctor, IGeomFunctor, IPhys-
Functor and LawFunctor.

Functors
Functor name is composed of 3 parts, separated by underscore.

1. prefix, composed of abbreviated functor type and arity (see table above)

2. Types entering the dispatcher logic (1 for unary and 2 for binary functors)

3. Return type for functors that create instances, simple characteristics for functors that don’t
create instances.

To give a few examples:

• Bo1_Sphere_Aabb is a BoundFunctor which is called for Sphere, creating an instance of Aabb.

• Ig2_Facet_Sphere_ScGeom is binary functor called for Facet and Sphere, creating and instace
of ScGeom.

• Law2_ScGeom_CpmPhys_Cpm is binary functor (LawFunctor) called for types ScGeom
(Geom) and CpmPhys.

Documentation

Documenting code properly is one of the most important aspects of sustained development.

Read it again.

Most code in research software like Yade is not only used, but also read, by developers or even by regular
users. Therefore, when adding new class, always mention the following in the documentation:

• purpose

• details of the functionality, unless obvious (algorithms, internal logic)

• limitations (by design, by implementation), bugs

• bibliographical reference, if using non-trivial published algorithms (see below)

• references to other related classes

• hyperlinks to bugs, blueprints, wiki or mailing list about this particular feature.

As much as it is meaningful, you should also

• update any other documentation affected

• provide a simple python script demonstrating the new functionality in scripts/test.

1460 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

Sphinx documentation

Most c++ classes are wrapped in Python, which provides good introspection and interactive documen-
tation (try writing Material? in the ipython prompt; or help(CpmState)).

Syntax of documentation is ReST (reStructuredText, see reStructuredText Primer). It is the same for
c++ and python code.

• Documentation of c++ classes exposed to python is given as 3rd argument to YADE_CLASS_-
BASE_DOC_* macro family introduced below.

• Python classes/functions are documented using regular python docstrings. Besides explaining
functionality, meaning and types of all arguments should also be documented. Short pieces of code
might be very helpful. See the utils module for an example.

Note: Use C++ string literal when writing docstrings in C++. By convention the R"""(raw text)"""
is used. For example see here and here.

Note: Remember that inside C++ docstrings it is possible to invoke python commands which are
executed by yade when documentation is being compiled. For example compare this source docstring
with the final effect.

In addition to standard ReST syntax, yade provides several shorthand macros:

:yref:
creates hyperlink to referenced term, for instance:

:yref:`CpmMat`

becomes CpmMat; link name and target can be different:

:yref:`Material used in the CPM model<CpmMat>`

yielding Material used in the CPM model.

:ysrc:
creates hyperlink to file within the source tree (to its latest version in the repository), for instance
core/Cell.hpp. Just like with :yref:, alternate text can be used with

:ysrc:`Link text<target/file>`

like this. This cannot be used to link to a specified line number, since changing the file will cause
the line numbers to become outdated. To link to a line number use :ysrccommit: described below.

:ysrccommit:
creates hyperlink to file within the source tree at the specified commit hash. This allows to link
to the line numbers using for example #L121 at the end of the link. Use it just like the :ysrc:
except that commit hash must be provided at the beginning:

:ysrccommit:`Link text<commithash/target/file#Lnumber>`

:ysrccommit:`default engines<775ae7436/py/__init__.py.in#L112>`

becomes default engines.

Linking to inheritanceGraph*
To link to an inheritance graph of some base class a global anchor is created
with name inheritanceGraph* added in front of the class name, for example
:ref:`Shape<inheritanceGraphShape>` yields link to inheritance graph of Shape.

3.1. Programmer’s manual 1461

http://docutils.sourceforge.net/rst.html
https://docutils.sourceforge.io/docs/user/rst/quickstart.html
https://en.cppreference.com/w/cpp/language/string_literal
https://gitlab.com/yade-dev/trunk/blob/c5993a086/pkg/dem/VTKRecorder.hpp#L27
https://gitlab.com/yade-dev/trunk/blob/c5993a086/py/_libVersions.cpp#L364
https://gitlab.com/yade-dev/trunk/blob/master/core/Cell.hpp
https://gitlab.com/yade-dev/trunk/blob/master/core/Cell.hpp
https://gitlab.com/yade-dev/trunk/blob/775ae7436/py/__init__.py.in#L112

Yade Documentation, Release 3rd ed.

|ycomp|
is used in attribute description for those that should not be provided by the user, but are auto-
computed instead; |ycomp| expands to (auto-computed).

|yupdate|
marks attributes that are periodically updated, being subset of the previous. |yupdate| expands
to (auto-updated).

$...$
delimits inline math expressions; they will be replaced by:

:math:`...`

and rendered via LaTeX. To write a single dollar sign, escape it with backslash \$.

Displayed mathematics (standalone equations) can be inserted as explained in Math support for
HTML outputs in Sphinx.

As a reminder in the standard ReST syntax the references are:

:ref:
is the the standard restructured text reference to an anchor placed elsewere in the text. For
instance an anchor .. _NumericalDamping: is placed in formulation.rst then it is linked to with
:ref:`NumericalDamping` inside the source code.

.. _anchor-name:
is used to place anchors in the text, to be referenced from elsewhere in the text. Symbol _ is
forbidden in the anchor name, because it has a special meaning: _anchor specifies anchor, while
anchor_ links to it, see below.

anchor-name_
is used to place a link to anchor within the same file. It is a shorter form compared to the one
which works between different files: :ref:. For example usage on anchor imgQtGui see here and
here.

Note: The command :scale: NN % (with percent) does not work well with .html + .pdf output,
better to specify :width: NN cm. Then it is the same size in .html and .pdf.. For example see here
which becomes this picture. But bear in mind that maximum picture width in .pdf is 16.2 cm.

Bibliographical references

As in any scientific documentation, references to publications are very important. To cite an article, first
add it in BibTeX format to files doc/references.bib or doc/yade-*.bib depending whether that reference
used Yade (the latter cases) or not (the former). Please adhere to the following conventions:

1. Keep entries in the form Author2008 (Author is the first author), Author2008b etc if multiple
articles from one author;

2. Try to fill mandatory fields for given type of citation;

3. Do not use \'{i} funny escapes for accents, since they will not work with the HTML output; put
everything in straight utf-8.

In your docstring, the Author2008 article can be then cited by [Author2008]_; for example:

According to [Allen1989]_, the integration scheme …

will be rendered as

According to [Allen1989], the integration scheme …

1462 Chapter 3. Yade for programmers

http://www.sphinx-doc.org/en/master/usage/extensions/math.html
http://www.sphinx-doc.org/en/master/usage/extensions/math.html
https://gitlab.com/yade-dev/trunk/blob/775ae7436/doc/sphinx/formulation.rst#L564
https://gitlab.com/yade-dev/trunk/blob/775ae7436/pkg/dem/NewtonIntegrator.hpp#L64
https://gitlab.com/yade-dev/trunk/blob/775ae7436/doc/sphinx/introduction.rst#L258
https://gitlab.com/yade-dev/trunk/blob/775ae7436/doc/sphinx/introduction.rst#L261
https://gitlab.com/yade-dev/trunk/blob/eb6bdedac/doc/sphinx/GPUacceleration.rst#L111
https://gitlab.com/yade-dev/trunk/blob/master/doc/references.bib
https://gitlab.com/yade-dev/trunk/blob/master/doc/yade-articles.bib
http://en.wikipedia.org/wiki/Bibtex#Entry_Types

Yade Documentation, Release 3rd ed.

Separate class/function documentation

Some c++ might have long or content-rich documentation, which is rather inconvenient to type in the
c++ source itself as string literals. Yade provides a way to write documentation separately in py/_-
extraDocs.py file: it is executed after loading c++ plugins and can set __doc__ attribute of any object
directly, overwriting docstring from c++. In such (exceptional) cases:

1. Provide at least a brief description of the class in the c++ code nevertheless, for people only reading
the code.

2. Add notice saying “This class is documented in detail in the py/_extraDocs.py file”.

3. Add documentation to py/_extraDocs.py in this way:

module.YourClass.__doc__='''
This is the docstring for YourClass.

Class, methods and functions can be documented this way.

.. note:: It can use any syntax features you like.

'''

Note: Boost::python embeds function signatures in the docstring (before the one provided by the user).
Therefore, before creating separate documentation of your function, have a look at its __doc__ attribute
and copy the first line (and the blank line afterwards) in the separate docstring. The first line is then
used to create the function signature (arguments and return value).

Internal c++ documentation

doxygen was used for automatic generation of c++ code. Since user-visible classes are defined with
sphinx now, it is not meaningful to use doxygen to generate overall documentation. However, take
care to document well internal parts of code using regular comments, including public and private data
members.

3.1.6 Support framework

Besides the framework provided by the c++ standard library (including STL), boost and other depen-
dencies, Yade provides its own specific services.

Pointers

Shared pointers

Yade makes extensive use of shared pointers shared_ptr.3 Although it probably has some performance
impacts, it greatly simplifies memory management, ownership management of c++ objects in python
and so forth. To obtain raw pointer from a shared_ptr, use its get() method; raw pointers should be
used in case the object will be used only for short time (during a function call, for instance) and not
stored anywhere.

Python defines thin wrappers for most c++ Yade classes (for all those registered with YADE_CLASS_-
BASE_DOC_* macro family and several others), which can be constructed from shared_ptr; in this

3 Either boost::shared_ptr or tr1::shared_ptr is used, but it is always imported with the using statement so that
unqualified shared_ptr can be used.

3.1. Programmer’s manual 1463

https://gitlab.com/yade-dev/trunk/blob/master/py/_extraDocs.py
https://gitlab.com/yade-dev/trunk/blob/master/py/_extraDocs.py
https://gitlab.com/yade-dev/trunk/blob/master/py/_extraDocs.py
https://gitlab.com/yade-dev/trunk/blob/master/py/_extraDocs.py
http://www.doxygen.org

Yade Documentation, Release 3rd ed.

way, Python reference counting blends with the shared_ptr reference counting model, preventing crashes
due to python objects pointing to c++ objects that were destructed in the meantime.

Typecasting

Frequently, pointers have to be typecast; there is choice between static and dynamic casting.

• dynamic_cast (dynamic_pointer_cast for a shared_ptr) assures cast admissibility by checking
runtime type of its argument and returns NULL if the cast is invalid; such check obviously costs
time. Invalid cast is easily caught by checking whether the pointer is NULL or not; even if such
check (e.g. assert) is absent, dereferencing NULL pointer is easily spotted from the stacktrace
(debugger output) after crash. Moreover, shared_ptr checks that the pointer is non-NULL before
dereferencing in debug build and aborts with “Assertion ‘px!=0’ failed.” if the check fails.

• static_cast is fast but potentially dangerous (static_pointer_cast for shared_ptr). Static
cast will return non-NULL pointer even if types don’t allow the cast (such as casting from State*
to Material*); the consequence of such cast is interpreting garbage data as instance of the class
cast to, leading very likely to invalid memory access (segmentation fault, “crash” for short).

To have both speed and safety, Yade provides 2 macros:

YADE_CAST
expands to static_cast in optimized builds and to dynamic_cast in debug builds.

YADE_PTR_CAST
expands to static_pointer_cast in optimized builds and to dynamic_pointer_cast in debug
builds.

Basic numerics

The floating point type to use in Yade is Real, which is by default typedef for double (64 bits, 15 decimal
places).4

Yade uses the Eigen library for computations. It provides classes for 2d and 3d vectors, quaternions and
3x3 matrices templated by number type; their specialization for the Real type are typedef’ed with the
“r” suffix, and occasionally useful integer types with the “i” suffix:

• Vector2r, Vector2i

• Vector3r, Vector3i

• Quaternionr

• Matrix3r

Yade additionally defines a class named Se3r, which contains spatial position (Vector3r
Se3r::position) and orientation (Quaternionr Se3r::orientation), since they are frequently used
one with another, and it is convenient to pass them as single parameter to functions.

Eigen provides full rich linear algebra functionality. Some code further uses the [cgal] library for com-
putational geometry.

In Python, basic numeric types are wrapped and imported from the yade.minieigenHP module; the
types drop the r type qualifier at the end, the syntax is otherwise similar. Se3r is not wrapped at all,
only converted automatically, rarely as it is needed, from/to a (Vector3,Quaternion) tuple/list. See
high precision section for more details.

cross product
Yade [14]: Vector3(1,2,3).cross(Vector3(0,0,1))
Out[14]: Vector3(2,-1,0)

(continues on next page)

4 See high precision documentation for additional details.

1464 Chapter 3. Yade for programmers

http://eigen.tuxfamily.org

Yade Documentation, Release 3rd ed.

(continued from previous page)

construct quaternion from axis and angle
Yade [15]: Quaternion(Vector3(0,0,1),pi/2)
Out[15]: Quaternion((0,0,1),1.570796326794896558)

Note: Quaternions are internally stored as 4 numbers. Their usual human-readable representation
is, however, (normalized) axis and angle of rotation around that axis, and it is also how they are
input/output in Python. Raw internal values can be accessed using the [0] … [3] element access (or
.W(), .X(), .Y() and .Z() methods), in both c++ and Python.

Run-time type identification (RTTI)

Since serialization and dispatchers need extended type and inheritance information, which is not suffi-
ciently provided by standard RTTI. Each yade class is therefore derived from Factorable and it must
use macro to override its virtual functions providing this extended RTTI:

YADE_CLASS_BASE_DOC(Foo,Bar Baz,"Docstring") creates the following virtual methods (mediated
via the REGISTER_CLASS_AND_BASE macro, which is not user-visible and should not be used directly):

• std::string getClassName() returning class name (Foo) as string. (There is the
typeid(instanceOrType).name() standard c++ construct, but the name returned is compiler-
dependent.)

• unsigned getBaseClassNumber() returning number of base classes (in this case, 2).

• std::string getBaseClassName(unsigned i=0) returning name of i-th base class (here, Bar for
i=0 and Baz for i=1).

Warning: RTTI relies on virtual functions; in order for virtual functions to work, at least one virtual
method must be present in the implementation (.cpp) file. Otherwise, virtual method table (vtable)
will not be generated for this class by the compiler, preventing virtual methods from functioning
properly.

Some RTTI information can be accessed from python:

Yade [16]: yade.system.childClasses('Shape')
Out[16]:
{'Box',
'ChainedCylinder',
'Clump',
'Cylinder',
'DeformableCohesiveElement',
'DeformableElement',
'Facet',
'FluidDomainBbox',
'GridConnection',
'GridNode',
'LevelSet',
'Lin4NodeTetra',
'Lin4NodeTetra_Lin4NodeTetra_InteractionElement',
'Node',
'PFacet',
'Polyhedra',
'PotentialBlock',
'PotentialParticle',

(continues on next page)

3.1. Programmer’s manual 1465

Yade Documentation, Release 3rd ed.

(continued from previous page)

'Sphere',
'Subdomain',
'Tetra',
'Wall'}

Yade [17]: Sphere().__class__.__name__ ## getClassName()
Out[17]: 'Sphere'

Serialization

Serialization serves to save simulation to file and restore it later. This process has several necessary
conditions:

• classes know which attributes (data members) they have and what are their names (as strings);

• creating class instances based solely on its name;

• knowing what classes are defined inside a particular shared library (plugin).

This functionality is provided by 3 macros and 4 optional methods; details are provided below.

Serializable::preLoad, Serializable::preSave, Serializable::postLoad,
Serializable::postSave

Prepare attributes before serialization (saving) or deserialization (loading) or process them after
serialization or deserialization.

See Attribute registration.

YADE_CLASS_BASE_DOC_*
Inside the class declaration (i.e. in the .hpp file within the class Foo { /* … */}; block). See
Attribute registration.

Enumerate class attributes that should be saved and loaded; associate each attribute with its literal
name, which can be used to retrieve it. See YADE_CLASS_BASE_DOC_* macro family.

Additionally documents the class in python, adds methods for attribute access from python, and
documents each attribute.

REGISTER_SERIALIZABLE
In header file, but after the class declaration block. See Class factory.

Associate literal name of the class with functions that will create its new instance (ClassFactory).

Must be declared inside namespace yade.

YADE_PLUGIN
In the implementation .cpp file. See Plugin registration.

Declare what classes are declared inside a particular plugin at time the plugin is being loaded (yade
startup).

Must be declared inside namespace yade.

1466 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

Attribute registration

All (serializable) types in Yade are one of the following:

• Type deriving from Serializable, which provide information on how to serialize themselves via over-
riding the Serializable::registerAttributes method; it declares data members that should
be serialzed along with their literal names, by which they are identified. This method then invokes
registerAttributes of its base class (until Serializable itself is reached); in this way, derived
classes properly serialize data of their base classes.

This funcionality is hidden behind the macro YADE_CLASS_BASE_DOC_* macro family used
in class declaration body (header file), which takes base class and list of attributes:

YADE_CLASS_BASE_DOC_ATTRS(ThisClass,BaseClass,"class documentation",((type1,
↪→attribute1,initValue1,,"Documentation for attribute 1"))((type2,attribute2,
↪→initValue2,,"Documentation for attribute 2")));

Note that attributes are encoded in double parentheses, not separated by commas. Empty
attribute list can be given simply by YADE_CLASS_BASE_DOC_ATTRS(ThisClass,BaseClass,
"documentation",) (the last comma is mandatory), or by omiting ATTRS from macro name and
last parameter altogether.

• Fundamental type: strings, various number types, booleans, Vector3r and others. Their “handlers”
(serializers and deserializers) are defined in lib/serialization.

• Standard container of any serializable objects.

• Shared pointer to serializable object.

Yade uses the excellent boost::serialization library internally for serialization of data.

Note: YADE_CLASS_BASE_DOC_ATTRS also generates code for attribute access from python; this will
be discussed later. Since this macro serves both purposes, the consequence is that attributes that are
serialized can always be accessed from python.

Yade also provides callback for before/after (de) serialization, virtual functions Serial-
izable::preProcessAttributes and Serializable::postProcessAttributes, which receive one bool
deserializing argument (true when deserializing, false when serializing). Their default im-
plementation in Serializable doesn’t do anything, but their typical use is:

• converting some non-serializable internal data structure of the class (such as multi-dimensional
array, hash table, array of pointers) into a serializable one (pre-processing) and fill this non-
serializable structure back after deserialization (post-processing); for instance, InteractionCon-
tainer uses these hooks to ask its concrete implementation to store its contents to a unified storage
(vector<shared_ptr<Interaction> >) before serialization and to restore from it after deserial-
ization.

• precomputing non-serialized attributes from the serialized values; e.g. Facet computes its (local)
edge normals and edge lengths from vertices’ coordinates.

3.1. Programmer’s manual 1467

http://www.boost.org/doc/libs/release/libs/serialization/

Yade Documentation, Release 3rd ed.

Class factory

Each serializable class must use REGISTER_SERIALIZABLE, which defines function to create that class by
ClassFactory. ClassFactory is able to instantiate a class given its name (as string), which is necessary
for deserialization.

Although mostly used internally by the serialization framework, programmer can ask for a class instanti-
ation using shared_ptr<Factorable> f=ClassFactory::instance().createShared("ClassName");,
casting the returned shared_ptr<Factorable> to desired type afterwards. Serializable itself derives
from Factorable, i.e. all serializable types are also factorable.

Note: Both macros REGISTER_SERIALIZABLE and YADE_PLUGIN have to be declared inside yade names-
pace.

Plugin registration

Yade loads dynamic libraries containing all its functionality at startup. ClassFactory must be taught
about classes each particular file provides. YADE_PLUGIN serves this purpose and, contrary to YADE_-
CLASS_BASE_DOC_* macro family, must be placed in the implementation (.cpp) file, inside yade
namespace. It simply enumerates classes that are provided by this file:

YADE_PLUGIN((ClassFoo)(ClassBar));

Note: You must use parentheses around the class name even if there is only one class (preprocessor
limitation): YADE_PLUGIN((classFoo));. If there is no class in this file, do not use this macro at all.

Internally, this macro creates function registerThisPluginClasses_ declared specially as __-
attribute__((constructor)) (see GCC Function Attributes); this attributes makes the function being
executed when the plugin is loaded via dlopen from ClassFactory::load(...). It registers all fac-
torable classes from that file in the Class factory.

Note: Classes that do not derive from Factorable, such as Shop or SpherePack, are not declared with
YADE_PLUGIN.

This is an example of a serializable class header:

namespace yade {
/*! Homogeneous gravity field; applies gravity×mass force on all bodies. */
class GravityEngine: public GlobalEngine{

public:
virtual void action();

// registering class and its base for the RTTI system
YADE_CLASS_BASE_DOC_ATTRS(GravityEngine,GlobalEngine,

// documentation visible from python and generated reference␣
↪→documentation

"Homogeneous gravity field; applies gravity×mass force on all bodies.
↪→",

// enumerating attributes here, include documentation
((Vector3r,gravity,Vector3r::Zero(),"acceleration, zero by default␣

↪→[kgms�2]"))
);

(continues on next page)

1468 Chapter 3. Yade for programmers

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

Yade Documentation, Release 3rd ed.

(continued from previous page)

};
// registration function for ClassFactory
REGISTER_SERIALIZABLE(GravityEngine);
} // namespace yade

and this is the implementation:

#include <pkg/common/GravityEngine.hpp>
#include <core/Scene.hpp>

namespace yade {
// registering the plugin
YADE_PLUGIN((GravityEngine));

void GravityEngine::action(){
/* do the work here */

}
} // namespace yade

We can create a mini-simulation (with only one GravityEngine):

Yade [18]: O.engines=[GravityEngine(gravity=Vector3(0,0,-9.81))]

Yade [19]: O.save('abc.xml')

and the XML save looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE boost_serialization>
<boost_serialization signature="serialization::archive" version="19">
<scene class_id="0" tracking_level="0" version="1">

<px class_id="1" tracking_level="1" version="0" object_id="_0">
<Serializable class_id="2" tracking_level="1" version="0" object_id="_

↪→1"></Serializable>
<dt>1.00000000000000002e-08</dt>
<iter>0</iter>
<subStepping>0</subStepping>
<subStep>-1</subStep>
<time>0.00000000000000000e+00</time>
<speed>0.00000000000000000e+00</speed>
<stopAtIter>0</stopAtIter>
<stopAtTime>0.00000000000000000e+00</stopAtTime>
<isPeriodic>0</isPeriodic>
<trackEnergy>0</trackEnergy>
<doSort>0</doSort>
<runInternalConsistencyChecks>1</runInternalConsistencyChecks>
<selectedBody>-1</selectedBody>
<subdomain>0</subdomain>
<subD class_id="3" tracking_level="0" version="1">

<px class_id="4" tracking_level="1" version="0" object_id="_2
↪→">

<Serializable object_id="_3"></Serializable>
<color class_id="5" tracking_level="0" version="0">

<x>1.00000000000000000e+00</x>
<y>1.00000000000000000e+00</y>
<z>1.00000000000000000e+00</z>

</color>
(continues on next page)

3.1. Programmer’s manual 1469

Yade Documentation, Release 3rd ed.

(continued from previous page)

<wire>0</wire>
<highlight>0</highlight>

</px>
</subD>
<tags class_id="6" tracking_level="0" version="0">

<count>5</count>
<item_version>0</item_version>
<item>author=root~(root@runner-abydjfj4-project-10133144-

↪→concurrent-6)</item>
<item>isoTime=20250703T045546</item>
<item>id=20250703T045546p258</item>
<item>d.id=20250703T045546p258</item>
<item>id.d=20250703T045546p258</item>

</tags>
<engines class_id="7" tracking_level="0" version="0">

<count>1</count>
<item_version>1</item_version>
<item class_id="8" tracking_level="0" version="1">

<px class_id="10" class_name="yade::GravityEngine"␣
↪→tracking_level="1" version="0" object_id="_4">

<FieldApplier class_id="11" tracking_level="1
↪→" version="0" object_id="_5">

<GlobalEngine class_id="12" tracking_
↪→level="1" version="0" object_id="_6">

<Engine class_id="9" tracking_
↪→level="1" version="0" object_id="_7">

<Serializable object_
↪→id="_8"></Serializable>

<dead>0</dead>
<ompThreads>-1</

↪→ompThreads>
<label></label>

</Engine>
</GlobalEngine>

</FieldApplier>
<gravity>

<x>0.00000000000000000e+00</x>
<y>0.00000000000000000e+00</y>
<z>-9.81000000000000050e+00</z>

</gravity>
<mask>0</mask>
<warnOnce>1</warnOnce>

</px>
</item>

</engines>
<_nextEngines>

<count>0</count>
<item_version>1</item_version>

</_nextEngines>
<bodies class_id="13" tracking_level="0" version="1">

<px class_id="14" tracking_level="1" version="0" object_id="_9
↪→">

<Serializable object_id="_10"></Serializable>
<body class_id="15" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

(continues on next page)

1470 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

(continued from previous page)

</body>
<insertedBodies>

<count>0</count>
<item_version>0</item_version>

</insertedBodies>
<erasedBodies>

<count>0</count>
<item_version>0</item_version>

</erasedBodies>
<realBodies>

<count>0</count>
<item_version>0</item_version>

</realBodies>
<useRedirection>0</useRedirection>
<enableRedirection>1</enableRedirection>
<subdomainBodies>

<count>0</count>
<item_version>0</item_version>

</subdomainBodies>
</px>

</bodies>
<interactions class_id="17" tracking_level="0" version="1">

<px class_id="18" tracking_level="1" version="0" object_id="_
↪→11">

<Serializable object_id="_12"></Serializable>
<interaction class_id="19" tracking_level="0" version=

↪→"0">
<count>0</count>
<item_version>1</item_version>

</interaction>
<serializeSorted>0</serializeSorted>
<dirty>1</dirty>

</px>
</interactions>
<energy class_id="20" tracking_level="0" version="1">

<px class_id="21" tracking_level="1" version="0" object_id="_
↪→13">

<Serializable object_id="_14"></Serializable>
<energies class_id="22" tracking_level="0" version="0

↪→">
<size>0</size>

</energies>
<names class_id="23" tracking_level="0" version="0">

<count>0</count>
<item_version>0</item_version>

</names>
<resetStep>

<count>0</count>
</resetStep>

</px>
</energy>
<materials class_id="25" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</materials>
<bound class_id="26" tracking_level="0" version="1">

(continues on next page)

3.1. Programmer’s manual 1471

Yade Documentation, Release 3rd ed.

(continued from previous page)

<px class_id="-1"></px>
</bound>
<cell class_id="28" tracking_level="0" version="1">

<px class_id="29" tracking_level="1" version="0" object_id="_
↪→15">

<Serializable object_id="_16"></Serializable>
<trsf class_id="30" tracking_level="0" version="0">

<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>

</trsf>
<refHSize>

<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>

</refHSize>
<hSize>

<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>

</hSize>
<prevHSize>

<m00>1.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>1.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>1.00000000000000000e+00</m22>

</prevHSize>
<velGrad>

<m00>0.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>0.00000000000000000e+00</m11>

(continues on next page)

1472 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

(continued from previous page)

<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>0.00000000000000000e+00</m22>

</velGrad>
<nextVelGrad>

<m00>0.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>0.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>0.00000000000000000e+00</m22>

</nextVelGrad>
<prevVelGrad>

<m00>0.00000000000000000e+00</m00>
<m01>0.00000000000000000e+00</m01>
<m02>0.00000000000000000e+00</m02>
<m10>0.00000000000000000e+00</m10>
<m11>0.00000000000000000e+00</m11>
<m12>0.00000000000000000e+00</m12>
<m20>0.00000000000000000e+00</m20>
<m21>0.00000000000000000e+00</m21>
<m22>0.00000000000000000e+00</m22>

</prevVelGrad>
<homoDeform>2</homoDeform>
<velGradChanged>0</velGradChanged>
<flipFlippable>0</flipFlippable>

</px>
</cell>
<miscParams class_id="31" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</miscParams>
<dispParams class_id="32" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</dispParams>
</px>

</scene>
</boost_serialization>

Warning: Since XML files closely reflect implementation details of Yade, they will not be compatible
between different versions. Use them only for short-term saving of scenes. Python is the high-level
description Yade uses.

3.1. Programmer’s manual 1473

Yade Documentation, Release 3rd ed.

Python attribute access

The macro YADE_CLASS_BASE_DOC_* macro family introduced above is (behind the scenes) also
used to create functions for accessing attributes from Python. As already noted, set of serialized at-
tributes and set of attributes accessible from Python are identical. Besides attribute access, these
wrapper classes imitate also some functionality of regular python dictionaries:

Yade [20]: s=Sphere()

Yade [21]: s.radius ## read-access
Out[21]: nan

Yade [22]: s.radius=4. ## write access

Yade [23]: s.dict().keys() ## show all available keys
Out[23]: dict_keys(['radius', 'color', 'wire', 'highlight'])

Yade [24]: for k in s.dict().keys(): print(s.dict()[k]) ## iterate over keys, print␣
↪→their values

....:
4.0
Vector3(1,1,1)
False
False

Yade [25]: s.dict()['radius'] ## same as: 'radius' in s.keys()
Out[25]: 4.0

Yade [26]: s.dict() ## show dictionary of both attributes and␣
↪→values
Out[26]: {'radius': 4.0, 'color': Vector3(1,1,1), 'wire': False, 'highlight': False}

YADE_CLASS_BASE_DOC_* macro family

There is several macros that hide behind them the functionality of Sphinx documentation, Run-time type
identification (RTTI), Attribute registration, Python attribute access, plus automatic attribute initializa-
tion and documentation. They are all defined as shorthands for base macro YADE_CLASS_BASE_DOC_-
ATTRS_INIT_CTOR_PY with some arguments left out. They must be placed in class declaration’s body
(.hpp file):

#define YADE_CLASS_BASE_DOC(klass,base,doc) \
YADE_CLASS_BASE_DOC_ATTRS(klass,base,doc,)

#define YADE_CLASS_BASE_DOC_ATTRS(klass,base,doc,attrs) \
YADE_CLASS_BASE_DOC_ATTRS_CTOR(klass,base,doc,attrs,)

#define YADE_CLASS_BASE_DOC_ATTRS_CTOR(klass,base,doc,attrs,ctor) \
YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(klass,base,doc,attrs,ctor,)

#define YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(klass,base,doc,attrs,ctor,py) \
YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(klass,base,doc,attrs,,ctor,py)

#define YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(klass,base,doc,attrs,init,ctor,py) \
YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(klass,base,doc,attrs,inits,ctor,py)

Expected parameters are indicated by macro name components separated with underscores. Their mean-
ing is as follows:

klass
(unquoted) name of this class (used for RTTI and python)

1474 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

base
(unquoted) name of the base class (used for RTTI and python)

doc
docstring of this class, written in the ReST syntax. This docstring will appear in generated
documentation (such as CpmMat). It can be as long as necessary, use string literal to avoid
sequences interpreted by c++ compiler (so that some backslashes don’t have to be doubled, like in
σ = εE) instead of writing this:

":math:`\\sigma=\\epsilon E"

Write following: R"""(:math:`\sigma=\epsilon E`)""". When the R"""(raw text)""" is used
the escaped characters \n and \t do not have to be written. Newlines and tabs can be used instead.
For example see here and here. Hyperlink the documentation abundantly with yref (all references
to other classes should be hyperlinks). See previous section about syntax on using references and
anchors.

attrs
Attribute must be written in the form of parethesized list:

((type1,attr1,initValue1,attrFlags,"Attribute 1 documentation"))
((type2,attr2,,,"Attribute 2 documentation")) // initValue and attrFlags␣
↪→unspecified

This will expand to

1. data members declaration in c++ (note that all attributes are public):

public: type1 attr1;
type2 attr2;

2. Initializers of the default (argument-less) constructor, for attributes that have non-empty
initValue:

Klass(): attr1(initValue1), attr2() { /* constructor body */ }

No initial value will be assigned for attribute of which initial value is left empty (as
is for attr2 in the above example). Note that you still have to write the commas.

3. Registration of the attribute in the serialization system (unless disabled by attrFlags – see
below)

4. Registration of the attribute in python (unless disabled by attrFlags), so that it
can be accessed as klass().name1.

The attribute is read-write by default, see attrFlags to change that.

This attribute will carry the docstring provided, along with knowledge of the initial value.
You can add text description to the default value using the comma operator of c++ and
casting the char* to (void):

((Real,dmgTau,((void)"deactivated if negative",-1),,"Characteristic time␣
↪→for normal viscosity. [s]"))

leading to CpmMat::dmgTau.

The attribute is registered via boost::python::add_property specifying return_by_-
value policy rather than return_internal_reference, which is the default when using
def_readwrite. The reason is that we need to honor custom converters for those values;
see note in Custom converters for details.

Attribute flags

3.1. Programmer’s manual 1475

https://en.cppreference.com/w/cpp/language/string_literal
https://gitlab.com/yade-dev/trunk/blob/c5993a086/pkg/dem/VTKRecorder.hpp#L27

Yade Documentation, Release 3rd ed.

By default, an attribute will be serialized and will be read-write from python. There is a
number of flags that can be passed as the 4th argument (empty by default) to change that:

• Attr::noSave avoids serialization of the attribute (while still keeping its accessibility
from Python)

• Attr::readonly makes the attribute read-only from Python

• Attr::triggerPostLoad will trigger call to postLoad function to handle attribute
change after its value is set from Python; this is to ensure consistency of other pre-
computed data which depend on this value (such as Cell.trsf and such)

• Attr::hidden will not expose the attribute to Python at all

• Attr::noResize will not permit changing size of the array from Python [not yet used]

Flags can be combined as usual using bitwise disjunction | (such as Attr::noSave |
Attr::readonly), though in such case the value should be parenthesized to avoid a warning
with some compilers (g++ specifically), i.e. (Attr::noSave | Attr::readonly).

Currently, the flags logic handled at runtime; that means that even for attributes with
Attr::noSave, their serialization template must be defined (although it will never be used).
In the future, the implementation might be template-based, avoiding this necessity.

deprec
List of deprecated attribute names. The syntax is

((oldName1,newName1,"Explanation why renamed etc."))
((oldName2,newName2,"! Explanation why removed and what to do instead."))

This will make accessing oldName1 attribute from Python return value of newName, but displaying
warning message about the attribute name change, displaying provided explanation. This happens
whether the access is read or write.

If the explanation’s first character is ! (bang), the message will be displayed upon attribute access,
but exception will be thrown immediately. Use this in cases where attribute is no longer meaningful
or was not straightforwardsly replaced by another, but more complex adaptation of user’s script is
needed. You still have to give newName2, although its value will never be used – you can use any
variable you like, but something must be given for syntax reasons).

Warning: Due to compiler limitations, this feature only works if Yade is compiled with gcc >=
4.4. In the contrary case, deprecated attribute functionality is disabled, even if such attributes
are declared.

init
Parethesized list of the form:

((attr3,value3)) ((attr4,value4))

which will be expanded to initializers in the default ctor:

Klass(): /* attributes declared with the attrs argument */ attr4(value4),␣
↪→attr5(value5) { /* constructor body */ }

The purpose of this argument is to make it possible to initialize constants and references (which
are not declared as attributes using this macro themselves, but separately), as that cannot be done
in constructor body. This argument is rarely used, though.

ctor
will be put directly into the generated constructor’s body. Mostly used for calling createIndex();
in the constructor.

1476 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

Note: The code must not contain commas outside parentheses (since preprocessor uses commas
to separate macro arguments). If you need complex things at construction time, create a separate
init() function and call it from the constructor instead.

py
will be appended directly after generated python code that registers the class and all its attributes.
You can use it to access class methods from python, for instance, to override an existing attribute
with the same name etc:

.def_readonly("omega",&CpmPhys::omega,"Damage internal variable")

.def_readonly("Fn",&CpmPhys::Fn,"Magnitude of normal force.")

def_readonly will not work for custom types (such as std::vector), as it bypasses conversion
registry; see Custom converters for details.

Exposing function-attributes to GUI

Usually to expose a more complex data a getter and setter functions are used, for example Body::mask.
They are accessible from python. To make them visible in GUI without a corresponding variable at all a
function virtual ::boost::python::dict pyDictCustom() const { …… }; must be overridden. For
example see Interaction.hpp where a special attribute isReal is exposed to GUI. To mark such attribute
as readonly an extra information has to be added to its docstring: :yattrflags:`2`. Normally it is
put there by the class attribute registration macros. But since it is not a variable, such attribute has to
be added manually.

Special python constructors

The Python wrapper automatically creates constructor that takes keyword (named) arguments corre-
sponding to instance attributes; those attributes are set to values provided in the constructor. In some
cases, more flexibility is desired (such as InteractionLoop, which takes 3 lists of functors). For such cases,
you can override the function Serializable::pyHandleCustomCtorArgs, which can arbitrarily modify
the new (already existing) instance. It should modify in-place arguments given to it, as they will be
passed further down to the routine which sets attribute values. In such cases, you should document the
constructor:

.. admonition:: Special constructor

Constructs from lists of …

which then appears in the documentation similar to InteractionLoop.

Enums

It is possible to expose enum class in GUI in a dropdown menu. This approach is backward compatible,
an assignment of int value in an old python script will work the same as before. Additionally it will
be possible to assign the string type values to an enum. To enable the dropdown menu one must
#include <lib/serialization/EnumSupport.hpp> and put a macro YADE_ENUM(Scope , EnumName
, (ValueName1)(ValueName2)(ValueName3)(ValueName4)) in a .cpp file. Where each macro argu-
ment means:

1. Scope is the full scope name in which the enum resides. For example the scope of
yade::OpenGLRenderer::BlinkHighlight is yade::OpenGLRenderer.

2. EnumName is the name of the enum type (not variable name!) to be registered

3.1. Programmer’s manual 1477

https://gitlab.com/yade-dev/trunk/blob/c5cb80a8ff9dcb4c90da1d2bbe86c0804c5a6276/core/Interaction.hpp#L52
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/lib/serialization/Serializable.hpp#L33
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/lib/serialization/Serializable.hpp#L33

Yade Documentation, Release 3rd ed.

3. ValueName are all enum values that are to be exposed to python. They have to be updated if the
C++ enum declaration in .hpp file changes.

After it is registered, like for example in OpenGLRenderer.cpp it is available for use. Additionally the
registered enum class type definitions are exposed in yade.EnumClass_* scope, for example one can
check the names and values dictionaries:

Yade [27]: yade.EnumClass_BlinkHighlight.names
Out[27]:
{'NEVER': yade.EnumClass_BlinkHighlight.NEVER,
'NORMAL': yade.EnumClass_BlinkHighlight.NORMAL,
'WEAK': yade.EnumClass_BlinkHighlight.WEAK}

Yade [28]: yade.EnumClass_BlinkHighlight.values
Out[28]:
{0: yade.EnumClass_BlinkHighlight.NEVER,
1: yade.EnumClass_BlinkHighlight.NORMAL,
2: yade.EnumClass_BlinkHighlight.WEAK}

Keep in mind that these are not the variable instances hence trying to assign something to them will
not change the blinkHighlight setting in GUI. To change enum value from python the respective variable
must be assigned to, such as yade.qt.Renderer().blinkHighlight. Trying to assign an incorrect value will
throw an exception. For example:

Yade [29]: r = yade.NewtonIntegrator() # this is only a test of enum, not of␣
↪→NewtonIntegrator

Yade [30]: r.rotAlgorithm # check current rotation algorithm (also available in the␣
↪→GUI Inspector of Engines)
Out[30]: yade.EnumClass_RotAlgorithm.delValle2023

Yade [31]: r.rotAlgorithm = 'Omelyan1998'

Yade [32]: try:
....: r.rotAlgorithm = 20 # assigning incorrect value throws an exception
....: except:
....: print("Error, value is still equal to:",r.rotAlgorithm)
....:

Error, value is still equal to: Omelyan1998

Yade [33]: r.rotAlgorithm
Out[33]: yade.EnumClass_RotAlgorithm.Omelyan1998

Alternatively the dropdown menu in GUI can be used for the same effect.

Static attributes

Some classes (such as OpenGL functors) are instantiated automatically; since we want their attributes
to be persistent throughout the session, they are static. To expose class with static attributes, use the
YADE_CLASS_BASE_DOC_STATICATTRS macro. Attribute syntax is the same as for YADE_CLASS_BASE_-
DOC_ATTRS:

class SomeClass: public BaseClass{
YADE_CLASS_BASE_DOC_STATICATTRS(SomeClass,BaseClass,"Documentation of␣

↪→SomeClass",
((Type1,attr1,default1,"doc for attr1"))
((Type2,attr2,default2,"doc for attr2"))

(continues on next page)

1478 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/trunk/blob/42d676ec83183ec3/pkg/common/OpenGLRenderer.cpp#L20

Yade Documentation, Release 3rd ed.

(continued from previous page)

);
};

additionally, you have to allocate memory for static data members in the .cpp file (otherwise, error
about undefined symbol will appear when the plugin is loaded):

There is no way to expose class that has both static and non-static attributes using YADE_CLASS_BASE_*
macros. You have to expose non-static attributes normally and wrap static attributes separately in the
py parameter.

Returning attribute by value or by reference

When attribute is passed from c++ to python, it can be passed either as

• value: new python object representing the original c++ object is constructed, but not bound to it;
changing the python object doesn’t modify the c++ object, unless explicitly assigned back to it,
where inverse conversion takes place and the c++ object is replaced.

• reference: only reference to the underlying c++ object is given back to python; modifying python
object will make the c++ object modified automatically.

The way of passing attributes given to YADE_CLASS_BASE_DOC_ATTRS in the attrs parameter is deter-
mined automatically in the following manner:

• Vector3, Vector3i, Vector2, Vector2i, Matrix3 and Quaternion objects are passed by
reference. For instance::

O.bodies[0].state.pos[0]=1.33

will assign correct value to x component of position, without changing the other ones.

• Yade classes (all that use shared_ptr when declared in python: all classes deriving
from Serializable declared with YADE_CLASS_BASE_DOC_*, and some others) are passed
as references (technically speaking, they are passed by value of the shared_ptr, but
by virtue of its sharedness, they appear as references). For instance::

O.engines[4].damping=.3

will change damping parameter on the original engine object, not on its copy.

• All other types are passed by value. This includes, most importantly, sequence types
declared in Custom converters, such as std::vector<shared_ptr<Engine> >. For this
reason, ::

O.engines[4]=NewtonIntegrator()

will not work as expected; it will replace 5th element of a copy of the sequence, and this change
will not propagate back to c++.

Multiple dispatch

Multiple dispatch is generalization of virtual methods: a Dispatcher decides based on type(s) of its
argument(s) which of its Functors to call. Number of arguments (currently 1 or 2) determines arity of
the dispatcher (and of the functor): unary or binary. For example:

InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()])

creates InsertionSortCollider, which internally contains Collider.boundDispatcher, a BoundDispatcher (a
Dispatcher), with 2 functors; they receive Sphere or Facet instances and create Aabb. This code would
look like this in c++:

shared_ptr<InsertionSortCollider> collider=(new InsertionSortCollider);
collider->boundDispatcher->add(new Bo1_Sphere_Aabb());
collider->boundDispatcher->add(new Bo1_Facet_Aabb());

3.1. Programmer’s manual 1479

Yade Documentation, Release 3rd ed.

There are currenly 4 predefined dispatchers (see dispatcher-names) and corresponding functor types.
They are inherited from template instantiations of Dispatcher1D or Dispatcher2D (for functors,
Functor1D or Functor2D). These templates themselves derive from DynlibDispatcher (for dispatch-
ers) and FunctorWrapper (for functors).

Example: IGeomDispatcher

Let’s take (the most complicated perhaps) IGeomDispatcher. IGeomFunctor, which is dispatched based
on types of 2 Shape instances (a Functor), takes a number of arguments and returns bool. The functor
“call” is always provided by its overridden Functor::go method; it always receives the dispatched
instances as first argument(s) (2 × const shared_ptr<Shape>&) and a number of other arguments it
needs:

class IGeomFunctor: public Functor2D<
bool, //return type
TYPELIST_7(const shared_ptr<Shape>&, // 1st class for dispatch

const shared_ptr<Shape>&, // 2nd class for dispatch
const State&, // other arguments passed to ::go
const State&, // …
const Vector3r&, // …
const bool&, // …
const shared_ptr<Interaction>& // …

)
>

The dispatcher is declared as follows:

class IGeomDispatcher: public Dispatcher2D<
Shape, // 1st class for dispatch
Shape, // 2nd class for dispatch
IGeomFunctor, // functor type
bool, // return type of the functor

// follow argument types for functor call
// they must be exactly the same as types
// given to the IGeomFunctor above.
TYPELIST_7(const shared_ptr<Shape>&,

const shared_ptr<Shape>&,
const State&,
const State&,
const Vector3r&,
const bool &,
const shared_ptr<Interaction>&

),

// handle symetry automatically
// (if the dispatcher receives Sphere+Facet,
// the dispatcher might call functor for Facet+Sphere,
// reversing the arguments)
false

>
{ /* … */ }

Functor derived from IGeomFunctor must then

• override the ::go method with appropriate arguments (they must match exactly types given to
TYPELIST_* macro);

• declare what types they should be dispatched for, and in what order if they are not the same.

1480 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

class Ig2_Facet_Sphere_ScGeom: public IGeomFunctor{
public:

// override the IGeomFunctor::go
// (it is really inherited from FunctorWrapper template,
// therefore not declare explicitly in the
// IGeomFunctor declaration as such)
// since dispatcher dispatches only for declared types
// (or types derived from them), we can do
// static_cast<Facet>(shape1) and static_cast<Sphere>(shape2)
// in the ::go body, without worrying about types being wrong.
virtual bool go(

// objects for dispatch
const shared_ptr<Shape>& shape1, const shared_ptr<Shape>& shape2,
// other arguments
const State& state1, const State& state2, const Vector3r& shift2,
const bool& force, const shared_ptr<Interaction>& c

);
/* … */

// this declares the type we want to be dispatched for, matching
// first 2 arguments to ::go and first 2 classes in TYPELIST_7 above
// shape1 is a Facet and shape2 is a Sphere
// (or vice versa, see lines below)
FUNCTOR2D(Facet,Sphere);

// declare how to swap the arguments
// so that we can receive those as well
DEFINE_FUNCTOR_ORDER_2D(Facet,Sphere);
/* … */

};

Dispatch resolution

The dispatcher doesn’t always have functors that exactly match the actual types it receives. In the same
way as virtual methods, it tries to find the closest match in such way that:

1. the actual instances are derived types of those the functor accepts, or exactly the accepted types;

2. sum of distances from actual to accepted types is sharp-minimized (each step up in the class
hierarchy counts as 1)

If no functor is able to accept given types (first condition violated) or multiple functors have the same
distance (in condition 2), an exception is thrown.

This resolution mechanism makes it possible, for instance, to have a hierarchy of ScGeom classes (for
different combination of shapes), but only provide a LawFunctor accepting ScGeom, rather than having
different laws for each shape combination.

Note: Performance implications of dispatch resolution are relatively low. The dispatcher lookup is only
done once, and uses fast lookup matrix (1D or 2D); then, the functor found for this type(s) is cached
within the Interaction (or Body) instance. Thus, regular functor call costs the same as dereferencing
pointer and calling virtual method. There is blueprint to avoid virtual function call as well.

Note: At the beginning, the dispatch matrix contains just entries exactly matching given functors.

3.1. Programmer’s manual 1481

https://blueprints.launchpad.net/yade/+spec/devirtualize-functor-calls

Yade Documentation, Release 3rd ed.

Only when necessary (by passing other types), appropriate entries are filled in as well.

Indexing dispatch types

Classes entering the dispatch mechanism must provide for fast identification of themselves and of their
parent class.5 This is called class indexing and all such classes derive from Indexable. There are
top-level Indexables (types that the dispatchers accept) and each derived class registers its index
related to this top-level Indexable. Currently, there are:

Top-level Indexable used by
Shape BoundFunctor, IGeomDispatcher
Material IPhysDispatcher
IPhys LawDispatcher
IGeom LawDispatcher

The top-level Indexable must use the REGISTER_INDEX_COUNTER macro, which sets up the machinery
for identifying types of derived classes; they must then use the REGISTER_CLASS_INDEX macro and call
createIndex() in their constructor. For instance, taking the Shape class (which is a top-level Indexable):

// derive from Indexable
class Shape: public Serializable, public Indexable {

// never call createIndex() in the top-level Indexable ctor!
/* … */

// allow index registration for classes deriving from ``Shape``
REGISTER_INDEX_COUNTER(Shape);

};

Now, all derived classes (such as Sphere or Facet) use this:

class Sphere: public Shape{
/* … */
YADE_CLASS_BASE_DOC_ATTRS_CTOR(Sphere,Shape,"docstring",

((Type1,attr1,default1,"docstring1"))
/* … */,
// this is the CTOR argument

// important; assigns index to the class at runtime
createIndex();

);
// register index for this class, and give name of the immediate parent class
// (i.e. if there were a class deriving from Sphere, it would use
// REGISTER_CLASS_INDEX(SpecialSphere,Sphere),
// not REGISTER_CLASS_INDEX(SpecialSphere,Shape)!)
REGISTER_CLASS_INDEX(Sphere,Shape);

};

At runtime, each class within the top-level Indexable hierarchy has its own unique numerical index.
These indices serve to build the dispatch matrix for each dispatcher.

5 The functionality described in Run-time type identification (RTTI) serves a different purpose (serialization) and would
hurt the performance here. For this reason, classes provide numbers (indices) in addition to strings.

1482 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

Inspecting dispatch in python

If there is a need to debug/study multiple dispatch, python provides convenient interface for this low-level
functionality.

We can inspect indices with the dispIndex property (note that the top-level indexable Shape has negative
(invalid) class index; we purposively didn’t call createIndex in its constructor):

Yade [34]: Sphere().dispIndex, Facet().dispIndex, Wall().dispIndex
Out[34]: (1, 7, 21)

Yade [35]: Shape().dispIndex # top-level indexable
Out[35]: -1

Dispatch hierarchy for a particular class can be shown with the dispHierarchy() function, returning
list of class names: 0th element is the instance itself, last element is the top-level indexable (again, with
invalid index); for instance:

Yade [36]: ScGeom().dispHierarchy() # parent class of all other ScGeom_ classes
Out[36]: ['ScGeom', 'GenericSpheresContact', 'IGeom']

Yade [37]: ScGridCoGeom().dispHierarchy(), ScGeom6D().dispHierarchy(), CylScGeom().
↪→dispHierarchy()
Out[37]:
(['ScGridCoGeom', 'ScGeom6D', 'ScGeom', 'GenericSpheresContact', 'IGeom'],
['ScGeom6D', 'ScGeom', 'GenericSpheresContact', 'IGeom'],
['CylScGeom', 'ScGeom', 'GenericSpheresContact', 'IGeom'])

Yade [38]: CylScGeom().dispHierarchy(names=False) # show numeric indices instead
Out[38]: [4, 1, 0, -1]

Dispatchers can also be inspected, using the .dispMatrix() method:

Yade [39]: ig=IGeomDispatcher([
....: Ig2_Sphere_Sphere_ScGeom(),
....: Ig2_Facet_Sphere_ScGeom(),
....: Ig2_Wall_Sphere_ScGeom()
....:])
....:

Yade [40]: ig.dispMatrix()
Out[40]:
{('Sphere', 'Sphere'): 'Ig2_Sphere_Sphere_ScGeom',
('Sphere', 'Facet'): 'Ig2_Facet_Sphere_ScGeom',
('Sphere', 'Wall'): 'Ig2_Wall_Sphere_ScGeom',
('Facet', 'Sphere'): 'Ig2_Facet_Sphere_ScGeom',
('Wall', 'Sphere'): 'Ig2_Wall_Sphere_ScGeom'}

Yade [41]: ig.dispMatrix(False) # don't convert to class names
Out[41]:
{(1, 1): 'Ig2_Sphere_Sphere_ScGeom',
(1, 7): 'Ig2_Facet_Sphere_ScGeom',
(1, 21): 'Ig2_Wall_Sphere_ScGeom',
(7, 1): 'Ig2_Facet_Sphere_ScGeom',
(21, 1): 'Ig2_Wall_Sphere_ScGeom'}

We can see that functors make use of symmetry (i.e. that Sphere+Wall are dispatched to the same
functor as Wall+Sphere).

Finally, dispatcher can be asked to return functor suitable for given argument(s):

3.1. Programmer’s manual 1483

Yade Documentation, Release 3rd ed.

Yade [42]: ld=LawDispatcher([Law2_ScGeom_CpmPhys_Cpm()])

Yade [43]: ld.dispMatrix()
Out[43]: {('GenericSpheresContact', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm'}

see how the entry for ScGridCoGeom will be filled after this request
Yade [44]: ld.dispFunctor(ScGridCoGeom(),CpmPhys())
Out[44]: <Law2_ScGeom_CpmPhys_Cpm instance at 0x49506d0>

Yade [45]: ld.dispMatrix()
Out[45]:
{('GenericSpheresContact', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm',
('ScGridCoGeom', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm'}

OpenGL functors

OpenGL rendering is being done also by 1D functors (dispatched for the type to be rendered). Since it
is sufficient to have exactly one class for each rendered type, the functors are found automatically. Their
base functor types are GlShapeFunctor, GlBoundFunctor, GlIGeomFunctor and so on. These classes
register the type they render using the RENDERS macro:

namespace yade { // Cannot have #include directive inside.
class Gl1_Sphere: public GlShapeFunctor {

public :
virtual void go(const shared_ptr<Shape>&,

const shared_ptr<State>&,
bool wire,
const GLViewInfo&

);
RENDERS(Sphere);
YADE_CLASS_BASE_DOC_STATICATTRS(Gl1_Sphere,GlShapeFunctor,"docstring",

((Type1,staticAttr1,informativeDefault,"docstring"))
/* … */

);
};
REGISTER_SERIALIZABLE(Gl1_Sphere);
} // namespace yade

You can list available functors of a particular type by querying child classes of the base functor:

Yade [46]: yade.system.childClasses('GlShapeFunctor')
Out[46]:
{'Gl1_Box',
'Gl1_ChainedCylinder',
'Gl1_Cylinder',
'Gl1_DeformableElement',
'Gl1_Facet',
'Gl1_GridConnection',
'Gl1_LevelSet',
'Gl1_Node',
'Gl1_PFacet',
'Gl1_Polyhedra',
'Gl1_PotentialBlock',
'Gl1_PotentialParticle',
'Gl1_Sphere',

(continues on next page)

1484 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

(continued from previous page)

'Gl1_Tetra',
'Gl1_Wall'}

Note: OpenGL functors may disappear in the future, being replaced by virtual functions of each class
that can be rendered.

Parallel execution

Yade was originally not designed with parallel computation in mind, but rather with maximum flexibility
(for good or for bad). Parallel execution was added later; in order to not have to rewrite whole Yade
from scratch, relatively non-instrusive way of parallelizing was used: OpenMP. OpenMP is standartized
shared-memory parallel execution environment, where parallel sections are marked by special #pragma
in the code (which means that they can compile with compiler that doesn’t support OpenMP) and a few
functions to query/manipulate OpenMP runtime if necessary.

There is parallelism at 3 levels:

• Computation, interaction (python, GUI) and rendering threads are separate. This is done via
regular threads (boost::threads) and is not related to OpenMP.

• ParallelEngine can run multiple engine groups (which are themselves run serially) in parallel; it
rarely finds use in regular simulations, but it could be used for example when coupling with an
independent expensive computation:

ParallelEngine([
[Engine1(),Engine2()], # Engine1 will run before Engine2
[Engine3()] # Engine3() will run in parallel with␣

↪→the group [Engine1(),Engine2()]
arbitrary number of groups can be used

])

Engine2 will be run after Engine1, but in parallel with Engine3.

Warning: It is your reponsibility to avoid concurrent access to data when using
ParallelEngine. Make sure you understand very well what the engines run in parallel
do.

• Parallelism inside Engines. Some loops over bodies or interactions are parallelized (notably Inter-
actionLoop and NewtonIntegrator, which are treated in detail later (FIXME: link)):

#pragma omp parallel for
for(long id=0; id<size; id++){

const shared_ptr<Body>& b(scene->bodies[id]);
/* … */

}

Note: OpenMP requires loops over contiguous range of integers (OpenMP 3 also
accepts containers with random-access iterators).

If you consider running parallelized loop in your engine, always evalue its benefits.
OpenMP has some overhead fo creating threads and distributing workload, which is
proportionally more expensive if the loop body execution is fast. The results are highly
hardware-dependent (CPU caches, RAM controller).

3.1. Programmer’s manual 1485

http://www.openmp.org

Yade Documentation, Release 3rd ed.

Maximum number of OpenMP threads is determined by the OMP_NUM_THREADS environment variable
and is constant throughout the program run. Yade main program also sets this variable (before loading
OpenMP libraries) if you use the -j/--threads option. It can be queried at runtime with the omp_-
get_max_threads function.

At places which are susceptible of being accessed concurrently from multiple threads, Yade provides some
mutual exclusion mechanisms, discussed elsewhere (FIXME):

• simultaneously writeable container for ForceContainer,

• mutex for Body::state.

Timing

Yade provides 2 services for measuring time spent in different parts of the code. One has the granularity
of engine and can be enabled at runtime. The other one is finer, but requires adjusting and recompiling
the code being measured.

Per-engine timing

The coarser timing works by merely accumulating number of invocations and time (with the precision
of the clock_gettime function) spent in each engine, which can be then post-processed by associated
Python module yade.timing. There is a static bool variable controlling whether such measurements
take place (disabled by default), which you can change

TimingInfo::enabled=True; // in c++

O.timingEnabled=True ## in python

After running the simulation, yade.timing.stats() function will show table with the results and per-
centages:

Yade [47]: TriaxialTest(numberOfGrains=100).load()

Yade [48]: O.engines[0].label='firstEngine' ## labeled engines will show by labels␣
↪→in the stats table

Yade [49]: import yade.timing;

Yade [50]: O.timingEnabled=True

Yade [51]: yade.timing.reset() ## not necessary if used for the␣
↪→first time

Yade [52]: O.run(50); O.wait()

Yade [53]: yade.timing.stats()
Name Count Time ␣
↪→ Rel. time
--
↪→-----------------
"firstEngine" 50 82.2us ␣
↪→ 0.84%
InsertionSortCollider 25 2889.856us ␣
↪→ 29.44%
InteractionLoop 50 4333.416us ␣
↪→ 44.15%

(continues on next page)

1486 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

(continued from previous page)

GlobalStiffnessTimeStepper 2 35.096us ␣
↪→ 0.36%
TriaxialCompressionEngine 50 890.864us ␣
↪→ 9.08%
TriaxialStateRecorder 3 288.016us ␣
↪→ 2.93%
NewtonIntegrator 50 1296.296us ␣
↪→ 13.21%
forces sync 50 13.312us ␣

↪→ 1.03%
motion integration 50 1244.056us ␣

↪→ 95.97%
sync max vel 50 11.92us ␣

↪→ 0.92%
terminate 50 4.968us ␣

↪→ 0.38%
TOTAL 200 1274.256us ␣

↪→ 98.30%
TOTAL 9815.744us ␣
↪→ 100.00%

Exec count and time can be accessed and manipulated through Engine::timingInfo from c++ or
Engine().execCount and Engine().execTime properties in Python.

In-engine and in-functor timing

Timing within engines (and functors) is based on TimingDeltas class which is by default instantiated
in engines and functors as Engine::timingDeltas and Functor::timingDeltas (Engine.timingDeltas and
Functor.timingDeltas in Python). It is made for timing loops (functors’ loop is in their respective
dispatcher) and stores cummulatively time differences between checkpoints.

Note: Fine timing with TimingDeltas will only work if timing is enabled globally (see previous section).
The code would still run, but giving zero times and exec counts.

1. Preferably define the timingDeltas attributes in the constructor:

// header file
class Law2_ScGeom_CpmPhys_Cpm: public LawFunctor {

/* … */
YADE_CLASS_BASE_DOC_ATTRS_CTOR(Law2_ScGeom_CpmPhys_Cpm,LawFunctor,

↪→"docstring",
/* attrs */,
/* constructor */
timingDeltas=shared_ptr<TimingDeltas>(new TimingDeltas); //␣

↪→timingDeltas object is automatically initialized when using -DENABLE_
↪→PROFILING=1 cmake option

);
// ...

};

2. Inside the loop, start the timing by calling timingDeltas->start();

3. At places of interest, call timingDeltas->checkpoint("label"). The label is used only for post-
processing, data are stored based on the checkpoint position, not the label.

3.1. Programmer’s manual 1487

Yade Documentation, Release 3rd ed.

Warning: Checkpoints must be always reached in the same order, otherwise the
timing data will be garbage. Your code can still branch, but you have to put check-
points to places which are in common.

void Law2_ScGeom_CpmPhys_Cpm::go(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys,
Interaction* I,
Scene* scene)

{
timingDeltas->start(); // the point at which␣

↪→the first timing starts
// prepare some variables etc here
timingDeltas->checkpoint("setup");
// find geometrical data (deformations) here
timingDeltas->checkpoint("geom");
// compute forces here
timingDeltas->checkpoint("material");
// apply forces, cleanup here
timingDeltas->checkpoint("rest");

}

4. Alternatively, you can compile Yade using -DENABLE_PROFILING=1 cmake
option and use predefined macros TIMING_DELTAS_START and
TIMING_DELTAS_CHECKPOINT. Without -DENABLE_PROFILING options,
those macros are empty and do nothing.

void Law2_ScGeom_CpmPhys_Cpm::go(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys,
Interaction* I,
Scene* scene)

{
TIMING_DELTAS_START();
// prepare some variables etc here
TIMING_DELTAS_CHECKPOINT("setup")
// find geometrical data (deformations) here
TIMING_DELTAS_CHECKPOINT("geom")
// compute forces here
TIMING_DELTAS_CHECKPOINT("material")
// apply forces, cleanup here
TIMING_DELTAS_CHECKPOINT("rest")

}

The output might look like this (note that functors are nested inside dispatchers and TimingDeltas
inside their engine/functor):

Name Count Time Rel. time

ForceReseter 400 9449�s 0.01%
BoundDispatcher 400 1171770�s 1.15%
InsertionSortCollider 400 9433093�s 9.24%
IGeomDispatcher 400 15177607�s 14.87%
IPhysDispatcher 400 9518738�s 9.33%
LawDispatcher 400 64810867�s 63.49%
Law2_ScGeom_CpmPhys_Cpm
setup 4926145 7649131�s 15.25%
geom 4926145 23216292�s 46.28%

(continues on next page)

1488 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

(continued from previous page)

material 4926145 8595686�s 17.14%
rest 4926145 10700007�s 21.33%
TOTAL 50161117�s 100.00%

NewtonIntegrator 400 1866816�s 1.83%
"strainer" 400 21589�s 0.02%
"plotDataCollector" 160 64284�s 0.06%
"damageChecker" 9 3272�s 0.00%
TOTAL 102077490�s 100.00%

Warning: Do not use TimingDeltas in parallel sections, results might not be meaningful. In
particular, avoid timing functors inside InteractionLoop when running with multiple OpenMP threads.

TimingDeltas data are accessible from Python as list of (label,*time*,*count*) tuples, one tuple repre-
senting each checkpoint:

deltas=someEngineOrFunctor.timingDeltas.data()
deltas[0][0] # 0th checkpoint label
deltas[0][1] # 0th checkpoint time in nanoseconds
deltas[0][2] # 0th checkpoint execution count
deltas[1][0] # 1st checkpoint label

…
deltas.reset()

Timing overhead

The overhead of the coarser, per-engine timing, is very small. For simulations with at least several
hundreds of elements, they are below the usual time variance (a few percent).

The finer TimingDeltas timing can have major performance impact and should be only used during
debugging and performance-tuning phase. The parts that are file-timed will take disproportionally
longer time that the rest of engine; in the output presented above, LawDispatcher takes almost � of total
simulation time in average, but the number would be twice of thrice lower typically (note that each
checkpoint was timed almost 5 million times in this particular case).

OpenGL Rendering

Yade provides 3d rendering based on QGLViewer. It is not meant to be full-featured rendering and
post-processing, but rather a way to quickly check that scene is as intended or that simulation behaves
sanely.

Note: Although 3d rendering runs in a separate thread, it has performance impact on the computa-
tion itself, since interaction container requires mutual exclusion for interaction creation/deletion. The
InteractionContainer::drawloopmutex is either held by the renderer (OpenGLRenderingEngine) or
by the insertion/deletion routine.

Warning: There are 2 possible causes of crash, which are not prevented because of serious perfor-
mance penalty that would result:

1. access to BodyContainer, in particular deleting bodies from simulation; this is a rare operation,
though.

2. deleting Interaction::phys or Interaction::geom.

3.1. Programmer’s manual 1489

http://www.libqglviewer.com

Yade Documentation, Release 3rd ed.

Renderable entities (Shape, State, Bound, IGeom, IPhys) have their associated OpenGL functors. An
entity is rendered if

1. Rendering such entities is enabled by appropriate attribute in OpenGLRenderingEngine

2. Functor for that particular entity type is found via the dispatch mechanism.

Gl1_* functors operating on Body’s attributes (Shape, State, Bound) are called with the OpenGL con-
text translated and rotated according to State::pos and State::ori. Interaction functors work in global
coordinates.

3.1.7 Simulation framework

Besides the support framework mentioned in the previous section, some functionality pertaining to
simulation itself is also provided.

There are special containers for storing bodies, interactions and (generalized) forces. Their internal func-
tioning is normally opaque to the programmer, but should be understood as it can influence performance.

Scene

Scene is the object containing the whole simulation. Although multiple scenes can be present in the
memory, only one of them is active. Saving and loading (serializing and deserializing) the Scene object
should make the simulation run from the point where it left off.

Note: All Engines and functors have interally a Scene* scene pointer which is updated regularly by
engine/functor callers; this ensures that the current scene can be accessed from within user code.

For outside functions (such as those called from python, or static functions in Shop), you can use
Omega::instance().getScene() to retrieve a shared_ptr<Scene> of the current scene.

Body container

Body container is linear storage of bodies. Each body in the simulation has its unique id, under which it
must be found in the BodyContainer. Body that is not yet part of the simulation typically has id equal
to invalid value Body::ID_NONE, and will have its id assigned upon insertion into the container. The
requirements on BodyContainer are

• O(1) access to elements,

• linear-addressability (0…n indexability),

• store shared_ptr, not objects themselves,

• no mutual exclusion for insertion/removal (this must be assured by the called, if desired),

• intelligent allocation of id for new bodies (tracking removed bodies),

• easy iteration over all bodies.

Note: Currently, there is “abstract” class BodyContainer, from which derive concrete implementations;
the initial idea was the ability to select at runtime which implementation to use (to find one that performs
the best for given simulation). This incurs the penalty of many virtual function calls, and will probably
change in the future. All implementations of BodyContainer were removed in the meantime, except
BodyVector (internally a vector<shared_ptr<Body> > plus a few methods around), which is the fastest.

1490 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

Insertion/deletion

Body insertion is typically used in FileGenerator’s:

shared_ptr<Body> body(new Body);
// … (body setup)
scene->bodies->insert(body); // assigns the id

Bodies are deleted only rarely:

scene->bodies->erase(id);

Warning: Since mutual exclusion is not assured, never insert/erase bodies from parallel sections,
unless you explicitly assure there will be no concurrent access.

Iteration

The container can be iterated over using for(const auto& …… : ……) C++ syntax:

for(const auto& b : *scene->bodies){
if(!b) continue; // skip deleted bodies, nullptr-check
/* do something here */

}

The same loop can be also written by using the type const shared_ptr<Body>& explicitly:

for(const shared_ptr<Body>& b : *scene->bodies){
if(!b) continue; // skip deleted bodies, nullptr-check
/* do something here */

}

Warning: The previously used macro FOREACH is now deprecated.

Note a few important things:

1. Always use const shared_ptr<Body>& (const reference); that avoids incrementing and decrement-
ing the reference count on each shared_ptr.

2. Take care to skip NULL bodies (if(!b) continue): deleted bodies are deallocated from the
container, but since body id’s must be persistent, their place is simply held by an empty shared_-
ptr<Body>() object, which is implicitly convertible to false.

In python, the BodyContainer wrapper also has iteration capabilities; for convenience (which is different
from the c++ iterator), NULL bodies as silently skipped:

Yade [54]: O.bodies.append([Body(),Body(),Body()])
Out[54]: [0, 1, 2]

Yade [55]: O.bodies.erase(1)
Out[55]: True

Yade [56]: [b.id for b in O.bodies]
Out[56]: [0, 2]

In loops parallelized using OpenMP, the loop must traverse integer interval (rather than using iterators):

3.1. Programmer’s manual 1491

Yade Documentation, Release 3rd ed.

const long size=(long)bodies.size(); // store this value, since it doesn't␣
↪→change during the loop
#pragma omp parallel for
for(long _id=0; _id<size; _id++){

const shared_ptr<Body>& b(bodies[_id]);
if(!b) continue;
/* … */

}

InteractionContainer

Interactions are stored in special container, and each interaction must be uniquely identified by pair of
ids (id1,id2).

• O(1) access to elements,

• linear-addressability (0…n indexability),

• store shared_ptr, not objects themselves,

• mutual exclusion for insertion/removal,

• easy iteration over all interactions,

• addressing symmetry, i.e. interaction(id1,id2)�interaction(id2,id1)

Note: As with BodyContainer, there is “abstract” class InteractionContainer, and then its concrete
implementations. Currently, only InteractionVecMap implementation is used and all the other were
removed. Therefore, the abstract InteractionContainer class may disappear in the future, to avoid
unnecessary virtual calls.

Further, there is a blueprint for storing interactions inside bodies, as that would give extra advantage of
quickly getting all interactions of one particular body (currently, this necessitates loop over all interac-
tions); in that case, InteractionContainer would disappear.

Insert/erase

Creating new interactions and deleting them is delicate topic, since many eleents of simulation must be
synchronized; the exact workflow is described in Handling interactions. You will almost certainly never
need to insert/delete an interaction manually from the container; if you do, consider designing your code
differently.

// both insertion and erase are internally protected by a mutex,
// and can be done from parallel sections safely
scene->interactions->insert(shared_ptr<Interaction>(new Interactions(id1,id2)));
scene->interactions->erase(id1,id2);

1492 Chapter 3. Yade for programmers

https://blueprints.launchpad.net/yade/+spec/intrs-inside-bodies

Yade Documentation, Release 3rd ed.

Iteration

As with BodyContainer, iteration over interactions should use the for(const auto& …… : ……) C++
syntax, also const shared_ptr<Interaction>& can be used instead of auto&:

for(const shared_ptr<Interaction>& i : *scene->interactions){
if(!i->isReal()) continue;
/* … */

}

Warning: The previously used macro FOREACH is now deprecated.

Again, note the usage const reference for i. The check if(!i->isReal()) filters away interactions
that exist only potentially, i.e. there is only Bound overlap of the two bodies, but not (yet) overlap of
bodies themselves. The i->isReal() function is equivalent to i->geom && i->phys. Details are again
explained in Handling interactions.

In some cases, such as OpenMP-loops requiring integral index (OpenMP >= 3.0 allows parallelization
using random-access iterator as well), you need to iterate over interaction indices instead:

int nIntr=(int)scene->interactions->size(); // hoist container size
#pragma omp parallel for
for(int j=0; j<nIntr; j++){

const shared_ptr<Interaction>& i=(*scene->interactions)[j];
if(!i->isReal()) continue;
/* … */

}

ForceContainer

ForceContainer holds “generalized forces”, i.e. forces, torques, (explicit) dispalcements and rotations for
each body.

During each computation step, there are typically 3 phases pertaining to forces:

1. Resetting forces to zero (usually done by the ForceResetter engine)

2. Incrementing forces from parallel sections (solving interactions – from LawFunctor)

3. Reading absolute force values sequentially for each body: forces applied from different interactions
are summed together to give overall force applied on that body (NewtonIntegrator, but also various
other engine that read forces)

This scenario leads to special design, which allows fast parallel write access:

• each thread has its own storage (zeroed upon request), and only writes to its own storage; this
avoids concurrency issues. Each thread identifies itself by the omp_get_thread_num() function
provided by the OpenMP runtime.

• before reading absolute values, the container must be synchronized, i.e. values from all threads
are summed up and stored separately. This is a relatively slow operation and we provide Force-
Container::syncCount that you might check to find cummulative number of synchronizations and
compare it against number of steps. Ideally, ForceContainer is only synchronized once at each
step.

• the container is resized whenever an element outside the current range is read/written to (the
read returns zero in that case); this avoids the necessity of tracking number of bodies, but also is
potential danger (such as scene->forces.getForce(1000000000), which will probably exhaust
your RAM). Unlike c++, Python does check given id against number of bodies.

3.1. Programmer’s manual 1493

Yade Documentation, Release 3rd ed.

// resetting forces (inside ForceResetter)
scene->forces.reset()

// in a parallel section
scene->forces.addForce(id,force); // add force

// container is not synced after we wrote to it, sync before reading
scene->forces.sync();
const Vector3r& f=scene->forces.getForce(id);

Synchronization is handled automatically if values are read from python:

Yade [57]: O.bodies.append(Body())
Out[57]: 3

Yade [58]: O.forces.addF(0,Vector3(1,2,3))

Yade [59]: O.forces.f(0)
Out[59]: Vector3(1,2,3)

Yade [60]: O.forces.f(100)
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[60], line 1[0m
[0;32m----> 1[0m [43mO[49m[38;5;241;43m.[39;49m[43mforces[49m[38;5;241;43m.[39;
↪→49m[43mf[49m[43m([49m[38;5;241;43m100[39;49m[43m)[49m

[0;31mIndexError[0m: Body id out of range.

Handling interactions

Creating and removing interactions is a rather delicate topic and number of components must cooperate
so that the whole behaves as expected.

Terminologically, we distinguish

potential interactions,
having neither geometry nor physics. Interaction.isReal can be used to query the status
(Interaction::isReal() in c++).

real interactions,
having both geometry and physics. Below, we shall discuss the possibility of interactions that only
have geometry but no physics.

During each step in the simulation, the following operations are performed on interactions in a typical
simulation:

1. Collider creates potential interactions based on spatial proximity. Not all pairs of bodies are
susceptible of entering interaction; the decision is done in Collider::mayCollide:

• clumps may not enter interactions (only their members can)

• clump members may not interact if they belong to the same clump

• bitwise AND on both bodies’ masks must be non-zero (i.e. there must be at least one bit set
in common)

2. Collider erases interactions that were requested for being erased (see below).

3. InteractionLoop (via IGeomDispatcher) calls appropriate IGeomFunctor based on Shape combina-
tion of both bodies, if such functor exists. For real interactions, the functor updates associated
IGeom. For potential interactions, the functor returns

1494 Chapter 3. Yade for programmers

Yade Documentation, Release 3rd ed.

false
if there is no geometrical overlap, and the interaction will stillremain potential-only

true
if there is geometrical overlap; the functor will have created an IGeom in such case.

Note: For real interactions, the functor must return true, even if there is no more
spatial overlap between bodies. If you wish to delete an interaction without geometrical
overlap, you have to do this in the LawFunctor.

This behavior is deliberate, since different laws have different requirements, though ide-
ally using relatively small number of generally useful geometry functors.

Note: If there is no functor suitable to handle given combination of shapes, the inter-
action will be left in potential state, without raising any error.

4. For real interactions (already existing or just created in last step), InteractionLoop (via IPhys-
Dispatcher) calls appropriate IPhysFunctor based on Material combination of both bodies. The
functor must update (or create, if it doesn’t exist yet) associated IPhys instance. It is an error if
no suitable functor is found, and an exception will be thrown.

5. For real interactions, InteractionLoop (via LawDispatcher) calls appropriate LawFunctor based on
combination of IGeom and IPhys of the interaction. Again, it is an error if no functor capable of
handling it is found.

6. LawDispatcher takes care of erasing those interactions that are no longer active (such as if bodies
get too far apart for non-cohesive laws; or in case of complete damage for damage models). This
is triggered by the LawFunctor returning false. For this reason it is of upmost importance for the
LawFunctor to return consistently.

Such interaction will not be deleted immediately, but will be reset to potential state. At the next
execution of the collider InteractionContainer::conditionalyEraseNonReal will be called, which
will completely erase interactions only if the bounding boxes ceased to overlap; the rest will be kept in
potential state.

Creating interactions explicitly

Interactions may still be created explicitly with utils.createInteraction, without any spatial requirements.
This function searches current engines for dispatchers and uses them. IGeomFunctor is called with the
force parameter, obliging it to return true even if there is no spatial overlap.

Associating Material and State types

Some models keep extra state information in the Body.state object, therefore requiring strict association
of a Material with a certain State (for instance, CpmMat is associated to CpmState and this combination
is supposed by engines such as CpmStateUpdater).

If a Material has such a requirement, it must override 2 virtual methods:

1. Material.newAssocState, which returns a new State object of the corresponding type. The default
implementation returns State itself.

2. Material.stateTypeOk, which checks whether a given State object is of the corresponding type (this
check is run at the beginning of the simulation for all particles).

In c++, the code looks like this (for CpmMat):

3.1. Programmer’s manual 1495

Yade Documentation, Release 3rd ed.

class CpmMat: public FrictMat {
public:

virtual shared_ptr<State> newAssocState() const { return shared_ptr<State>(new␣
↪→CpmState); }

virtual bool stateTypeOk(State* s) const { return (bool)dynamic_cast<CpmState*>
↪→(s); }

/* ... */
};

This allows one to construct Body objects from functions such as utils.sphere only by knowing the requires
Material type, enforcing the expectation of the model implementor.

3.1.8 Runtime structure

Startup sequence

Yade’s main program is python script in core/main/main.py.in; the build system replaces a few
${variables} in that file before copying it to its install location. It does the following:

1. Process command-line options, set environment variables based on those options.

2. Import main yade module (import yade), residing in py/__init__.py.in. This module locates
plugins (recursive search for files lib*.so in the lib installation directory). yade.boot module is
used to setup temporary directory, … and, most importantly, loads plugins.

3. Manage further actions, such as running scripts given at command line, opening qt.Controller (if
desired), launching the ipython prompt.

Singletons

There are several “global variables” that are always accessible from c++ code; properly speaking, they
are Singletons, classes of which exactly one instance always exists. The interest is to have some general
functionality acessible from anywhere in the code, without the necessity of passing pointers to such objects
everywhere. The instance is created at startup and can be always retrieved (as non-const reference) using
the instance() static method (e.g. Omega::instance().getScene()).

There are 3 singletons:

ClassFactory
Registers classes from plugins and able to factor instance of a class given its name as string (the
class must derive from Factorable). Not exposed to python.

Omega
Access to simulation(s); deserves separate section due to its importance.

Logging
Handles logging filters for all named loggers, see logging verbosity.

1496 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/trunk/blob/master/core/main/main.py.in
https://gitlab.com/yade-dev/trunk/blob/master/py/__init__.py.in
https://gitlab.com/yade-dev/trunk/blob/master/core/main/pyboot.cpp
http://en.wikipedia.org/wiki/Singleton_pattern

Yade Documentation, Release 3rd ed.

Omega

The Omega class handles all simulation-related functionality: loading/saving, running, pausing.

In python, the wrapper class to the singleton is instantiated6 as global variable O. For convenience,
Omega is used as proxy for scene’s attribute: although multiple Scene objects may be instantiated in
c++, it is always the current scene that Omega represents.

The correspondence of data is literal: Omega.materials corresponds to Scene::materials of the current
scene; likewise for materials, bodies, interactions, tags, cell, engines, initializers, miscParams.

To give an overview of (some) variables:

Python c++
Omega.iter Scene::iter
Omega.dt Scene::dt
Omega.time Scene::time
Omega.realtime Omega::getRealTime()
Omega.stopAtIter Scene::stopAtIter

Omega in c++ contains pointer to the current scene (Omega::scene, retrieved by Omega::instance().
getScene()). Using Omega.switchScene, it is possible to swap this pointer with Omega::sceneAnother, a
completely independent simulation. This can be useful for example (and this motivated this functionality)
if while constructing simulation, another simulation has to be run to dynamically generate (i.e. by
running simulation) packing of spheres.

Engine loop

Running simulation consists in looping over Engines and calling them in sequence. This loop is defined
in Scene::moveToNextTimeStep function in core/Scene.cpp. Before the loop starts, O.initializers are
called; they are only run once. The engine loop does the following in each iteration over O.engines:

1. set Engine::scene pointer to point to the current Scene.

2. Call Engine::isActivated(); if it returns false, the engine is skipped.

3. Call Engine::action()

4. If O.timingEnabled, increment Engine::execTime by the difference from the last time reading (either
after the previous engine was run, or immediately before the loop started, if this engine comes first).
Increment Engine::execCount by 1.

After engines are processed, virtual time is incremented by timestep and iteration number is incremented
by 1.

Background execution

The engine loop is (normally) executed in background thread (handled by SimulationFlow class), leaving
foreground thread free to manage user interaction or running python script. The background thread is
managed by O.run() and O.pause() commands. Foreground thread can be blocked until the loop finishes
using O.wait().

Single iteration can be run without spawning additional thread using O.step().
6 It is understood that instantiating Omega() in python only instantiates the wrapper class, not the singleton itself.

3.1. Programmer’s manual 1497

https://gitlab.com/yade-dev/trunk/blob/775ae7436/core/Scene.cpp#L71
https://gitlab.com/yade-dev/trunk/blob/master/core/SimulationFlow.hpp

Yade Documentation, Release 3rd ed.

3.1.9 Python framework

Wrapping c++ classes

Each class deriving from Serializable is automatically exposed to python, with access to its (registered)
attributes. This is achieved via YADE_CLASS_BASE_DOC_* macro family. All classes registered
in class factory are default-constructed in Omega::buildDynlibDatabase. Then, each serializable class
calls Serializable::pyRegisterClass virtual method, which injects the class wrapper into (initially
empty) yade.wrapper module. pyRegisterClass is defined by YADE_CLASS_BASE_DOC and knows about
class, base class, docstring, attributes, which subsequently all appear in boost::python class definition.

Wrapped classes define special constructor taking keyword arguments corresponding to class attributes;
therefore, it is the same to write:

Yade [61]: f1=ForceEngine()

Yade [62]: f1.ids=[0,4,5]

Yade [63]: f1.force=Vector3(0,-1,-2)

and

Yade [64]: f2=ForceEngine(ids=[0,4,5],force=Vector3(0,-1,-2))

Yade [65]: print(f1.dict())
{'force': Vector3(0,-1,-2), 'ids': [0, 4, 5], 'dead': False, 'ompThreads': -1, 'label
↪→': ''}

Yade [66]: print(f2.dict())
{'force': Vector3(0,-1,-2), 'ids': [0, 4, 5], 'dead': False, 'ompThreads': -1, 'label
↪→': ''}

Wrapped classes also inherit from Serializable several special virtual methods: dict() returning all reg-
istered class attributes as dictionary (shown above), clone() returning copy of instance (by copying
attribute values), updateAttrs() and updateExistingAttrs() assigning attributes from given dictionary
(the former thrown for unknown attribute, the latter doesn’t). And pyDictCustom() explained also in
preceeding section.

Read-only property name wraps c++ method getClassName() returning class name as string. (Since
c++ class and the wrapper class always have the same name, getting python type using __class__ and
its property __name__ will give the same value).

Yade [67]: s=Sphere()

Yade [68]: s.__class__.__name__
Out[68]: 'Sphere'

Subclassing c++ types in python

In some (rare) cases, it can be useful to derive new class from wrapped c++ type in pure python. This is
done in the yade.pack module module: Predicate is c++ base class; from this class, several c++ classes are
derived (such as inGtsSurface), but also python classes (such as the trivial inSpace predicate). inSpace
derives from python class Predicate; it is, however, not direct wrapper of the c++ Predicate class,
since virtual methods would not work.

boost::python provides special boost::python::wrapper template for such cases, where each overrid-
able virtual method has to be declared explicitly, requesting python override of that method, if present.
See Overridable virtual functions for more details.

1498 Chapter 3. Yade for programmers

http://wiki.python.org/moin/boost.python/OverridableVirtualFunctions

Yade Documentation, Release 3rd ed.

When python code is called from C++, the calling thread must hold the python “Global Interpreter
Lock” (GIL). When initalizing the script as well as running one iteration calling O.step(), the running
thread is the same as python, and no additional code is required. On the other hand, calling python
code inside the simulation loop using O.run() needs the lock to be acquired by the thread, or a segfault
error will occurs. See implementation of pyGenericPotential () for a complete exemple.

Reference counting

Python internally uses reference counting on all its objects, which is not visible to casual user. It has to
be handled explicitly if using pure Python/C API with Py_INCREF and similar functions.

boost::python used in Yade fortunately handles reference counting internally. Additionally, it auto-
matically integrates reference counting for shared_ptr and python objects, if class A is wrapped as
boost::python::class_<A,shared_ptr<A>>. Since all Yade classes wrapped using YADE_CLASS_-
BASE_DOC_* macro family are wrapped in this way, returning shared_ptr<…> objects from is the
preferred way of passing objects from c++ to python.

Returning shared_ptr is much more efficient, since only one pointer is returned and reference count
internally incremented. Modifying the object from python will modify the (same) object in c++ and
vice versa. It also makes sure that the c++ object will not be deleted as long as it is used somewhere in
python, preventing (important) source of crashes.

Custom converters

When an object is passed from c++ to python or vice versa, then either

1. the type is basic type which is transparently passed between c++ and python (int, bool, std::string
etc)

2. the type is wrapped by boost::python (such as Yade classes, Vector3 and so on), in which case
wrapped object is returned;7

Other classes, including template containers such as std::vector must have their custom converters
written separately. Some of them are provided in py/wrapper/customConverters.cpp, notably converters
between python (homogeneous, i.e. with all elements of the same type) sequences and c++ std::vector
of corresponding type; look in that source file to add your own converter or for inspiration.

When an object is crossing c++/python boundary, boost::python’s global “converters registry” is
searched for class that can perform conversion between corresponding c++ and python types. The
“converters registry” is common for the whole program instance: there is no need to register convert-
ers in each script (by importing _customConverters, for instance), as that is done by yade at startup
already.

Note: Custom converters only work for value that are passed by value to python (not “by reference”):
some attributes defined using YADE_CLASS_BASE_DOC_* macro family are passed by value, but if
you define your own, make sure that you read and understand Why is my automatic to-python conversion
not being found?.

In short, the default for def_readwrite and def_readonly is to return references to underlying c++
objects, which avoids performing conversion on them. For that reason, return value policy must be set
to return_by_value explicitly, using slighly more complicated add_property syntax, as explained at
the page referenced.

This deficiency is addressed presently in the file lib/serialization/PyClassCustom.hpp for the .def_-
readonly(…) function. It can be improved later if the need arises.

7 Wrapped classes are automatically registered when the class wrapper is created. If wrapped class derives from
another wrapped class (and if this dependency is declared with the boost::python::bases template, which Yade’s
classes do automatically), parent class must be registered before derived class, however. (This is handled via loop in
Omega::buildDynlibDatabase, which reiterates over classes, skipping failures, until they all successfully register) Math
classes (Vector3, Matrix3, Quaternion) are wrapped in minieigenHP. See high precision documentation for more details.

3.1. Programmer’s manual 1499

http://en.wikipedia.org/wiki/Reference_counting
http://docs.python.org/c-api/index.html
http://wiki.python.org/moin/boost.python/PointersAndSmartPointers
http://wiki.python.org/moin/boost.python/PointersAndSmartPointers
https://gitlab.com/yade-dev/trunk/blob/master/py/wrapper/customConverters.cpp
http://www.boost.org/doc/libs/1_42_0/libs/python/doc/v2/faq.html#topythonconversionfailed
http://www.boost.org/doc/libs/1_42_0/libs/python/doc/v2/faq.html#topythonconversionfailed
https://gitlab.com/yade-dev/trunk/blob/master/lib/serialization/PyClassCustom.hpp

Yade Documentation, Release 3rd ed.

3.1.10 Adding a new python/C++ module

Modules are placed in py/ directory, the C++ parts of the modules begin their name with an underscore
_. The procedure to add a new module is following:

1. Create your new files:

1. The yourNewModule.py file like this.

2. The _yourNewModule.cpp file like this, if part of your module will be written in C++.

2. Update the module redirection map in these two places:

1. mods in doc/sphinx/yadeSphinx.py.

2. moduleMap in doc/sphinx/conf.py, if the new module has a C++ part (this duplication of data
will hopefully be soon removed).

3. Add the C++ file into py/CMakeLists.txt like this.

4. Modify the CMakeLists.txt but only if the file will depend on cmake compilation variables, eg.
like this. The file then needs an additional extension .in and be put in two places:

1. The cmake command to generate the file from .in input: like this.

2. The cmake command to install it: like this.

Hint: The last step regarding yourNewModule.py.in (or _yourNewModule.cpp.in) is needed only on
very rare occasions, and is included here only for the sake of completeness.

Debugging boundary between python and C++

During normal use all C++ exceptions are propagated back to python interface with full information
associated with them. The only situation where this might not be the case is during execution of
command import module inside a python script. It might happen that when importing a new module
some cryptic errors occur like: initialization of module raised unreported exception. These
unreported exceptions happen in the situation when the C++ code executed a python code inside
it (this is called embedding) and this python code threw an exception. The proper way to deal with
this situation is to wrap entire module declaration inside a try {} catch(...) {} block. It might be
possible to deal with specific exceptions also (see here for other example catch blocks), however the
general solution is to properly inform python that importing this module did not work. In this catch
block it is possible to execute PyErr_Print(); command to see what the problem was and propagate
the exception back to python, however during import module command only the SystemError python
exception can get through. Hence the catch(...) block after BOOST_PYTHON_MODULE(_yourNewModule)
should look like this:

#include <lib/base/Logging.hpp>

CREATE_CPP_LOCAL_LOGGER("_yourNewModule.cpp");

BOOST_PYTHON_MODULE(_yourNewModule)
try {

py::def("foo", foo, R"""(
The description of function foo().

:param arg1: description of first argument
:param arg2: description of second argument
:type arg1: type description
:type arg2: type description
:return: return description

(continues on next page)

1500 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/trunk/blob/d067b0696/py/libVersions.py.in
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/py/_log.cpp
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/doc/sphinx/yadeSphinx.py#L48
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/doc/sphinx/conf.py#L91
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/py/CMakeLists.txt#L38
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/py/libVersions.py.in#L107
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/CMakeLists.txt#L875
https://gitlab.com/yade-dev/trunk/blob/bf906f74a6/CMakeLists.txt#L897
https://gitlab.com/yade-dev/trunk/merge_requests/348

Yade Documentation, Release 3rd ed.

(continued from previous page)

:rtype: the return type description

Example usage of foo:

.. ipython::

In [1]: from yade.yourNewModule import *

In [1]: foo()

.. note:: Notes, hints and warnings about how to use foo().

)""");

} catch (...) {
LOG_FATAL("Importing this module caused an exception and this module is in an␣

↪→inconsistent state now.");
PyErr_Print();
PyErr_SetString(PyExc_SystemError, __FILE__);
boost::python::handle_exception();
throw;

}

Note: Pay attention to the _yourNewModule inside BOOST_PYTHON_MODULE(…), it has to match the file
name of the .cpp file.

Further reading, about how to work with python exceptions:

1. Example in boost::python reference manual.

2. Example in boost::python tutorial.

3. When PyErr_Print(); is not enough.

3.1.11 Maintaining compatibility

In Yade development, we identified compatibility to be very strong desire of users. Compatibility concerns
python scripts, not simulations saved in XML or old c++ code.

Renaming class

Script scripts/rename-class.py should be used to rename class in c++ code. It takes 2 parameters (old
name and new name) and must be run from top-level source directory:

$ scripts/rename-class.py OldClassName NewClassName
Replaced 4 occurences, moved 0 files and 0 directories
Update python scripts (if wanted) by running: perl -pi -e 's/\bOldClassName\b/
↪→NewClassName/g' `ls **/*.py |grep -v py/system.py`

This has the following effects:

1. If file or directory has basename OldClassName (plus extension), it will be renamed using bzr.

2. All occurences of whole word OldClassName will be replaced by NewClassName in c++ sources.

3. An entry is added to py/system.py, which contains map of deprecated class names. At yade startup,
proxy class with OldClassName will be created, which issues a DeprecationWarning when being

3.1. Programmer’s manual 1501

https://www.boost.org/doc/libs/1_71_0/libs/python/doc/html/reference/high_level_components/boost_python_errors_hpp.html#high_level_components.boost_python_errors_hpp.example
https://www.boost.org/doc/libs/1_71_0/libs/python/doc/html/tutorial/tutorial/embedding.html
https://stackoverflow.com/questions/1418015/how-to-get-python-exception-text
https://gitlab.com/yade-dev/trunk/blob/master/scripts/rename-class.py
https://gitlab.com/yade-dev/trunk/blob/master/py/system.py

Yade Documentation, Release 3rd ed.

instantiated, informing you of the new name you should use; it creates an instance of NewClassName,
hence not disruting your script’s functioning:

Yade [3]: SimpleViscoelasticMat()
/usr/local/lib/yade-trunk/py/yade/__init__.py:1: DeprecationWarning: Class␣
↪→`SimpleViscoelasticMat' was renamed to (or replaced by) `ViscElMat', update␣
↪→your code! (you can run 'yade --update script.py' to do that automatically)
-> [3]: <ViscElMat instance at 0x2d06770>

As you have just been informed, you can run yade --update to all old names with their new names in
scripts you provide:

$ yade-trunk --update script1.py some/where/script2.py

This gives you enough freedom to make your class name descriptive and intuitive.

Renaming class attribute

Renaming class attribute is handled from c++ code. You have the choice of merely warning at accessing
old attribute (giving the new name), or of throwing exception in addition, both with provided explanation.
See deprec parameter to YADE_CLASS_BASE_DOC_* macro family for details.

3.2 Yade on GitLab

3.2.1 Fast checkout (read-only)

Getting the source code without registering on GitLab can be done via a single command. It will not
allow interactions with the remote repository, which you access the read-only way:

git clone --recurse-submodules https://gitlab.com/yade-dev/trunk.git

3.2.2 Branches on GitLab

Most useful commands are listed in the sections below. For more details, see these git guides:

1. ProGit online Book,

2. Guide on setting up git,

3. Git “choose your own adventure”,

4. Guide on fixing the conflicts.

Setup

1. Register on gitlab.com

2. Add your SSH key to GitLab

3. Set your username and email through terminal

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

You can check these settings with git config --list.

1502 Chapter 3. Yade for programmers

https://github.com/progit/progit2
https://git-scm.com/book/en/v2
https://help.github.com/articles/set-up-git
https://sethrobertson.github.io/GitFixUm/fixup.html
https://medium.com/@porteneuve/fix-conflicts-only-once-with-git-rerere-7d116b2cec67
https://gitlab.com
https://gitlab.com/-/profile/keys

Yade Documentation, Release 3rd ed.

4. To fork the repository (optional), click the “Fork” button on the gitlab page, and also fork the
YADE data files.

Note: By default gitlab will try and compile the forked repository, and it will fail if you don’t
have runners attached to your account. To avoid receiving failure notifications go to repository
settings (bottom of left panel->general->permissions) to turn of pipelines.

5. Set Up Your Local Repo through terminal. The argument --recurse-submodules is to make sure
that ./data directory is filled with the recent data from yade-data (the path is relative to your
gitlab profile):

git clone --recurse-submodules git@gitlab.com:username/trunk.git

This creates a new folder, named trunk, that contains the whole code (make sure username is
replaced by your GitLab name). If you already have a cloned yade repository with ./data directory
in it, then you can populate your existing repository using command:

git submodule update --init --recursive

6. Configure remotes

cd to/newly/created/folder
git remote add upstream git@gitlab.com:yade-dev/trunk.git
git remote update

Now, your “trunk” folder is linked with two remote repositories both hosted on gitlab.com, the
original trunk from yade-dev (called “upstream” after the last command) and the fork which resides
in your personal account (called “origin” and always configured by default). Through appropriate
commands explained below, you will be able to update your code to include changes commited by
others, or to commit yourself changes that others can get.

Holding a fork under personnal account is in fact not strictly necessary. It is recommended, however,
and in what follows it is assumed that the above steps have been followed.

Older versions

In case you want to work with, or compile, an older version of Yade which is not tagged, you can create
your own (local) branch of the corresponding daily build. Look here for details.

Committing and updating

Inspecting changes

After changing the source code in the local repository you may start by inspecting them with a few
commands. For the “diff” command, it is convenient to copy from the output of “status” instead of
typing the path to modified files.

git status
git diff path/to/modified/file.cpp

3.2. Yade on GitLab 1503

https://gitlab.com/yade-dev/trunk
https://gitlab.com/yade-dev/yade-data
https://gitlab.com/yade-dev/yade-data
https://gitlab.com/yade-dev/trunk/-/blob/master/.gitmodules#L3
https://answers.launchpad.net/yade/+question/235867

Yade Documentation, Release 3rd ed.

Pushing changes

Depending on the remote repository you want to push to, follow one of the methods below.

1. Push to yade-dev

Merging changes into yade-dev’s master branch cannot be done directly with a push, only by merge
request (see below). It is possible however to push changes to a new branch of yade-dev repository
for members of that group. It is currently the only way to have merge requests tested by the gitlab
CI pipeline before being effectively merged. To push to a new yade-dev/branch:

git branch localBranch
git checkout localBranch
git add path/to/new/file.cpp #Version a newly created file
git commit path/to/new_or_modified/file.cpp -m 'Commit message' #stage␣
↪→(register) change in the local repository
git pull --rebase upstream master #get updated version of sources from yade-dev␣
↪→repo and apply your commits on the top of them
git push upstream localBranch:newlyCreatedBranch #Push all commits to a new␣
↪→remote branch.

The first two lines are optional, if ignored the commits will go the to the default branch, called
“master”. In the last command localBranch is the local branch name on which you were working
(possibly master) and newlyCreatedBranch will be the name of that branch on the remote. Please
choose a descriptive name as much as you can (e.g. “fixBug457895”).

Note: If you run into any problems with command git pull --rebase upstream master, you always
can revert or even better fix the conflicts.

2. Push to personnal repository

After previous steps proceed to commit through terminal, “localBranch” should be replaced by a
relevant name:

git branch localBranch
git checkout localBranch
git add path/to/new/file.cpp #Version a newly created file
git commit path/to/new_or_modified/file.cpp -m 'Commit message' #stage␣
↪→(register) change in the local repository
git push #Push all commits to the remote branch

The changes will be pushed to your personal fork.

Updating

You may want to get changes done by others to keep your local and remote repositories synced with the
upstream:

git pull --rebase upstream master #Pull new updates from the upstream to your branch.␣
↪→Eq. of "bzr update", updating the local branch from the upstream yade-dev/trunk/
↪→master
git push #Merge changes from upstream into your gitlab repo (origin)

If you have local uncommited changes this will return an error. A workaround to update while preserving
them is to “stash”:

1504 Chapter 3. Yade for programmers

https://gitlab.com/gitlab-org/gitlab-ce/issues/23902
https://medium.com/@porteneuve/fix-conflicts-only-once-with-git-rerere-7d116b2cec67

Yade Documentation, Release 3rd ed.

git stash #backup and hide changes
git pull --rebase upstream master
git push
git stash pop #restore backed up changes

Auto rebase

We promote “rebasing” to avoid confusing logs after each commit/pull/push cycle. It can be convenient
to setup automatic rebase, so it does not have to be added everytime in the above commands:

git config --global branch.autosetuprebase always

Now your file ~/.gitconfig should include:

[branch]
autosetuprebase = always

Check also .git/config file in your local trunk folder (rebase = true):

[remote "origin"]
url = git@gitlab.com:yade-dev/trunk.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master
rebase = true

Pulling a rebased branch

If someone else rebased on the gitlab server the branch on which you are working on locally, the command
git pull may complain that the branches have diverged, and refuse to perform operation, in that case
this command:

git pull --rebase upstream branchName

Will match your local branch history with the one present on the gitlab server.

If you are afraid of messing up your local branch you can always make a copy of this branch with
command:

git branch backupCopyName

If you forgot to make that backup-copy and want to go back, then make a copy anyway and go back
with this command:

git reset --merge ORIG_HEAD

The ORIG_HEAD backs up the position of HEAD before a potentially dangerous operation (merge, rebase,
etc.).

A tutorial on fixing the conflicts is a recommended read.

Note: If you are lost about how to fix your git problems try a git choose your own adventure.

3.2. Yade on GitLab 1505

https://medium.com/@porteneuve/fix-conflicts-only-once-with-git-rerere-7d116b2cec67
https://sethrobertson.github.io/GitFixUm/fixup.html

Yade Documentation, Release 3rd ed.

3.2.3 Merge requests

Members of yade-dev

If you have tested your changes and you are ready to merge them into yade-dev’s master branch, you’ll
have to make a “merge request” (MR) from the gitlab.com interface (see the “+” button at the top of the
repository webpage). Set source branch and target branch, from yade-dev/trunk/newlyCreatedBranch
to yade-dev/trunk/master. The MR will trigger a pipeline which includes compiling, running regression
tests, and generating the documentation (the newly built documentation is accessible via settings->pages
or by clicking on the “Browse” button in the “Job artifacts” (in the right pane) in the doc_18_04 build
from the pipeline; then navigating to path Artifacts/install/share/doc). If the full pipeline succeeds
the merge request can be merged into the master branch.

Note: In case of MR to yade-dev’s master from another branch of yade-dev, the pipeline will use group
runners attached to yade-dev (the group runners are kindly provided by 3SR, UMS Gricad and Gdańsk
University of Technology).

New developers

Welcome! At start it is very convenient to work on a local fork of YADE in your own gitlab profile.
When you are confident that your changes are ready to be merged into official YADE release, please
open a Merge Request (MR) in the following way:

1. Make sure that your work is in a separate branch, not in the master branch. You can “copy” your
branch into another branch with command git checkout -b myNewFeature. Please make sure
that the amount of changes as compared to the master branch is not large. In case of larger code
improvements it is better to split it into several smaller merge requests. This way it will be faster
for us to check it and merge.

2. Push your branch to the repository on your gitlab profile with command such as:

git push --set-upstream origin myNewFeature

3. You should see something like:

remote:
remote: To create a merge request for myNewFeature, visit:
remote: https://gitlab.com/myProfileName/trunk/-/merge_requests/new?merge_
↪→request%5Bsource_branch%5D=myNewFeature
remote:

4. When you visit the link mentioned above, you will have to select “Change branches” and make
sure that correct target branch is selected. Usually that will be yade-dev/trunk:master, because
this is the official YADE repository.

5. Fill in the title and description then click “Create merge request” at the bottom of the page.

6. After we review the merge request we can click on it to run in our Continuous Integration (CI)
pipeline. This pipeline can’t start automatically for security reasons. It will be merged after the
pipeline checks pass.

Alternatively, create a patch from your commit via:

git format-patch origin #create patch file in current folder)

and send to the developers mailing list (yade-dev@lists.launchpad.net) as attachment. In either way,
after reviewing your changes they will be added to the main trunk.

1506 Chapter 3. Yade for programmers

https://gitlab.com/yade-dev/trunk/pipelines
https://yade-dev.gitlab.io/trunk
https://www.3sr-grenoble.fr/?lang=en
https://gricad.univ-grenoble-alpes.fr/
https://pg.edu.pl/
https://pg.edu.pl/
mailto:yade-dev@lists.launchpad.net

Yade Documentation, Release 3rd ed.

When the pull request has been reviewed and accepted, your changes are integrated in the main trunk.
Everyone will get them via git fetch.

3.2.4 Guidelines for pushing

These are general guidelines for pushing to yade-dev/trunk.

1. Set autorebase globaly on the computer (only once see above), or at least on current local branch.
Non-rebased pull requests will not be accepted on the upstream. This is to keep history linear, and
avoid the merge commits.

2. Inspect the diff to make sure you will not commit junk code (typically some “cout<<” left here
and there), using in terminal:

git diff file1

Or using your preferred difftool, such as kdiff3:

git difftool -t kdiff3 file1

Or, alternatively, any GUI for git: gitg, git-cola…

3. Commit selectively:

git commit file1 file2 file3 -m "message" # is good
git commit -a -m "message" # is bad. It is the best way to␣
↪→commit things that should not be commited

4. Be sure to work with an up-to-date version launching:

git pull --rebase upstream master

5. Make sure it compiles and that regression tests pass: try yade --test and yade --check.

Thanks a lot for your cooperation to Yade!

3.2. Yade on GitLab 1507

Yade Documentation, Release 3rd ed.

1508 Chapter 3. Yade for programmers

Chapter 4

Theoretical background and
extensions

4.1 DEM formulation

The DEM formulation is presented in earlier chapter 2.1 DEM formulation as a common ground for all
DEM calculations.

4.2 CFD-DEM coupled simulations with Yade and OpenFOAM

The FoamCoupling engine provides a framework for Euler-Lagrange fluid-particle simulation with the
open source finite volume solver OpenFOAM. The coupling relies on the Message Passing Interface
library (MPI), as OpenFOAM is a parallel solver, furthermore communication between the solvers are
realised by MPI messages. The FoamCoupling engine must be enabled with the ENABLE_MPI flag
during compilation:

cmake -DCMAKE_INSTALL_PREFIX=/path/to/install /path/to/source -DENABLE_MPI=1

Yade sends the particle information (particle position, velocity, etc.) to all the OpenFOAM pro-
cesses. Each OpenFOAM process searches the particle in the local mesh, if the particle is found, the
hydrodynamic drag force and torque are calculated using the fluid velocity at the particle position (two
interpolation methods are available) and the particle velocity. The hydroynamic force is sent to the
Yade process and it is added to the force container. The negative of the particle hydrodynamic force
(interpolated back to the fluid cell center) is set as source term in the Navier-Stokes equations. Technical
details on the coupling methodology can be found in [Kunhappan2017] and [Kunhappan2018].

4.2.1 Supported versions and examples

A number of example scripts can be found in Yade sources, see ‘the OpenFoam
folder<https://gitlab.com/yade-dev/trunk/-/tree/master/examples/openfoam>‘_. Con-
crete execution can also be seen in the gitlab pipeline, see the ‘test-script<https://gitlab.com/yade-
dev/trunk/-/blob/master/scripts/checks-and-tests/testOpenFoam.sh>‘_.

The supported OpenFoam versions include v10 and v11 from the foundation release, and (not limited to)
v2006, v2112, v2212, v2306, v2312 from openfoam.com. The list of versions tested in the development
branch can be visualized in gitlab pipelines.

An older version of the coupling, which was using OpenFoam6, is archived
in branch ‘FOAM6couplingArchive<https://gitlab.com/yade-dev/trunk/-
/tree/FOAM6couplingArchive>‘_.

1509

https://cfd.direct/openfoam/user-guide/
https://www.open-mpi.org/software/
https://www.open-mpi.org/software/

Yade Documentation, Release 3rd ed.

4.2.2 Background

In the standard Euler-Lagrange modelling of particle laden multiphase flows, the particles are treated as
point masses. Two approaches are implemented in the present coupling:

1. Point force coupling

2. Volume fraction based force coupling.

In both of the approaches the flow at the particle scale is not resolved and analytical/empirical hydro-
dynamic force models are used to describe the fluid-particle interactions. For accurate resolution of the
particle volume fraction and hydrodynamic forces on the fluid grid the particle size must be smaller than
the fluid cell size.

Point force coupling (icoFoamYade)

In the point force coupling, the particles are assumed to be smaller than the smallest fluid length scales,
such that the particle Reynolds Number is Rep < 1.0. The particle Reynolds number is defined as
the ratio of inertial forces to viscous forces. For a sphere, the associated length-scale is the diameter,
therefore:

Rep =
ρf|Ur|dp

µ
(4.1)

where in (4.1) ρf is the fluid density, |Ur| is the norm of the relative velocity between the particle and
the fluid, dp is the particle diameter and µ the fluid dynamic viscosity. In addition to the Reynolds
number, another non-dimensional number that characterizes the particle inertia due to it’s mass called
Stokes number is defined as:

Stk =
τp |Uf|

dp

(4.2)

where in equation (4.2) τp is the particle relaxation time defined as:

τp =
ρpd

2
p

18µ

For Rep < 1 and Stk < 1, the hydrodynamic force on the particle can be represented as a point force.
This force is calculated using the Stoke’s drag force formulation:

Fh = 3πµdp(Uf −Up) (4.3)

The force obtained from (4.3) is applied on the particle and in the fluid side (in the cell where the particle
resides), this hydrodynamic force is formulated as a body/volume force:

fh =
−Fh

Vcρf
(4.4)

where in equation (4.4) Vc is the volume of the cell and ρf is the fluid density. Hence the Navier-Stokes
equations for the combined system is:

∂U

∂t
+∇ · (UU) = −

∇p

ρ
+∇¯̄τ+ fh (4.5)

Along with the continuity equation:

∇ ·U = 0 (4.6)

1510 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

Volume averaged coupling (pimpleFoamYade)

Warning: The volume averaged coupling is currently under active development. Users are advised to
exercise caution when utilizing this feature, as some functionalities may be incomplete, experimental,
or subject to significant changes in future updates.

In the volume averaged coupling, the effect of the particle volume fraction is included. The Navier-Stokes
equations take the following form:

∂(εfUf)

∂t
+∇ · (εfUfUf) = −

∇p

ρ
+ εf∇¯̄τ− K (Uf −Up) + Su + εfg (4.7)

Along with the continuity equation:

∂εf

∂t
+∇ · (εfUf) = 0 (4.8)

where in equations (4.7) and (4.8) εf is the fluid volume fraction. Note that, we do not solve for εf
directly, but obtain it from the local particle volume fraction εs, εf = 1−εs . K is the particle drag force
parameter, Uf and Up are the fluid and particle velocities respectively. Su denotes the explicit source
term consisting the effect of other hydrodynamic forces such as the Archimedes/ambient force, added
mass force etc. Details on the formulation of these forces are presented in the later parts of this section.

The interpolation and averaging of the Eulerean and Lagrangian quantities are based on a Gaussian
envelope G⋆. In this method, the the effect of the particle is ‘seen’ by the neighbouring cells of the cell
in which it resides. Let xc and xp be the fluid cell center and particle position respectively, then the
Gaussian filter G⋆ (xc − xp) defined as:

G⋆ (xc − xp) =
(
2πσ2

) 3
2 exp

(
−
||xc − xp||

2

2σ2

)
(4.9)

with σ being the standard deviation of the filter defined as:

σ = δ/
(
2
√
2 ln 2

)
(4.10)

where in equation (4.10) δ is the cut-off range (at present it’s set to 3∆x, with ∆x being the fluid cell
size.) and follows the rule:

G⋆ (||xc − xp|| = δ/2) =
1

2
G⋆ (||xc − xp|| = 0)

The particle volume fraction εs,c for a fluid cell c is calculated by:

εs,c =

∑Np

i=1 Vp,iG⋆(i,c)

Vc

(4.11)

where in (4.11) Np is the number of particle contributions on the cell c, G⋆(i,c) is the Gaussian weight
obtained from (4.9), Vp,iG⋆(i,c) forms the individual particle volume contribution. Vc is the fluid cell
volume and εf + εs = 1

The averaging and interpolation of an Eulerean quantity φ from the grid (cells) to the particle position
is performed using the following expression:

4.2. CFD-DEM coupled simulations with Yade and OpenFOAM 1511

Yade Documentation, Release 3rd ed.

φ̃ =

Nc∑
i=1

φiG⋆(i,p) (4.12)

Hydrodynamic Force

In equation (4.7) the term K is the drag force parameter. In the present implementation, K is based on
the Schiller Naumman drag law, which reads as:

K =
3

4
Cd

ρf

dp

∣∣∣∣∣∣Ũf −Up

∣∣∣∣∣∣ ε−hexp

f (4.13)

In equation (4.13) ρf is the fluid density, dp the particle diameter, hexp is defined as the ‘hindrance
coefficient’ with the value set as hexp = 2.65. The drag force force coefficient Cd is valid for particle
Reynolds numbers up to Rep < 1000. The expression for Cd reads as:

Cd =
24

Rep

(
1+ 0.15Re0.687p

)
(4.14)

The expression of hydrodynamic drag force on the particle is:

Fdrag = VpK(Ũf −Up)

In the fluid equations, negative of the drag parameter (−K) is distributed back to the grid based on
equation (4.11). Since the drag force includes a non-linear dependency on the fluid velocity Uf, this
term is set as an implicit source term in the fluid solver.

The Archimedes/ambient force experienced by the particle is calculated as:

Fby =
(
−̃∇p+ ∇̃¯̄τ

)
Vp (4.15)

where in (4.15), ∇̃p is the averaged pressure gradient at the particle center and ∇̃¯̄τ is the averaged
divergence of the viscous stress at the particle position.

Added mass force:

Fam = Cm

(
DŨf

Dt
−

dUp

dt

)
Vp (4.16)

where in eqaution (4.16), DŨf

Dt
is the material derivative of the fluid velocity.

Therefore the net hydrodynamic force on the particle reads as:

Fhyd = Fdrag + Fby + Fam

And on the fluid side the explicit source term Su,c for a fluid cell c is expressed as :

Su,c =

∑Np

i=1 −Fhyd,iεs,cG⋆(i,c)

ρfVc

1512 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

4.2.3 Setting up a case

In Yade

Setting a case in the Yade side is fairly straight forward. The python script describing the scene in Yade
is based on this method. Make sure the exact wall/periodic boundary conditions are set in Yade as well
as in the OpenFOAM. The particles should not leave the fluid domain. In case a particle has ‘escaped’
the domain, a warning message would be printed/written to the log file and the simulation will break.

The example in examples/openfoam/scriptYade.py demonstrates the coupling. A symbolic link to Yade
is created and it is imported in the script. The MPI environment is initialized by calling the initMPI()
function before instantiating the coupling engine

initMPI()
fluidCoupling = FoamCoupling()
fluidCoupling.getRank()

A list of the particle ids and number of particle is passed to the coupling engine

sphereIDs = [b.id for b in O.bodies if type(b.shape)==Sphere]
numparts = len(sphereIDs);

fluidCoupling.setNumParticles(numparts)
fluidCoupling.setIdList(sphereIDs)
fluidCoupling.isGaussianInterp = False

The type of force/velocity interpolation mode has to be set. For Gaussian envelope interpolation, the
isGaussianInterp flag has to be set, also the solver pimpleFoamYade must be used. The engine is added
to the O.engines after the timestepper

O.engines = [
ForceResetter(),
...,
GlobalStiffnessTimeStepper,
fluidCoupling ...
newton]

Substepping/data exchange interval is set automatically based on the ratio of timesteps as
foamDt/yadeDt (see exchangeDeltaT for details).

In OpenFOAM

There are two solvers available in this git repository. The solver icoFoamYade is based on the point force
coupling method and the solver pimpleFoamYade is based on the volume averaged coupling. They are
based on the existing icoFoam and pimpleFoam solvers respectively. Any OpenFOAM supported mesh
can be used, for more details on the mesh options and meshing see here. In the present example, the
mesh is generated using blockMesh utility of OpenFOAM. The case is set up in the usual OpenFOAM
way with the directories 0, system and constant

0/
U ## velocity boundary conditions
p ## pressure boundary conditions
uSource ## source term bcs (usually set as calculated).

system/
controlDict ## simulation settings : start time, end time, delta T,␣

↪→solution write control etc.
blockMeshDict ## mesh setup for using blockMesh utility : define␣

(continues on next page)

4.2. CFD-DEM coupled simulations with Yade and OpenFOAM 1513

https://yade-dev.gitlab.io/trunk/user.html#importing-yade-in-other-python-applications
https://gitlab.com/yade-dev/trunk/blob/master/examples/openfoam/scriptYade.py
https://github.com/dpkn31/Yade-OpenFOAM-coupling
https://openfoamwiki.net/index.php/IcoFoam
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM
https://cfd.direct/openfoam/user-guide/v6-mesh/

Yade Documentation, Release 3rd ed.

(continued from previous page)

↪→coordinates of geometry and surfaces. (used for simple geometries -> cartesian mesh.
↪→)
decomposeParDict ## dictionary for setting domain decomposition, (in the␣

↪→present example scotch is used)
fvSchemes ## selection of finite volume schemes for calculations of␣

↪→divergence, gradients and interpolations.
fvSolution ## linear solver selection, setting of relaxation factors␣

↪→and tolerance criterion,

constant/
polymesh/ ## mesh information, generated by blockMesh or other mesh␣

↪→utils.
transportProperties ## set the fluid and particle properties. (just density␣

↪→of the particle)

Note: Always set the timestep less than the particle relaxation time scale, this is not claculated au-
tomatically yet! Turbulence modelling based on the RANS equations have not been implemented yet.
However it is possible to use the present formulations for fully resolved turbulent flow simulations via
DNS. Dynamic/moving mesh problems are not supported yet. (Let me know if you’re interested in
implementing any new features.)

To prepare a simulation, follow these steps:

blockMesh ## generate the mesh
decomposePar ## decompose the mesh

Any type of mesh that is supported by OpenFOAM can be used. Dynamic mesh is currently not
supported.

Execution

The simulation is executed via the following command:

mpirun -n 4 /path/to/yade/install/bin/yade-exec scriptMPI.py

The video below shows the steps involved in compiling and executing the coupled CFD-DEM simulation

1514 Chapter 4. Theoretical background and extensions

https://cfd.direct/openfoam/user-guide/v6-mesh/
https://youtu.be/J_V1ffx71To

Yade Documentation, Release 3rd ed.

4.2.4 Post-Processing

Paraview can be used to visulaize both the Yade solution (use VTKRecorder) and OpenFOAM solution.
To visulaize the fluid solution, create an empty file as name.foam , open this file in Paraview and in the
properties section below the pipeline, change “Reconstructed case” to “Decomposed case” , or you can
use the reconstructed case itself but after running the reconstructPar utility, but this is time consuming.

4.2.5 Using blockMeshDict

The blockMeshDict file (system/blockMeshDict) can be loaded as facets (utils.facet) using the
py/ymport.py module’s ymport.blockMeshDict function:

from yade import ymport

facets = ymport.blockMeshDict("system/blockMeshDict")

O.bodies.append(facets)

The version of the blockMeshDict must be 2.0, see: py/tests/ymport-files/blockMeshDict.

Only the “boundary” section will be loaded, that is faces f consists of vertices v in a way that one face
is defined by four vertices:

fi = (vi0, vi1, vi2, vi3), (4.17)

where vertex v is a point in a three dimensional space:

vij = (xij, yij, zij). (4.18)

Two new facets f∗ are generated from every face f:

f∗0i = (vi0, vi1, vi2), (4.19)

f∗1i = (vi2, vi3, vi0). (4.20)

There are three types of faces: patch, wall and empty. All types are loaded by default, the patch and empty
types can be discarded using the patchasWall and emptyasWall arguments of ymport.blockMeshDict.

4.2.6 Using polyMesh

The polyMesh directory (constant/polyMesh) can be loaded as facets (utils.facet) using the py/ymport.py
module’s ymport.polyMesh function:

from yade import ymport

facets = ymport.polyMesh("constant/polyMesh")

O.bodies.append(facets)

4.2. CFD-DEM coupled simulations with Yade and OpenFOAM 1515

https://gitlab.com/yade-dev/trunk/blob/master/py/ymport.py
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/ymport-files/blockMeshDict
https://gitlab.com/yade-dev/trunk/blob/master/py/ymport.py

Yade Documentation, Release 3rd ed.

The function scans the directory and loads the points, faces and boundary files. The files must be Foam-
Files‘ with the correct header (version is 2.0, type is ascii, see: py/tests/ymport-files/polyMesh/points).
It parses the files and builds the boundary mesh:

The boundary mesh consists of faces f consists of vertices v in a way that one face is defined by four
vertices:

fi = (vi0, vi1, vi2, vi3), (4.21)

where vertex v is a point in a three dimensional space:

vij = (xij, yij, zij). (4.22)

Two new facets f∗ are generated from every face f:

f∗0i = (vi0, vi1, vi2), (4.23)

f∗1i = (vi2, vi3, vi0). (4.24)

There are three types of faces: patch, wall and empty. All types are loaded by default, the patch and
empty types can be discarded using the patchAsWall and emptyAsWall arguments of ymport.polyMesh.

Note: The polyMesh is typically more refined than blockMeshDict.

4.3 FEM-DEM hierarchical multiscale modeling with Yade and Es-
cript

Authors: Ning Guo and Jidong Zhao

Institution: Hong Kong University of Science and Technology

Escript download page: https://launchpad.net/escript-finley

mpi4py download page (optional, require MPI): https://bitbucket.org/mpi4py/mpi4py

Tested platforms: Desktop with Ubuntu 10.04, 32 bit; Server with Ubuntu 12.04, 14.04, 64 bit; Cluster
with Centos 6.2, 6.5, 64 bit;

4.3.1 Introduction

The code is built upon two open source packages: Yade for DEM modules and Escript for FEM modules.
It implements the hierarchical multiscale model (FEMxDEM) for simulating the boundary value problem
(BVP) of granular media. FEM is used to discretize the problem domain. Each Gauss point of the FEM
mesh is embedded a representative volume element (RVE) packing simulated by DEM which returns
local material constitutive responses to FEM. Typically, hundreds to thousands of RVEs are involved in
a medium-sized problem which is critically time consuming. Hence parallelization is achieved in the code
through either multiprocessing on a supercomputer or mpi4py on a HPC cluster (require MPICH or Open
MPI). The MPI implementation in the code is quite experimental. The “mpipool.py” is contributed by
Lisandro Dalcin, the author of mpi4py package. Please refer to the examples for the usage of the code.

1516 Chapter 4. Theoretical background and extensions

https://gitlab.com/yade-dev/trunk/blob/master/py/tests/ymport-files/polyMesh/points
https://launchpad.net/escript-finley
https://bitbucket.org/mpi4py/mpi4py

Yade Documentation, Release 3rd ed.

4.3.2 Finite element formulation

Note: This and the following section are a short excerpt from [Guo2014] to provide some theoretical
background. Yade users of FEM-DEM coupling are welcome to improve the following two sections.

In this coupled FEM/DEM framework on hierarchical multiscale modelling of granular media, the geo-
metric domain Ω of a given BVP is first discretised into a suitable FEM mesh. After the finite element
discretisation, one ends up with the following equation system to be solved,

Ku = f, (4.25)

where K is the stiffness matrix, u is the unknown displacement vector at the FEM nodes and f is the
nodal force vector lumped from the applied boundary traction. For a typical linear elastic problem, K
can be formulated from the elastic modulus, and equation (4.25) can be solved directly. Whilst in the
case involving nonlinearity such as for granular media where K depends on state parameters and loading
history, Newton–Raphson iterative method needs to be adopted and the stiffness matrix is replaced with
the tangent matrix Kt, which is assembled from the tangent operator:

Kt =

∫
Ω

BTDBdV, (4.26)

where B is the deformation matrix (i.e. gradient of the shape function), and D is the matrix form of
the rank four tangent operator tensor D. During each Newton–Raphson iteration, both Kt and internal
stress σ are updated, and the scheme tries to minimise the residual force R to find a converged solution:

R =

∫
Ω

BTσdV − f. (4.27)

The tangent operator and the stress tensor at each local Gauss integration point are pivotal variables
in the aforementioned calculation and need to be evaluated before each iteration and loading step. A
continuum-based conventional FEM usually assumes a constitutive relation for the material and derives
the tangent matrix and the stress increment based on this constitutive assumption (e.g. using the elasto-
plastic modulus Dep in equation (4.26) to assemble Kt and to integrate stress). The coupled FEM/DEM
multiscale approach obtains the two quantities from the embedded discrete element assembly at each
Gauss point and avoids the needs for phenomenological assumptions.

4.3.3 Multiscale solution procedure

The hierarchical multiscale modelling procedure is schematically summarised in the following steps:

1. Discretise the problem domain by suitable FEM mesh and attach each Gauss point with a DEM
assembly prepared with suitable initial state.

2. Apply one global loading step, that is, imposed by FEM boundary condition on ∂Ω.

a) Determine the current tangent operator for each RVE.

b) Assemble the global tangent matrix using equation (4.26) and obtain a trial solution of dis-
placement u by solving Equation (4.25) with FEM.

c) Interpolate the deformation ∇u at each Gauss point of the FEM mesh and run the DEM
simulation for the corresponding RVE using ∇u as the DEM boundary conditions.

d) Derive the updated total stress for each RVE and use it to evaluate the residual by equation
(4.27) for the FEM domain.

e) Repeat the aforementioned steps from (a) to (d) until convergence is reached and finish the
current loading step.

3. Proceed to the next loading step and repeat Step 2.

4.3. FEM-DEM hierarchical multiscale modeling with Yade and Escript 1517

Yade Documentation, Release 3rd ed.

In interpolating the deformation u from the FEM solution for DEM boundary conditions in Step 2(c),
we consider both the infinitesimal strain ε and rotation ω

∇u =
1

2
(∇u+∇uT)︸ ︷︷ ︸

ε

+
1

2
(∇u−∇uT)︸ ︷︷ ︸

ω

(4.28)

The corresponding RVE packing will deform according to this prescribed boundary condition.

It is also instructive to add a few remarks on the evolution of stress from the RVE in Step 2(d). In
traditional FEM, the stress is updated based on an incremental manner to tackle the nonlinear material
response. If small strain is assumed, the incremental stress–strain relation may potentially cause inac-
curate numerical results when large deformation occurs in the material, which calls for an alternative
formulation for large deformation. This issue indeed can be naturally circumvented in the current hier-
archical framework. In our framework, the DEM assembly at each Gauss point will memorise its past
state history (e.g. pressure level, void ratio and fabric structure) and will be solved with the current
applied boundary condition (including both stretch and rotation) at each loading and iteration step.
Towards the end of each loading step, instead of using an incremental stress update scheme, the total
true stress (Cauchy stress) is derived directly over the solved DEM assembly through homogenisation
and is then returned to the FEM solver for the global solution. In this way, we do not have to resort to
the use of other objective stress measures to deal with large deformation problems. However, we note
that a proper strain measurement is still required and the FEM mesh should not be severely distorted,
otherwise, remeshing of the FEM domain will be required.

More detailed description of the solution procedure can be found in [Guo2013], [Guo2014], [Guo2014b],
[Guo2014c], [Guo2015].

4.3.4 Work on the YADE side

The version of YADE should be at least rev3682 in which Bruno added the stringToScene function.
Before installation, I added some functions to the source code (in “yade” subfolder). But only one func-
tion (“Shop::getStressAndTangent” in “./pkg/dem/Shop.cpp”) is necessary for the FEMxDEM coupling,
which returns the stress tensor and the tangent operator of a discrete packing. The former is homoge-
nized using the Love’s formula and the latter is homogenized as the elastic modulus. After installation
and we get the executable file: yade-versionNo. We then generate a .py file linked to the executable
file by “ln yade-versionNo yadeimport.py”. This .py file will serve as a wrapped library of YADE. Later
on, we will import all YADE functions into the python script through “from yadeimport import *” (see
simDEM.py file).

Open a python terminal. Make sure you can run

import sys
sys.path.append('where you put yadeimport.py')
from yadeimport import *
Omega().load('your initial RVE packing, e.g. 0.yade.gz')

If you are successful, you should also be able to run

from simDEM import *

1518 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

4.3.5 Work on the Escript side

No particular requirement. But make sure the modules are callable in python, which means the main
folder of Escript should be in your PYTHONPATH and LD_LIBRARY_PATH. The modules are
wrapped as a class in msFEM*.py.

Open a python terminal. Make sure you can run:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle

(Note: Escript is used for the current implementation. It can be replaced by any other FEM package
provided with python bindings, e.g. FEniCS (http://fenicsproject.org). But the interface files “ms-
FEM*.py” need to be modified.)

4.3.6 Example tests

After Steps 1 & 2, one should be able to run all the scripts for the multiscale analysis. The initial
RVE packing (default name “0.yade.gz”) should be provided by the user (e.g. using YADE to prepare a
consolidated packing), which will be loaded by simDEM.py when the problem is initialized. The sample
is initially uniform as long as the same RVE packing is assigned to all the Gauss points in the problem
domain. It is also possible for the user to specify different RVEs at different Gauss points to generate an
inherently inhomogeneous sample.

While simDEM.py is always required, only one msFEM*.py is needed for a single test. For example, in
a 2D (3D) dry test, msFEM2D.py (msFEM3D.py) is needed; similarly for a coupled hydro-mechanical
problem (2D only, saturated), msFEMup.py is used which incorporates the u-p formulation. Multipro-
cessing is used by default. To try MPI parallelization, please set useMPI=True when constructing the
problem in the main script. Example tests given in the “example” subfolder are listed below. Note: The
initial RVE packing (named 0.yade.gz by default) needs to be generated, e.g. using prepareRVE.py in
“example” subfolder for a 2D packing (similarly for 3D).

1. 2D drained biaxial compression test on dry dense sand (biaxialSmooth.py) Note: Test
description and result were presented in [Guo2014] and [Guo2014c].

2. 2D passive failure under translational mode of dry sand retained by a rigid and fric-
tionless wall (retainingSmooth.py) Note: Rolling resistance model (CohFrictMat) is used in the
RVE packing. Test description and result were presented in [Guo2015].

3. 2D half domain footing settlement problem with mesh generated by Gmsh (footing.py,
footing.msh) Note: Rolling resistance model (CohFrictMat) is used in the RVE packing. Six-node
triangle element is generated by Gmsh with three Gauss points each. Test description and result
were presented in [Guo2015].

4. 3D drained conventional triaxial compression test on dry dense sand using MPI par-
allelism (triaxialRough.py) Note 1: The simulation is very time consuming. It costs ~4.5 days on
one node using multiprocessing (16 processes, 2.0 GHz CPU). When useMPI is switched to True
(as in the example script) and four nodes are used (80 processes, 2.2 GHz CPU), the simulation
costs less than 24 hours. The speedup is about 4.4 in our test. Note 2: When MPI is used, mpi4py
is required to be installed. The MPI implementation can be either MPICH or Open MPI. The file
“mpipool.py” should also be placed in the main folder. Our test is based on openmpi-1.6.5. This
is an on-going work. Test description and result will be presented later.

5. 2D globally undrained biaxial compression test on saturated dense sand with changing
permeability using MPI parallelism (undrained.py) Note: This is an on-going work. Test
description and result will be presented later.

4.3. FEM-DEM hierarchical multiscale modeling with Yade and Escript 1519

http://fenicsproject.org

Yade Documentation, Release 3rd ed.

4.3.7 Disclaim

This work extensively utilizes and relies on some third-party packages as mentioned above. Their con-
tributions are acknowledged. Feel free to use and redistribute the code. But there is NO warranty; not
even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

4.4 Simulating Acoustic Emissions in Yade

Suggested citations:

Caulk, R. (2018), Stochastic Augmentation of the Discrete Element Method for Investigation of Tensile
Rupture in Heterogeneous Rock. Yade Technical Archive. DOI 10.5281/zenodo.1202039. download full
text
Caulk, Robert A. (2020), Modeling acoustic emissions in heterogeneous rocks during tensile fracture
with the Discrete Element Method. Open Geomechanics, Volume 2, article no. 2, 19 p. doi :
10.5802/ogeo.5. full text

4.4.1 Summary

This document briefly describes the simulation of acoustic emissions (AE) in Yade. Yade’s clustered
strain energy based AE model follows the methods introduced by [Hazzard2000] and [Hazzard2013]. A
validation of Yade’s method and a look at the effect of rock heterogeneity on AE during tensile rock
failure is discussed in detail in [Caulk2018] and [Caulk2020].

4.4.2 Model description

Numerical AE events are simulated by assuming each broken bond (or cluster of broken bonds) repre-
sents an event location. Additionally, the associated system strain energy change represents the event
magnitude. Once a bond breaks, the strain energies (Ei) are summed for all intact bonds within a
predefined spatial radius (λ):

Ei =
1

2

(F2n
kn

+
F2s
ks

)
Eo =

N∑
i

Ei

where Fn, Fs and kn, ks are the normal and shear force (N) and stiffness (N/m) components of the
interaction prior to failure, respectively. Yade’s implementation uses the maximum change of strain
energy surrounding each broken bond to estimate the moment magnitude of the AE. As soon as the
bond breaks, the total strain energy (Eo =

∑N
i Ei) is computed for the radius (set by the user as no.

of avg particle diameters, λ. Eo is used as the reference strain energy to compute ∆E = E − Eo during
subsequent time steps. Finally, max(∆E) is used in the empirical equation derived by [Scholz2003]:

Me =
2

3
log∆E− 3.2

Events are clustered if they occur within spatial and temporal windows of other events, similar to the
approach presented by [Hazzard2000] and [Hazzard2013]. The spatial window is simply the user defined
λ and the temporal window Tmax is computed as:

Tmax = int
(Davgλ

max(vp1, vp2)∆t

)
where Davg is the average diameter of the particles comprising the failed event (m), vp1 and vp2 are the
P-Wave velocities (m/s) of the particle densities, and ∆t is the time step of the simulation (seconds/time

1520 Chapter 4. Theoretical background and extensions

https://www.yade-dem.org/publi/YadeTechnicalArchive/Caulkr_stochasticaugmentationofDEM-301118.pdf
https://www.yade-dem.org/publi/YadeTechnicalArchive/Caulkr_stochasticaugmentationofDEM-301118.pdf
https://opengeomechanics.centre-mersenne.org/item/OGEO_2020__2__A2_0/

Yade Documentation, Release 3rd ed.

step). As shown in fig-cluster, the final location of a clustered event is simply the average of the clustered
event centroids. Here the updated reference strain energy is computed by adding the strain energy of
the unique interactions surrounding the new broken bond to the original reference strain energy (Eo):

• Original bond breaks, sum strain energy of broken bonds (Norig) within spatial window Eorig,o =∑Norig

i=1 Ei

• New broken bond detected within spatial and temporal window of original bond break

• Update reference strain Eo by adding unique bonds (Nnew) within new broken bond spatial window
Enew,o = Eorig,o +

∑Nnew

i=1 Ei

This method maintains a physical reference strain energy for the calculation of ∆E = E − Enew,o and
depends strongly on the spatial window size. Ultimately, the clustering increases the number of larger
events, which yields more comparable b-values to typical Guttenberg Richter curves [Hazzard2013].

Fig. 1: Example of clustered broken bonds (colored lines) and the final AE events (colored circles) with
their event magnitudes.

For a detailed look at the underlying algorithm, please refer to the source code.

4.4. Simulating Acoustic Emissions in Yade 1521

https://gitlab.com/yade-dev/trunk/blob/master/pkg/dem/JointedCohesiveFrictionalPM.cpp

Yade Documentation, Release 3rd ed.

4.4.3 Activating the algorithm within Yade

The simulation of AE is available as part of Yade’s Jointed Cohesive Frictional particle model (JCFpm)
. As such, your simulation needs to make use of JCFpmMat , JCFpmPhys , and Law2_ScGeom_-
JCFpmPhys

Your material assignment and engines list might look something like this:

JCFmat = O.materials.append(JCFpmMat(young=young, cohesion=cohesion,
density=density, frictionAngle=radians(finalFricDegree),
tensileStrength=sigmaT, poisson=poisson, label='JCFmat',
jointNormalStiffness=2.5e6,jointShearStiffness=1e6,jointCohesion=1e6))

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Box_Aabb(),Bo1_Sphere_Aabb

,Bo1_Facet_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_
↪→ScGeom()],

[Ip2_FrictMat_FrictMat_FrictPhys(),
Ip2_JCFpmMat_JCFpmMat_JCFpmPhys(\

␣
↪→xSectionWeibullScaleParameter=xSectionScale,

␣
↪→xSectionWeibullShapeParameter=xSectionShape,

weibullCutOffMin=weibullCutOffMin,
weibullCutOffMax=weibullCutOffMax)],

[Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM(\
recordCracks=True, recordMoments=True,
Key=identifier,label='interactionLaw'),

Law2_ScGeom_FrictPhys_CundallStrack()]
),

GlobalStiffnessTimeStepper(),
VTKRecorder(recorders=['jcfpm','cracks','facets','moments'] \

,Key=identifier,label='vtk'),
NewtonIntegrator(damping=0.4)

]

Most of this simply enables JCFpm as usual, the AE relevant commands are:

Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM(... recordMoments=True ...)
VTKRecorder(... recorders=[... 'moments' ...])

There are some other commands necessary for proper activation and use of the acoustic emissions algo-
rithm:

clusterMoments tells Yade to cluster new broken interactions within the user set spatial radius as
described above in the model description. This value is set to True by default.

momentRadiusFactor is λ from the above model description. The momentRadiusFactor changes the
number of particle radii beyond the initial interaction that Yade computes the strain energy change.
Additionally, Yade uses λ to seek additional broken bonds for clustering. This value is set to 5 by default
([Hazzard2013] concluded that this value yields accurate strain energy change approximations for the
total strain energy change of the system entire system).

neverErase allows old interactions to be stored in memory despite no longer affecting the simulation.
This value must be set to True for stable operation of Yade’s AE cluster model.

1522 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

4.4.4 Visualizing and post processing acoustic emissions

AE are visualized and post processed in a similar manner to JCFpm cracks. As long as recordMo-
ments=True and recorder=[‘moments’] , the simulation will produce timestamped .vtu files for easy
Paraview post processing. Within Paraview, the AE can be filtered according to magnitude, number of
constitiuent interactions, and event time. fig-aeexample shows AE collected during a three point bending
test and filtered according to magnitude and time

Fig. 2: Example of AE simulated during three point bending test and filtered by magnitude and time.

4.4.5 Consideration of rock heterogeneity

[Caulk2018] and [Caulk2020] hypothesize that heterogeneous rock behavior depends on the distribution
of interacting grain edge lengths. In support of the hypothesis, [Caulk2018] and [Caulk2020] show how
rock heterogeneity can be modeled using cathodoluminescent grain imagery. A Weibull distribution is
constructed based on the so called grain edge interaction length distribution. In Yade’s JCFpm , the
Weibull distribution is used to modify the interaction strengths of contacting particles by correcting the
interaction area Aint:

Aint = π(αw ×min(Ra, Rb))
2

where αw is the Weibull correction factor, which is distributed as shown in fig-weibullDist. The corre-
sponding tensile strength distributions for various Weibull shape parameters are shown in fig-strengthDist.
Note: a Weibull shape factor of ∞ is equivalent to the unaugmented JCFpm model.

In Yade, the application of rock heterogeneity is as simple as passing a Weibull shape parameter to
JCFpmPhys :

Ip2_JCFpmMat_JCFpmMat_JCFpmPhys(
xSectionWeibullScaleParameter=xSectionScale,
xSectionWeibullShapeParameter=xSectionShape,
weibullCutOffMin=weibullCutOffMin,
weibullCutOffMax=weibullCutOffMax)

where the xSectionWeibullShapeParameter is the desired Weibull shape parameter. The scale parameter
can be assigned in similar fashion. If you want to control the minimum allowable correction factor, you
can feed it weibullCutoffMin . The maximum correction factor can be controlled in similar fashion.

4.4. Simulating Acoustic Emissions in Yade 1523

Yade Documentation, Release 3rd ed.

Fig. 3: Weibull distributions for varying shape parameters used to generate αw.

Fig. 4: Maximum DEM particle bond tensile strength distributions for varying Weibull shape parameters.

1524 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

4.5 Using YADE 1D vertical VANS fluid resolution

The goal of the present note is to detail how the DEM-fluid coupling can be used in practice in YADE.
It is complementary with the three notes [Maurin2018_VANSbasis], [Maurin2018_VANSfluidResol] and
[Maurin2018_VANSvalidations] detailing respectively the theoretical basis of the fluid momentum bal-
ance equation, the numerical resolution, and the validation of the code.

All the coupling and the fluid resolution relies only on the engine HydroForceEngine, which use is detailed
here. Examples scripts using HydroForceEngine for different purposes can be found in YADE source
code in the folder trunk/examples/HydroForceEngine/. In order to get familiar with this engine, it is
recommended to read the present note and test/modify the examples scripts.

4.5.1 DEM-fluid coupling and fluid resolution in YADE

In YADE, the fluid coupling with the DEM is done through the engine called HydroForceEngine, which is
coded in the source in the files trunk/pkg/common/HydroForceEngine.cpp and hpp. HydroForceEngine
has three main functions:

• It applies drag and buoyancy to each particle from a 1D vertical fluid velocity profile (Hydro-
ForceEngine::action)

• It can evaluates the average drag force, particle velocity and solid volume fraction profiles (Hydro-
ForceEngine::averageProfile)

• It can solves the fluid velocity equation detailed in the first section, from given average drag force,
particle velocity and solid volume fraction profiles (HydroForceEngine::fluidResolution)

We clearly see the link between the three functions. The idea is to evaluate the average profiles
from the DEM, put it as input to the fluid resolution, and apply the fluid forces corresponding to
the obtained fluid velocity profile to the particles. In the following, the three points will be de-
tailed separately with precision and imaging with the example scripts available in yade source code
at trunk/examples/HydroForceEngine/.

4.5.2 Application of drag and buoyancy forces (HydroForceEngine::action)

By default, when adding HydroForceEngine to the list of engine, it applies drag and buoyancy to all the
particles which IDs have been passed in argument to HydroForceEngine through the ids variable. This
is done for example, in the example script trunk/examples/HydroForceEngine/, in the engine lists:

O.engines = [
ForceResetter(),
...
HydroForceEngine(densFluid = densFluidPY,...,ids = idApplyForce),
...
NewtonIntegrator(gravity=gravityVector, label='newtonIntegr')
]

where idApplyForce corresponds to a list of particle ID to which the hydrodynamic forces should be
applied. The expression of the buoyancy and drag force applied to the particles contained in the id list
is detailed below.

In case where the fluid is at rest (HydroForceEngine.steadyFlow = False), HydroForceEngine applies
buoyancy on a particle p from the fluid density and the acceleration of gravity g as:

fpb = −ρfVpg.

Meanwhile, if the fluid flow is steady and turbulent, the buoyancy which is related to the fluid pressure
gradient does not have a term in the streamwise direction (see discussion p. 5 of [Maurin2018]). Puting

4.5. Using YADE 1D vertical VANS fluid resolution 1525

Yade Documentation, Release 3rd ed.

the option HydroForceEngine.steadyFlow to True turns the expression of the buoyancy into:

fpb = −ρfVp(g.ex)ex.

Also, HydroForceEngine applies a drag force to each particles contained in the ids list. This drag force
depends on the velocity of the particles and on the fluid velocity, which is defined by a 1D fluid velocity
profile, HydroForceEngine.vxFluid. This fluid velocity profile can be evaluated from the fluid model, but
can also be imposed by the user and stay constant. From this 1D vertical fluid velocity profile, the drag
force applied to particle p reads:

fpD =
1

2
CdAρf||uf

pex − vp||
(
uf
pex − vp

)
,

where uf
p is the fluid velocity at the center of particle p, vp is the particle velocity, ρf is the fluid density,

A = πd2/4 is the area of the sphere submitted to the flow, and Cd is the drag coefficient accounts for the
effects of particle Reynolds number [Dallavalle1948] and of increased drag due to the presence of other
particles (hindrance, [Richardson1954]:

Cd =

(
0.44+

24

Rep

)
(1−φp)

−γ =

(
0.44+ 24

νf

||uf
pex − vp||d

)
(1−φp)

−γ

with φp the solid volume fraction at the center of the particle evaluated from HydroForceEngine.phiPart,
and γ the Richardson-Zaki exponent, which can be set through the parameter HydroForceEngine.expoRZ
(3.1 by default).

HydroForceEngine can also apply a lift force, but this is not done by default (HydroForceEngine.lift =
False), and this is not recommended by the author considering the uncertainty on the actual formulation
(see discussion p. 6 of [Maurin2015] and [Schmeeckle2007]).

As the fluid velocity profile (HydroForceEngine.vxFluid) and solid volume fraction profile (Hy-
droForceEngine.phiPart) can be imposed by the user, the application of drag and buoyancy
to the particles through HydroForceEngine can be done without using the function average-
Profile and the fluid resolution. Examples of such use can be found in the source code:
trunk/examples/HydroForceEngine/oneWayCouplingfootnote{In this case, we talk about a one-way cou-
pling as the fluid influence the particles but is not influenced back}.

4.5.3 Solid phase averaging (HydroForceEngine::averageProfile)

In order to solve the fluid equation, we have seen that it is necessary to compute from the DEM
the solid volume fraction, the solid velocity, and the averaged drag profiles. The function Hydro-
ForceEngine.averageProfile() has been set up in order to do so. It is designed to evaluate the average
profiles over a regular grid, at the position between two mesh nodes. In order to match the fluid velocity
profile numerotation, the averaged vector are of size ndimz + 1 even though the quantities at the top
and bottom boundaries are not evaluated and set to zero by defaultfootnote{It is not necessary to eval-
uate the solid DEM quantities at the boundaries are they are not considered in the fluid resolution, see
subsection boundaries of [Maurin2018_VANSfluidResol]}. textcolor{red}{You should do that}

The solid volume fraction profile is evaluated by considering the volume of particles contained in the
layer considered. The layer is defined by the mesh step along the wall-normal direction, but extend
over the whole length and width of the sample. We perform such an averaging only discretized over
the wall-normal direction in order to match the fluid resolution. Meanwhile, this is also physical as, at
steady state the problem is unidirectional on average, so that the only variation we should observe in
the measured averaged quantities should be along the vertical direction, z. Therefore, the solid volume
fraction is evaluated by considering the volume of particles which is contained inside the layer considered
i+ 1/2:

φi+1/2 =
∑

p∈[idz;(i+1)dz]

V
p

i+1/2
;

where the sum is over the particles p which have at least a part of their volume inside the layer i+ 1/2,
i.e. in between an elevation of i∗dz and (i+1)∗dz, and V

p

i+1/2
is the volume of the particles considered

1526 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

which is contained inside the layer considered. The latter correspond to the integral between two points
of a slice of sphere and can be evaluated analytically in cylindrical coordinate. Following this formulation
and the formalism of [Jackson2000] with a weighting step function, any particle-associated quantity K

can be averaged with the following formulation:

⟨K⟩p
∣∣
i+1/2

=

∑
p∈[idz;(i+1)dz] V

p

i+1/2
Kp∑

p∈[idz;(i+1)dz] V
p

i+1/2

,

Where Kp is the quantity associated with particle p, e.g. the particle streamwise velocity. In this case,
we can write:

⟨vx⟩p|i+1/2 =

∑
p∈[idz;(i+1)dz] V

p

i+1/2
v
p
x∑

p∈[idz;(i+1)dz] V
p

i+1/2

,

where v
p
x is the velocity of particle p. Regarding the evaluation of the average streamwise drag force

transmitted by the fluid to the particles, it can be written similarly as:

⟨fD,x⟩p|i+1/2 =

∑
p∈[idz;(i+1)dz] V

p

i+1/2
f
p
D,x∑

p∈[idz;(i+1)dz] V
p

i+1/2

,

where f
p
D,x is the drag force on particle p.

As will be detailed in the next part, these averaged profile can be used for the fluid resolution, but they
can also be used for analysis as done for example for bedload transport in [Maurin2015b] [Maurin2018].

4.5.4 Fluid resolution\HydroForceEngine::fluidResolution

In order to use the fluid resolution inside the fluid-DEM coupling framework, it is necessary to call
the function HydroForceEngine.averageProfile() in order to evaluate the averaged solid volume fraction
profile, streamwise velocity and streamwise drag force. The latter is necessary in order to evaluate the
terms β taken into account in the fluid equation (see [Maurin2018_VANSfluidResol] for details). β is
defined as:

n
〈
ffx
〉p∣∣∣

i+1/2
= βi+1/2

(
⟨ux⟩f

∣∣∣
i+1/2

− ⟨vx⟩p
∣∣
i+1/2

)
so that it can be evaluated directly from the averaged drag, particle velocity and the fluid velocity at
the last iteration (explicited the term β in the fluid resolution):

βn
i+1/2 =

n
〈
ffx
〉p∣∣∣n−1

i+1/2

⟨ux⟩f
∣∣∣n−1

i+1/2
− ⟨vx⟩p

∣∣n−1

i+1/2

where the solid variables have been denoted with a superscript n − 1 as they are known and not re-
evaluated at each time stepfootnote{In a way βn should probably be better written as βn−1}. This
terms is called taufsi and is directly evaluated inside the code.

All the quantities needed in order to solve the fluid resolution - highlighted in
[Maurin2018_VANSfluidResol] and recalled in figure fig-scheme - are now explicited. They can
be directly evaluated in YADE with the function HydroForceEngine.averageProfile(). From there, the
fluid resolution can be performed over a given time tresol with a given time step ∆t by calling directly
the function HydroForceEngine.fluidResolution (tresol,∆t). This will perform the fluid resolution
described in [Maurin2018_VANSfluidResol], N = tresol/∆t times, with a time step ∆t, considering the
vertical profiles of β, ⟨vx⟩ and φ as constant in time. Therefore, one should not only be carefull about
the time step, but also about the period of coupling, which should not be too large in order to avoid
unphysical behavior in the DEM due to a drastic change of velocity profile not compensated by an
increased transmitted drag force.

In the example script in YADE source code, trunk/examples/HydroForceEngine/twoWayCoupling/sedimentTransportExample_-
1DRANSCoupling.py, the DEM and fluid resolution are coupled with a period of fluidResolPeriod =

4.5. Using YADE 1D vertical VANS fluid resolution 1527

Yade Documentation, Release 3rd ed.

i-1

i

i+1

i+2

i-2

i+1/2

i+3/2

i-1/2

Quantities evaluated
in the DEM

Fig. 5: Schematical picture of the numerical fluid resolution and variables definition with a regular mesh.
All the definitions still holds for a mesh with variable spatial step.

10−2s by default, and with a fluid time step of dtFluid = 10−5s. This means that the DEM is let evolved
for 10−2s, and frozen during the fluid resolution which is made over fluidResolPeriod/dtFluid = 103

step with ∆t = 10−5. Then, the DEM is let evolved again but with a new fluid velocity profile for 10−2s,
and frozen…etc. This period between two fluid resolution should be tested and taken not too long (see
appendix of [Maurin2015b]).

Meanwhile, the fluid resolution can be used in itself, without DEM coupling, in particular to ver-
ify the fluid resolution in known cases. This is done in the example folder of YADE source code,
trunk/examples/HydroForceEngine/fluidValidation/, where the cases of a poiseuille flow and a log layer
have been considered and validated.

4.6 Potential Particles and Potential Blocks

The origins of scientific development regarding the algorithms described in this section are traced back
to: [Boon2012] (Potential Blocks code), [Boon2013b] (Potential Particles code) and [Boon2015] (Block
Generation code).

4.6.1 Introduction

This section discusses two codes to simulate (i) non-spherical particles using the concept of the Potential
Particles [Houlsby2009], with the solution procedures in [Boon2013] for 3-D and (ii) polyhedral blocks
using planar linear inequalities, based on linear programming concepts [Boon2012]. These codes define
two shape classes in YADE, namely PotentialParticle and PotentialBlock. Besides some similarities in
syntax, they have distinct differences, concerning morphological characteristics of the particles and the
methods used to facilitate contact detection.

The Potential Particles code (abbreviated herein as PP) is detailed in [Boon2013], where non-spherical
particles are assembled as a combination of 2nd degree polynomial functions and a fraction of a sphere,
while their edges are rounded with a user-defined radius of curvature.

The Potential Blocks code (abbreviated herein as PB) is used to simulate polyhedral particles with flat
surfaces, based on the work of [Boon2012], where a smooth, inner potential particle is used to calculate
the contact normal vector. This code is compatible with the Block Generation algorithm defined in
[Boon2015], in which Potential Blocks can be generated by intersections of original, intact blocks with
discontinuity planes.

1528 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

These two codes are independent, in the sense that either one of them can be compiled/used separately,
without enabling the other, while they do not interact with each other (i.e. we cannot establish contact
between a PP and a PB). Enabling the PB code causes an automatic compilation of the Block Generation
algorithm.

4.6.2 Potential Particles code (PP)

The concept of Potential Particles was introduced and developed by [Houlsby2009]. The problem of
contact detection between a pair of potential particles was cast as a constrained optimization problem,
where the equations are solved using the Newton-Raphson method in 2-D. In [Boon2013] it was extended
to 3-D and more robust solutions were proposed. Many numerical optimization solvers generally can-
not cope with discontinuities, ill-conditioned gradients (Jacobians) or curvatures (Hessians), and these
obstacles were overcome in [Boon2013], by re-formulating the problem and solving the equations using
conic optimization solvers. Previous versions made use of MOSEK (using its academic licence), while
currently an in-house code written by [Boon2013] is used to solve the conic optimization problem. A
potential particle is defined as in (4.29) [Houlsby2009]:

f = (1− k)

(
N∑
i=1

⟨aix+ biy+ ciz− di⟩2 − r2

)
+ k(x2 + y2 + z2 − R2) (4.29)

where (ai, bi, ci) is the normal vector of the ith plane, defined with respect to the particle’s local
coordinate system and di is the distance of the plane to the local origin. ⟨ ⟩ are Macaulay brackets, i.e.,
〈x〉 = x for x > 0; ⟨x⟩ = 0 for x ≤ 0. The planes are assembled such that their normal vectors point
outwards. They are summed quadratically and expanded by a distance r, which is also related to the
radius of the curvature at the corners. Furthermore, a “shadow” spherical particle is added; R is the
radius of the sphere, with 0 < k ≤ 1, denoting the fraction of sphericity of the particle. The geometry
of some cuboidal potential particles is displayed in Fig. fig-pp, for different values of the parameter k.

The potential function is normalized for computational reasons in the form (4.30) [Houlsby2009]:

f = (1− k)

(
N∑
i=1

⟨aix+ biy+ ciz− di⟩2

r2
− 1

)
+ k

(
x2 + y2 + z2

R2
− 1

)
(4.30)

This potential function takes values:

• f = 0: on the particle surface

• f < 0: inside the particle

• f > 0: outside the particle

To ensure numerical stability, it is not advised to use values approaching k=0. In particular, the extreme
value k=0 cannot be used from a theoretical standpoint, since the Potential Particles were formulated
for strictly convex shapes (curved faces).

4.6.3 Potential Blocks code (PB)

The Potential Blocks code was developed during the D.Phil. thesis of CW Boon [Boon2013b] and
discussed in [Boon2012]. It was developed originally for rock engineering applications, to model polygonal
and polyhedral blocks with flat surfaces. The blocks are defined with linear inequalities only and unlike
the PotentialParticle shape class, no spherical term is considered (so, practically k=0). Although k and
R are input parameters of the PotentialBlock shape class, their existence during computation is null. In
particular, R is used within the source code, denoting a characteristic dimension of the blocks, but does
not reflect the radius of a “shadow particle”, like it does for the Potential Particles. This value of R is

4.6. Potential Particles and Potential Blocks 1529

Yade Documentation, Release 3rd ed.

Fig. 6: Construction of potential particles (a) constituent planes are squared and expanded by a constant
r. A fraction of sphere is added. Particles with the spherical term are visible in (b) k=0.9, (c) k=0.7,
and (d) k=0.4 (after [Boon2013]).

1530 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

used in the Potential Blocks code to calculate the initial bi-section step size for line search, to obtain a
point on the particle, which in turn is used to calculate the overlap distance during contact.

For a convex particle defined by N planes, the space that it occupies can be defined using the following
inequalities (4.31):

aix+ biy+ ciz ≤ di, i = 1 : N (4.31)

where (ai, bi, ci) is the unit normal vector of the ith plane, defined with respect to the particle’s local
coordinate system, and di is the distance of the plane to the local origin. According to [Boon2012], an
inner, smooth potential particle is used to calculate the contact normal, formulated as in (4.32):

f =

N∑
i=1

⟨aix+ biy+ ciz− di + r⟩2 (4.32)

This potential particle is defined inner by a distance r inside the actual particle, with edges rounded by
a radius or curvature r, as well (see Fig. fig-pbInner).

Fig. 7: A potential particle is defined inside the actual particle. The normal vector of the particle at any
point can be calculated from the first derivative of the potential particle. (after [Boon2012]).

In YADE, the Potential Blocks have a slightly different mathematical expression, since their shape is
generated as an assembly of planes as in (4.33):

aix+ biy+ ciz− di − r = 0, i = 1 : N (4.33)

while the inner Potential Particle used to calculate the contact normal is defined as in (4.34):

f =

N∑
i=1

⟨aix+ biy+ ciz− di⟩2. (4.34)

Now, the Potential Block surface is at a distance of (di+r) from the local particle center, while the inner
potential particle is at a distance d from the local particle center.

It is worth to emphasize on the fact that the shape of a Potential Block is defined using an assembly of
planes and not a single, implicit potential function, like we have for the Potential Particles code. The
inner potential particle in the Potential Blocks code is only used to calculate the contact normal.

The problem of establishing intersection between a pair of blocks is cast as a standard linear programming
problem of finding a feasible region which satisfies all the linear inequalities defining both blocks. The

4.6. Potential Particles and Potential Blocks 1531

Yade Documentation, Release 3rd ed.

contact point is calculated as the analytic centre of the feasible region, a well-known concept of interior-
point methods in convex optimization calculations. The contact normal is obtained from the gradient
of a smooth “potential particle” defined inside the block. The overlap distance is calculated through
bi-section searching along the contact normal, within the overlap region.

Fig. 8: A potential block. The normal vectors of the faces point outwards (after [Boon2013b]).

The linear programming solver for Potential Blocks was originally CPLEX, but has been updated to
CLP, developed by COIN-OR, since the latter can be downloaded from Ubuntu or Debian’s distributions
without requiring an academic licence.

4.6.4 Engines

The PP and PB codes use their own classes to handle bounding volumes, contact geometry & physics and
recording of outputs in vtk format, while they derive the interparticle friction angle from the frictional
material class FrictMat. The syntax used to invoke these classes is similar, unless if specified otherwise.

Shape PotentialParticle PotentialBlock
Material FrictMat FrictMat
BoundFunctor PotentialParticle2AABB PotentialBlock2AABB
IGeom ScGeom ScGeom
IGeomFunctor Ig2_PP_PP_ScGeom Ig2_PB_PB_ScGeom
IPhys KnKsPhys KnKsPBPhys
IPhysFunctor Ip2_FrictMat_FrictMat_KnKsPhys Ip2_FrictMat_FrictMat_KnKsPBPhys
LawFunctor Law2_SCG_KnKsPhys_KnKsLaw Law2_SCG_KnKsPBPhys_KnKsPBLaw
VTK Recorder PotentialParticleVTKRecorder PotentialBlockVTKRecorder

A simple simulation loop using the Potential Blocks reads as:

O.engines=[
ForceResetter(),
InsertionSortCollider([PotentialBlock2AABB()], verletDist=0.01),
InteractionLoop(

[Ig2_PB_PB_ScGeom(twoDimension=True, unitWidth2D=1.0,␣
↪→calContactArea=True)],

[Ip2_FrictMat_FrictMat_KnKsPBPhys(kn_i=1e8, ks_i=1e7, Knormal=1e8,␣
↪→Kshear=1e7, viscousDamping=0.2)],

[Law2_SCG_KnKsPBPhys_KnKsPBLaw(label='law', neverErase=False,␣
↪→allowViscousAttraction=False)]

),
NewtonIntegrator(damping=0.2, exactAsphericalRot=True, gravity=[0,0,-9.81]),
PotentialBlockVTKRecorder(fileName='./vtk/file_prefix', iterPeriod=1000,␣

↪→twoDimension=True, sampleX=30, sampleY=30, sampleZ=30, maxDimension=0.2, label=
(continues on next page)

1532 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

(continued from previous page)

↪→'vtkRecorder')
]

Attention should be given to the twoDimension parameter, which defines whether a contact should be
handled as 2-D or 3-D.

4.6.5 Contact Law

In both codes, the normal force is calculated as:

Fn = Knormal ·Ac · un · n (4.35)

where Knormal the normal stiffness coefficient [kN/m3]; Ac the contact area [m2] and un the overlap
distance. The normal stiffness of each contact [kN/m] is thus kn = Knormal ·Ac, where Ac is updated
in every timestep.

The shear force is calculated incrementally, using a similar logic. The increment of the shear force vector
before slipping of the contact is calculated as:

∆Fs = −Kshear ·Ac · ∆us (4.36)

where Kshear the shear stiffness coefficient [kN/m3] and ∆us the current relative shear displacement.

Contact Area

The contact area is calculated using a heuristic algorithm to detect points on the surface of the overlap
volume, searching along the contact shear direction. In essence, it is calculated as the area of a 2D slice
of the overlap volume along the shear direction, passing from the contact point. If twoDimension=True,
the contactArea parameter is calculated as:

if(twoDimension) { phys->contactArea = phys->jointLength*unitWidth2D;}

The unitWidth2D parameter is defined by the user (usually equal to 1.0), denoting the out-of-plane width
in 2-D simulations. The contactArea and jointLength parameters are calculated if calContactArea =True.
In the opposite case, they are considered equal to 1.0 and the contact law is degenerated to a linear law
with constant stiffness. A minimum value is considered for the contactArea, to represent cases where the
overlap volume is practically a point.

Overlap distance

The overlap distance un is calculated using a bracketed bisection search algorithm along the contact
normal direction, to find two opposite points on the surface of the overlap region, starting from the
contact point. It is stored in the parameter penetrationDepth, as the distance between these two opposite
points.

4.6. Potential Particles and Potential Blocks 1533

Yade Documentation, Release 3rd ed.

4.6.6 Shape definition of a PP and a PB

A strong merit of the Potential Particles and the Potential Blocks codes lies in the fact that the geometric
definition of the particle shape and the contact detection problem are resolved using only the equations of
the faces of the particles. In this way, using a single data structure, there is no need to store information
about the vertices or their connectivity to establish contact, a feature that makes them computationally
affordable, while all contacts are handled in the same way (there is no need to distinguish among face-
face, face-edge, face-vertex, edge-edge, edge-vertex or vertex-vertex contacts). Due to this, the geometry
of a particle is defined in the shape class using the values of the normal vectors of the faces and the
distances of the faces from the local origin.

For example, to define a cuboid (6 faces) with rounded edges, an edge length of D, centred to its local
centroid and aligned to its principal axes, using the Potential Particles code, we set:

r=D/10.
k=0.3
R=D/2.
b=Body()
b.shape=PotentialParticle(r=r, k=k, R=R,

a=[1.0, -1.0, 0.0, 0.0, 0.0, 0.0],
b=[0.0, 0.0, 1.0, -1.0, 0.0, 0.0],
c=[0.0, 0.0, 0.0, 0.0, 1.0, -1.0],
d=[D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r], ..

↪→.)

The first element of the vector parameters a, b, c, d refers to the normal vector of the first plane and its
distance from the local origin, the second element to the second plane, and so on.

Using the Potential Particles code, this is not a perfect cube, since the particle geometry is defined by
a potential function as in (4.30). It is reminded that within this potential function, these planes are
summed quadratically, the particle edges are rounded by a radius of curvature r and then the particle
faces are curved by the addition of a “shadow” spherical particle with a radius R, to a percentage defined
by the parameter k. A value r is deducted from each element of the vector parameter d, to compensate
for expanding the potential particle by r.

The parameters ai, bi, ci, di stated above correspond to the planes used in (4.33):

1.0x+ 0.0y+ 0.0z = D/2 ⇔ +x = D/2

−1.0x+ 0.0y+ 0.0z = D/2 ⇔ −x = D/2

0.0x+ 1.0y+ 0.0z = D/2 ⇔ +y = D/2

0.0x− 1.0y+ 0.0z = D/2 ⇔ −y = D/2

0.0x+ 0.0y+ 1.0z = D/2 ⇔ +z = D/2

0.0x+ 0.0y− 1.0z = D/2 ⇔ −z = D/2

To model a cube with an edge of D, using the Potential Blocks code, we define:

r=D/10.
R=D/2.*sqrt(3)
b=Body()
b.shape=PotentialBlock(r=r, R=R,

a=[1.0, -1.0, 0.0, 0.0, 0.0, 0.0],
b=[0.0, 0.0, 1.0, -1.0, 0.0, 0.0],
c=[0.0, 0.0, 0.0, 0.0, 1.0, -1.0],
d=[D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r], ...)

Using the Potential Blocks code, this particle will have sharp edges and flat faces in what regards its
geometry (i.e. the space it occupies), defined by the given planes, while for the calculation of the contact
normal, an inner potential particle with rounded edges is used, formulated as in (4.34), located fully inside

1534 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

the actual particle. The distances of the planes from the local origin, stored in the vector parameter d,
are reduced by r to achieve an exact edge length of D, using (4.33). The value of r must be sufficiently
small, so that dmin − r > 0, while it should be sufficiently large, to allow for a proper calculation of the
gradient of the inner Potential Particle at the contact point. A recommended value is r ≈ 0.5 ∗ dmin.

To ensure numerical stability, it is advised to normalize the normal vector of each plane, so that ai
2 +

bi
2 + ci

2 = 1. There is no limit to the number of the particle faces that can be used, a feature that
allows the modelling of a variety of convex particle shapes.

In practice, it is usual for the geometry of a particle to be given in terms of vertices & their connectivity
(e.g. in the form of a surface mesh, like in .stl files). In such cases, the user can calculate the normal
vector of each face, which will give the coefficients ai, bi, ci and using a vertex of each face, then calculate
the coefficients di. A python routine to perform this without any additional effort by the user is currently
being developed.

4.6.7 Body definition of a PP and a PB

To define a body using the PotentialParticle or PotentialBlock shape classes, it has to be assembled using
the _commonBodySetup function, which can be found in the file py/utils.py. For example, to define a
PotentialParticle:

O.materials.append(FrictMat(young=-1,poisson=-1,frictionAngle=radians(0.0),
↪→density=2650,label='frictionless'))

b=Body()
b.shape=PotentialParticle(...)
b.aspherical=True # To be used in conjunction with exactAsphericalRot=True in the␣
↪→NewtonIntegrator
V: Volume
I11, I22, I33: Principal inertias
utils._commonBodySetup(b,V,Vector3(I11,I22,I33), material='frictionless', pos=(0,0,0),
↪→ fixed=False)
b.state.pos=Vector3(xPos,yPos,zPos)
b.state.ori=Quaternion((random.random(),random.random(),random.random()),random.
↪→random())
b.shape.volume=V;
O.bodies.append(b)

The PotentialParticle must be initially defined, so that the local axes coincide with its principal axes,
for which the inertia tensor is diagonal. More specifically, the plane coefficients (ai, bi, ci) defining the
plane normals must be rotated, so that when the orientation of the particle is zero, the PotentialParticle
is oriented to its principal axes.

It should be noted that the principal inertia values I11, I22, I33 mentioned here are divided with
the density of the considered material, since they are multiplied with the density inside the _-
commonBodySetup function. The mass of the particle is calculated within the same function as well,
so we do not need to set manually b.mass=V*density.

For the Potential Particles, the volume and inertia must be calculated manually and assigned to the
body as demonstrated above. For the Potential Blocks, an automatic calculation has been implemented
for the volume and inertia tensor, the user does not have to define the particle to its principal axes, since
this is handled automatically within the source code, while if no value is given for the parameter R, it is
calculated as half the distance of the farthest vertices.

For example, to define a PotentialBlock:

O.materials.append(FrictMat(young=-1,poisson=-1,frictionAngle=radians(0.0),
↪→density=2650,label='frictionless'))

(continues on next page)

4.6. Potential Particles and Potential Blocks 1535

https://gitlab.com/yade-dev/trunk/blob/master/py/utils.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

b=Body()
b.shape=PotentialBlock(R=0.0, ...) #here we set R=0.0 to trigger automatic␣
↪→calculation of R
b.aspherical=True # To be used in conjunction with exactAsphericalRot=True
utils._commonBodySetup(b,b.shape.volume,b.shape.inertia, material='frictionless',␣
↪→pos=Vector3(xPos,yPos,zPos), fixed=False)
b.state.ori=b.shape.orientation # this will rotate the particle to its initial random␣
↪→system. If b.state.ori=Quaternion.Identity, the PB is oriented to its principal axes
O.bodies.append(b)

4.6.8 Boundary Particles

The PP & PB codes support the definition of boundary particles, which interact only with non-boundary
ones. These particles can have a variety of uses, e.g. to model loading plates acting on a granular sample,
while different uses can emerge for different applications. A particle can be set as a boundary one in
both codes, using the boolean parameter isBoundary inside the shape class.

In the PP code, all particles interact with the same normal and shear contact stiffness Knormal and
Kshear, defined in the Ip2_FrictMat_FrictMat_KnKsPhys functor.

The PB code supports the definition of different contact stiffness values for interactions between boundary
and non-boundary or non-boundary and non-boundary particles. When isBoundary=False, the Poten-
tialBlock in question is handled to interact with normal and shear stiffness coefficients Knormal and
Kshear, respectively, with other non-boundary particles. When isBoundary=True, the PotentialBlock in
question is handled to interact with normal and shear stiffness coefficients kn_i and ks_i, respectively,
with non-boundary particles.

4.6.9 Visualization

Visualization of the PotentialParticle and PotentialBlock shape classes is offered using the qt environ-
ment (OpenGL). Additionally, the export.VTKExporter.exportPotentialBlocks function and Potential-
ParticleVTKRecorder and PotentialBlockVTKRecorder engines can be used to export geometrical and
interaction information of the analyses in vtk format (visualized in Paraview). It should be noted that
currently the PotentialBlockVTKRecorder records a rounded approximation of the particle, rather than
the actual particle with sharp corners and edges.

In the qt environment, the PotentialParticle shape class is visualized using the Marching Cubes algorithm,
and the level of display accuracy can be determined by the user. This is controlled by the parameters:

Potential Particles
Gl1_PotentialParticle.sizeX=20
Gl1_PotentialParticle.sizeY=20
Gl1_PotentialParticle.sizeZ=20

A similar choice exists for output in vtk format, using the PotentialParticleVTKRecorder or Potential-
BlockVTKRecorder, syntaxed as:

Potential Particles
PotentialParticleVTKRecorder(sampleX=30, sampleY=30, sampleZ=30, maxDimension=20)

Potential Blocks
PotentialBlockVTKRecorder(sampleX=30, sampleY=30, sampleZ=30, maxDimension=20)

The parameters sizeX,Y,Z (for OpenGL visualization) and sampleX,Y,Z (for output in vtk format)
represent the number of subdivisions of the Aabb of the particle to a grid, which will be used to draw
its geometry, in respect to the global axes X, Y, Z. Larger values will result to a more accurate display

1536 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

of the particles’ shape, but will slow down the visualization speed in qt and writing speed of the .vtk
files and increase the size of the .vtk files. For output in vtk format, users can also define the parameter
maxDimension, which overrides the selected sampleX,Y,Z values if they are too small, as described below:

if | xmax− xmin | /sampleX > maxDimension ⇒ sampleX =| xmax− xmin | /maxDimension

if | ymax− ymin | /sampleY > maxDimension ⇒ sampleY =| ymax− ymin | /maxDimension

if | zmax− zmin | /sampleZ > maxDimension ⇒ sampleZ =| zmax− zmin | /maxDimension

The PotentialParticleVTKRecorder and PotentialBlockVTKRecorder also support optionally the record-
ing of the particles’ velocities (linear and angular), interaction information (contact point and forces),
colors and ids, using:

Potential Particles
PotentialParticleVTKRecorder(..., REC_VELOCITY=True, REC_INTERACTION=True, REC_
↪→COLORS=True, REC_ID=True)

Potential Blocks
PotentialBlockVTKRecorder(..., REC_VELOCITY=True, REC_INTERACTION=True, REC_
↪→COLORS=True, REC_ID=True)

Force chains and other visual outputs are available in qt by default, while they can be extracted in vtk
format using the classic VTKRecorder or the export.VTKExporter class.

A boolean parameter twoDimension exists to specify whether the particles will be rendered as 2-D or
3-D in the vtk output:

Potential Particles
PotentialParticleVTKRecorder(..., twoDimension=False)

Potential Blocks
PotentialBlockVTKRecorder(..., twoDimension=False)

This parameter should not be mixed up with the Ip2_FrictMat_FrictMat_KnKsPBPhys.twoDimension
parameter, which is used to define how the contact forces are calculated, as described in the Engines
section.

4.6.10 Axis-Aligned Bounding Box

The PP & PB codes use their own BoundFunctors, called PotentialParticle2AABB and Potential-
Block2AABB, respectively, to define the Axis-Aligned Bounding Box of each particle. In both bound
functors, a boolean parameter AabbMinMax exists, allowing the user to choose between an approximate
cubic Aabb or a more accurate one.

In particular, if AabbMinMax=False, a cubic Aabb is considered with dimensions 1.0*R. This is imple-
mented for both the PP and PB codes, even though the Potential Blocks do not have a spherical term.
In this case, the radius R is used as a reference length, denoting half the diagonal of the cubic Aabb.
Usage of this approximate cubic Aabb is not advised in general, since it can increase the number of
empty contacts, adding thus to the time needed to facilitate the approximate contact detection, while it
relies on the radius R, the value of which should enclose the whole particle if this option is activated.

If AabbMinMax=True, a more accurate Aabb can be defined. Currently, the initial Aabb of a Poten-
tialParticle has to be defined manually by the user, in the particle local coordinate system and for the
initial orientation of the particle. To do so, the user has to manually specify the two extreme points of
the Aabb: minAabbRotated, maxAabbRotated inside the shape class. The Aabb for a PotentialBlock, on
the other hand, is calculated and updated automatically from the vertices of the particle, if the boolean
parameter AabbMinMax =True.

As discussed in the subsection Visualization, the dimensions of the Aabb are used as a drawing space
in the code implementing rendering of the particles in the qt environment (for the PP code) and for
the creation of the output files in vtk format (for both codes). This is achieved by using two auxiliary

4.6. Potential Particles and Potential Blocks 1537

Yade Documentation, Release 3rd ed.

parameters: minAabb and maxAabb. For the Potential Blocks code only, if these parameters are left
unassigned, the drawing space is configured automatically inside the PotentialBlockVTKRecorder using
the Aabb of the particle. For the particles to be properly rendered as closed surfaces in both qt and
vtk outputs using the available codes, we need to define a drawing space slightly larger than the actual
one. Here, this drawing space is represented by the Aabb of the particles, and thus the differentiation
between the minAabb, maxAabb and minAabbRotated, maxAabbRotated stems from the need to satisfy
two conditions: 1. The Aabb used for primary contact detection must be as tight as possible, in order
to have the least number of empty contacts and 2. The Aabb used as a rendering space must be slightly
larger, in order to have proper rendering. If a dimension of the Aabb used for visualization purposes
is defined smaller than the actual one, the faces on that side of the particle are rendered as hollow
and only the edges are visualised, a functionality that can be used to e.g. see through boundaries, like
demonstrated in the vtk output of the examples/PotentialParticles/cubePPscaled.py example.

To recap, in the Potential Particles code, the minAabbRotated and maxAabbRotated parameters define
the initial Aabb used to facilitate primary contact detection, while the minAabb and maxAabb parameters
are used for visualization of the particles in qt and vtk outputs. In the Potential Blocks code, the Aabb
used to facilitate primary contact detection is calculated automatically from the particles’ vertices, which
are also used for visualization in qt, while the parameters minAabb and maxAabb are used for visualization
in vtk outputs and can be left unassigned, to trigger an automatic configuration of the drawing space of
the particle in the PotentialBlockVTKRecorder.

Two brief examples demonstrating the syntax of these features can be found below.

For the Potential Particles code:

b=Body()
b.shape=PotentialParticle(AabbMinMax=True,

minAabbRotated=Vector3(xmin,ymin,zmin),
maxAabbRotated=Vector3(xmax,ymax,zmax),
minAabb=Vector3(xmin,ymin,zmin),
maxAabb=Vector3(xmax,ymax,zmax), ...)

For the Potential Blocks code:

b=Body()
b.shape=PotentialBlock(AabbMinMax=True,

minAabb=Vector3(xmin,ymin,zmin),
maxAabb=Vector3(xmax,ymax,zmax), ...)

4.6.11 Block Generation algorithm

The Potential Blocks code is compatible with the Block Generation algorithm introduced in [Boon2015],
which can split particles by their intersection with discontinuity planes, initially developed for the study
of rock-masses. This code is hardcoded in YADE in the form of a Preprocessor. Using a single data
structure for the definition of the particle shape and the definition of the discontinuities, as well, allows the
generation of a large number of particles at a reasonable computational cost. The sequential subdivision
concept is used along with a linear programming framework. Non-persistent joints can be modelled by
introducing more constraints.

An example to demonstrate the usage of this code exists in examples/PotentialBlocks/WedgeYADE.py
The discontinuity planes used in this script are included in a csv format in exam-
ples/PotentialBlocks/joints/jointC.csv.

The documentation on how to use this code is currently being written.

1538 Chapter 4. Theoretical background and extensions

https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialParticles/cubePPscaled.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/WedgeYADE.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/joints/jointC.csv
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/joints/jointC.csv

Yade Documentation, Release 3rd ed.

4.6.12 Examples

Examples can be found in the folders examples/PotentialParticles and examples/PotentialBlocks/, where
the syntax of the codes is demonstrated.

4.6.13 Disclaimer

These codes were developed for academic purposes. Some variables are no longer in use, as the PhD
thesis of the original developer spanned over many years, with numerous trials and errors. As this piece
of code has many dependencies within the YADE ecosystem, user discretion is advised.

4.6.14 References

To acknowledge our scientific contribution, please cite the following:

Potential Blocks

• Boon CW (2013) Distinct Element Modelling of Jointed Rock Masses: Algorithms and Their
Verification. D.Phil. Thesis, University of Oxford

• Boon CW, Houlsby GT, Utili S (2012) A new algorithm for contact detection between convex
polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics,
44: 73-82

Potential Particles

• Houlsby GT (2009) Potential particles: a method for modelling non-circular particles in DEM.
Computers and Geotechnics, 36(6):953-959

• Boon CW, Houlsby GT, Utili S (2013) A new contact detection algorithm for three dimensional
non-spherical particles. Powder Technology, S.I. on DEM, 248: 94-102

Block Generation

• Boon CW, Houlsby GT, Utili S (2015) A new rock slicing method based on linear programming.
Computers and Geotechnics, 65:12-29

4.7 Bayesian Calibration using GrainLearning

Bayesian calibration is a probabilistic method for estimating the parameters of a computer model. The
output of Bayesian Calibration are conditional probability distributions of model parameters condi-
tioned on (experimental or theoretical) reference data. Here, we will apply Bayesian calibration to
DEM models of granular materials, using the GrainLearning package. Check out the GrainLearning
documentation for more information. Essentially, what a Yade user needs to do is to define a callback
function that runs their Yade script , e.g., in batch mode, with a parameter table given by GrainLearn-
ing. GrainLearning updates this table iteratively, based on the provided reference data, until the error
tolerance is met.

4.7. Bayesian Calibration using GrainLearning 1539

https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialParticles
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/
https://grainlearning.readthedocs.io/en/latest/
https://grainlearning.readthedocs.io/en/latest/

Yade Documentation, Release 3rd ed.

4.7.1 Installation

Stable versions of GrainLearning can be installed via pip install grainlearning. However, you would still
need to clone the GrainLearning repository to run the tutorials.

create a virtual environment
python3 -m venv env
source env/bin/activate

install GrainLearning
pip install grainlearning[visuals]

Clone the repository (optional)
git clone https://github.com/GrainLearning/grainLearning.git

run a simple linear regression test (optional)
python3 grainLearning/tutorials/simple_regression/linear_regression/python_linear_
↪→regression_solve.py

deactivate virtual environment (optional)
deactivate
rm -r env

Alternatively, you can include other optional modules of GrainLearning by passing the corresponding
extras to pip install, such as pip install grainlearning[dev] or pip install grainlearning[rnn] or simply pip
install grainlearning[all].

Background

In Bayesian filtering (updating the probability distribution of a model state given data sequences),
deterministic models are made stochastic by adding unknown modeling and observation errors. We
typically refer to the systems that these stochastic models describe as dynamic systems. The state of
a dynamic system is the set of random variables that describe the system at a given time.

4.7.2 Dynamic Systems

The dynamic_systems module of GrainLearning encapsulates simulation and reference data in a single
DynamicSystem class. The IODynamicSystem class sends instructions to external third-party software
like Yade and retrieves simulation data from the output files of the software.

Note: A dynamic system is also known as a state-space model in the literature. It describes the time
evolution of the state of the model xt and the state of the observables yt. Both xt and yt are random
variables whose distributions are updated by the inference module.

xt = F(xt−1) + νt

yt = H(xt) +ωt

where F represents the third-party software model that takes the previous model state xt−1 to make
predictions for time t. If all observables yt are independent and have a one-to-one correspondence with
xt, (meaning you predict what you observe), the observation model H reduces to the identity matrix Id,
with d being the number of independent observables.

The simulation and observation errors νt and ωt are random variables and assumed to be normally
distributed around zero means. We consider both errors together in the covariance matrix. For more
information on the dynamic_systems module, see GrainLearning documentation

1540 Chapter 4. Theoretical background and extensions

https://grainlearning.readthedocs.io/en/latest/dynamic_systems.html/

Yade Documentation, Release 3rd ed.

4.7.3 Bayesian Filtering

Bayesian filtering is a general framework for estimating the hidden state of a dynamical system from
partial observations using a predictive model of the system dynamics.

The state, usually augmented by the system’s parameters, changes in time according to a stochastic
process, and the observations are assumed to contain random noise. The goal of Bayesian filtering is to
update the probability distribution of the system’s state whenever new observations become available,
using the recursive Bayes’ theorem.

Humans are Bayesian machines, constantly using Bayesian reasoning to make decisions and predictions
about the world around them. Bayes’ theorem is the mathematical foundation for this process, allowing
us to update our beliefs in the face of new evidence,

p(A|B) =
p(B|A)p(A)

p(B)
.

Note:

• p(A|B) is the posterior probability of hypothesis A given evidence B has been observed

• p(B|A) is the likelihood of observing evidence B given hypothesis A

• p(A) is the prior probability of hypothesis A

• p(B) is a normalizing constant that ensures the posterior distribution sums to one

At its core, Bayes’ theorem is a simple concept: the probability of a hypothesis given some observed
evidence is proportional to the product of the prior probability of the hypothesis and the likelihood of
the evidence given the hypothesis.

The method currently available for statistical inference is Sequential Monte Carlo. It recursively updates
the probability distribution of the augmented model state x̂T = (xT ,Θ) from the sequences of observation
data y0:T from time t = 0 to T . The posterior distribution of the augmented model state is approximated
by a set of samples, where each sample instantiates a realization of the model state.

Via Bayes’ rule, the posterior distribution of the augmented model state reads

p(x̂0:T |y1:T) ∝
T∏

ti=1

p(yti
|x̂ti)p(x̂ti |x̂ti−1)p(x̂0),

Where p(x̂0) is the initial distribution of the model state. We can rewrite this equation in the recursive
form, so that the posterior distribution gets updated at every time step t.

p(x̂0:t|y1:t) ∝ p(yt|x̂t)p(x̂t|x̂t−1)p(x̂1:t−1|y1:t−1),

Where p(yt|x̂t) and p(x̂t|x̂t−1) are the likelihood distribution and the transition distribution, respec-
tively. The likelihood distribution is the probability distribution of observing yt given the model state
x̂t. The transition distribution is the probability distribution of the model’s current state x̂t given its
previous state x̂t−1.

Note: We apply no perturbation in the parameters Θ nor in the model states x1:T because the model
history must be kept intact for path-dependent materials. This results in a deterministic transition
distribution predetermined from the initial state p(x̂0).

The prior, likelihood, and posterior distributions can be evaluated via importance sampling. The idea
is to have samples that are more important than others when approximating a target distribution. The
measure of this importance is the so-called importance weight (see the figure below).

4.7. Bayesian Calibration using GrainLearning 1541

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Transition_probability
https://en.wikipedia.org/wiki/Importance_sampling

Yade Documentation, Release 3rd ed.

Fig. 9: Illustration of importance sampling.

Therefore, we draw samples, Θ(i) (i = 1, ...,Np), from a proposal density, leading to an ensemble of the
model state x

(i)
t . The importance weights w(i)

t are updated recursively, via

w
(i)
t ∝ p(yt|x̂

(i)
t)p(x̂

(i)
t |x̂

(i)
t−1)w

(i)
t−1.

The likelihood p(yt|x̂
(i)
t) can be assumed to be a multivariate Gaussian (see the equation below), which

is computed by the function get_likelihoods of the ‘‘Sequential Monte Carlo (SMC)’’ class.

p(yt|x̂
(i)
t) ∝ exp{−1

2
[yt − H(x

(i)
t)]TΣD

t

−1
[yt − H(x

(i)
t)]},

where H is the observation model that reduces to a diagonal matrix for uncorrelated observables, and ΣD
t

is the covariance matrix calculated by multiplying yt along the diagonal and the user-defined normalized
variance sigma_max.

By making use of importance sampling, the posterior distribution p(yt|x̂
(i)
t) gets updated over time —

this is known as Bayesian updating. Figure below illustrates the evolution of a posterior distribution
over time.

Since the importance weight on each sample Θ(i) is discrete and the sample Θ(i) and model state x
(i)
t

have one-to-one correspondence, the ensemble mean and variance of ft, an arbitrary function of the
model’s augmented state x̂t, can be computed as

Ê[ft(x̂t)|y1:t] =

Np∑
i=1

w
(i)
t ft(x̂

(i)
t),

V̂ar[ft(x̂t)|y1:t] =

Np∑
i=1

w
(i)
t (ft(x̂

(i)
t) − Ê[ft(x̂t)|y1:t])

2,

The figure below gives an example of the ensemble prediction in darkred, the top three fits in blue,
orange, and green, and the observation data in black.

The idea of iterative Bayesian filtering algorithm is to solve the inverse problem all over again, with new
samples drawn from a more sensible proposal density, leading to a multi-level resampling strategy to
avoid weight degeneracy and improve efficiency. The essential steps include

1. Generating the initial samples using a low-discrepancy sequence (Halton, Sobol, or Latin hypercube
sampling),

2. Running the instances of the predictive model via a user-defined callback function,

3. Estimating the time evolution of the posterior distribution,

4. Generating new samples from the proposal density, trained with the previous ensemble (i.e., samples
and associated weights),

1542 Chapter 4. Theoretical background and extensions

https://statswithr.github.io/book/the-basics-of-bayesian-statistics.html#bayes-updating
https://doi.org/10.1016/j.cma.2019.01.027

Yade Documentation, Release 3rd ed.

Fig. 10: Time evolution of the importance weights over model parameter a.

4.7. Bayesian Calibration using GrainLearning 1543

Yade Documentation, Release 3rd ed.

5. Check whether one of the stopping criteria (GrainLearning ensemble error, individual sample error,
or non-dimensional variance < tolerance) is met, and stop the iteration if so.

6. If not, repeating step 1–5.

The figure below illustrates the workflow of iterative Bayesian filtering.

More details on the iterative Bayesian filtering algorithm can be found in the following papers.

• H. Cheng, T. Shuku, K. Thoeni, P. Tempone, S. Luding, V. Magnanimo, (2019) An iterative
Bayesian filtering framework for fast and automated calibration of DEM models. Computer
Methods in Applied Mechanics and Engineering, 350, pp. 268-294, 10.1016/j.cma.2019.01.027

• P. Hartmann, H. Cheng, K. Thoeni, (2022) Performance study of iterative Bayesian filtering to
develop an efficient calibration framework for DEM. Computers and Geotechnics, 141, 104491,
10.1016/j.compgeo.2021.104491

• H. Cheng, L. Orozco, R. Lubbe, A. Jansen, P. Hartmann, K. Thoeni, (2024). GrainLearning: A
Bayesian uncertainty quantification toolbox for discrete and continuum numerical models of
granular materials. Journal of Open Source Software, 9(97), 6338, 10.21105/joss.06338

Setting up a case

4.7.4 In Yade

Modification to your Yade script is very minimal. First, we need to add a ‘‘description’’ field to the tags
of Yade so that each simulation can be uniquely identified.

check if run in batch mode
isBatch = runningInBatch()
if isBatch:

description = O.tags['description']
else:

description = 'test_run'

The plot module of Yade saves simulation data into a dictionary via plot.plots and plot.addData.

data_file_name = f'{description}_sim.txt'
data_param_name = f'{description}_param.txt'
def add_sim_data():

(continues on next page)

1544 Chapter 4. Theoretical background and extensions

https://doi.org/10.1016/j.cma.2019.01.027
https://doi.org/10.1016/j.compgeo.2021.104491
https://joss.theoj.org/papers/10.21105/joss.06338

Yade Documentation, Release 3rd ed.

(continued from previous page)

inter = O.interactions[0, 1]
plot.addData(u=inter.geom.penetrationDepth, f=inter.phys.normalForce.norm())

In addition to these data which will be compared to the reference data in order to calculate probabilities,
the corresponding parameter values used by Yade also need to be stored. This can be achieved with the
write_dict_to_file helper function of GrainLearning.

initialize data dictionary
param_data = {}
for name in table.__all__:

param_data[name] = eval('table.' + name)
write simulation data into a text file
write_dict_to_file(plot.data, data_file_name)
write_dict_to_file(param_data, data_param_name)

That’s everything you need to do to make your DEM simulation ready for a Bayesian calibration.
Download this script to check see to set up Bayesian calibration for particle-particle collisions.

4.7.5 In GrainLearning

As a Python package, GrainLearning can be imported into your Python script as follows.

from grainlearning import BayesianCalibration
from grainlearning.dynamic_systems import IODynamicSystem

To be able to run Yade from the callback function, you need to specify the path to the Yade executable
and the Yade script.

PATH = os.path.abspath(os.path.dirname(__file__))
executable = 'yade-batch'
yade_script = f'{PATH}/Collision.py'

Because Yade can take parameter values conveniently from a text file, in the batch mode, we only need
the following line where an updated parameter data file is passed to yade-batch.

def run_sim(calib):
"""
Run the external executable and passes the parameter sample to generate the␣

↪→output file.
"""
print("*** Running external software YADE ... ***\n")
os.system(' '.join([executable, calib.system.param_data_file, yade_script]))

Alternatively, you can run Yade from shell scripts through the run_yade_from_shell function of grain-
learning.tools. The folder /examples/Bayesian_calibration/platform_shells/ contains predefined shell
scripts for various platforms, including desktop, HPC cluster, and AWS cloud.

path_to_shell = 'platform_shells/desktop/'
def run_sim(calib):

"""
Run the external executable and passes the parameter sample to generate the␣

↪→output file.
"""
print("*** Running external software YADE ... ***\n")
run_yade_from_shell(calib.system.param_data_file, yade_script, path_to_shell,␣

↪→platform='desktop')

4.7. Bayesian Calibration using GrainLearning 1545

Yade Documentation, Release 3rd ed.

Obviously, one has to determine the number of unknown parameters before configuring further the
Bayesian calibration problem. In one of our previous papers (Hartmann et al., 2022), we have shown
that a number of parameters between 5 ∗N logN and 10 ∗N logN, where N is the number of unknown
parameters, is a good choice for the calibration of DEM models. Considering the example of two particle
collision, the parameters could be the Young’s modulus Em and the Poisson’s ratio ν.

param_names = ['E_m', 'nu']
num_samples = int(5 * len(param_names) * log(len(param_names)))

The BayesianCalibration class is initialized with a dictionary that contains all the necessary information
for the calibration. The most important settings are the number of iterations, the error tolerance, the
callback function, the upper and lower bounds of the parameters, the number of samples per iteration,
and the normalized covariance tolerance (optional). See the example below.

define the Bayesian Calibration object
calibration = BayesianCalibration.from_dict(

{
maximum number of GL iterations
"num_iter": 5,
error tolerance to stop the calibration
"error_tol": 0.1,
call back function to run YADE
"callback": run_sim,
DEM model as a dynamic system
"system": {

"system_type": IODynamicSystem,
"param_min": [7, 0.0],
"param_max": [11, 0.5],
"param_names": param_names,
"num_samples": 10,
"obs_data_file": PATH + '/collision_obs.dat',
"obs_names": ['f'],
"ctrl_name": 'u',
"sim_name": 'collision',
"sim_data_dir": PATH + '/sim_data/',
"sim_data_file_ext": '.txt',
"sigma_tol": 0.01,

},
"inference": {

"Bayes_filter": {
scale the covariance matrix with the maximum observation data or not
"scale_cov_with_max": True,

},
"sampling": {

maximum number of distribution components
"max_num_components": 1,
fix the seed for reproducibility
"random_state": 0,
use slice sampling (set to False if faster convergence is designed.␣

↪→However, the results could be biased)
"slice_sampling": True,

}
},
flag to save the figures (-1: no, 0: yes but only show the figures , 1: yes)
"save_fig": 0,
number of threads to be used per simulation
"threads": 1,

}
(continues on next page)

1546 Chapter 4. Theoretical background and extensions

https://doi.org/10.1016/j.compgeo.2021.104491

Yade Documentation, Release 3rd ed.

(continued from previous page)

)

If you want to assume modeling and observation error increases with their actual values, you can set
the scale_cov_with_max to False. If the parameter distributions are multi-modal, the max_num_com-
ponents sets the maximum number of components in the Gaussian mixture model. Since a variational
version of the Gaussian mixture is used, the algorithm will tend to reduce the number of components,
avoiding overfitting. Lastly, instead of directly sample from the Gaussian mixture, we can use low-
discrepancy sequences to draw samples within a volume bounded by certain cutoff values on the prob-
ability density. This ensures that the Bayesian filter is unbiased. However, the convergence might be
slower.

4.7.6 Running Bayesian calibration

The calibration is started by calling the run method of the BayesianCalibration object.

calibration.run()

If you have completed your simulation outside GrainLearning and simply want to check the statistics
and generate a new parameter table,

calibration.load_and_run_one_iteration()

If you exit the calibration accidentally, you can resume it by loading all existing simulations to run the
inference for one iteration, before calling the run method again.

calibration.load_and_run_one_iteration()
when resuming the calibration, the current iteration number must be increased
calibration.increase_curr_iter()
calibration.run()

4.7.7 Setting the stopping criteria

There are three criteria GrainLearning checks to stop the iterative Bayesian Calibration process. The
calibration stops if one of the following conditions is met: - The current normalized variance sigma_max
has decrease below its tolerance value sigma_tol - The mean absolute percentage error of the ensemble
prediction is below its tolerance value gl_error_tol - The mean absolute percentage error of the individual
sample is below its tolerance value error_tol

define the Bayesian Calibration object
calibration.error_tol = 0.01
calibration.gl_error_tol = 0.01
calibration.system.sigma_tol = 0.01

4.7.8 Analyzing and visualizing the results

Most of the time, a user is interested in the most probable parameter values. This can be obtained
by calling the get_most_prob_params method of the BayesianCalibration object. GrainLearning also
provides a set of plotting functions to visualize the results. For example, you can call plot_uq_in_time
to show the parameter distributions and the comparison between the observation and the top three most
probable simulations. Setting the verbose flag to true will give all the detailed statistics, including the
‘‘time’’ evolution of importance weights and the means and coefficients of variation of the parameters.

calibration.plot_uq_in_time()
calibration.plot_uq_in_time(verbose=True)

4.7. Bayesian Calibration using GrainLearning 1547

Yade Documentation, Release 3rd ed.

Fig. 11: Posterior distribution of the model parameters at various iterations.

Fig. 12: Comparison between the reference and top three most probable simulation results.

1548 Chapter 4. Theoretical background and extensions

Yade Documentation, Release 3rd ed.

Exercises

The examples in /examples/Bayesian_calibration/ show how to set up a Bayesian calibration for

• particle-particle collision

• triaxial compression

4.7.9 Particle-particle collision

First, create a synthetic reference dataset by running the Yade script with yade Collision.py and
rename the output file mv collision_test_run_sim.txt collision_obs.txt. Then, run the script
python collision_calibration.py to calibrate the DEM model parameters probabilistically. The
entire calibration should take no more than 5 minutes.

1. Can you reduce the number of samples per iteration to 5 and still get a good result?

2. What about shifting the parameter bounds to [5, 0.0] and [9, 0.5]?

Since the simulation is fast, you can try different settings to see how they affect the calibration.

4.7.10 Triaxial compression

Run the script yade triax_YADE_DEM_model.py first to generate the reference data triax_DEM_test_-
run_sim. Then, run the script python triax_calibration.py to calibrate the DEM model parameters
probabilistically. You should be able to get a decent result within two iterations of Bayesian calibration.
On a 16-core machine, the calibration should take no more than 20 minutes.

1. Were you able to recover the original parameter values which you used to generate the reference
data?

2. Can you decrease the number of samples per iteration to 3∗N logN and still get a good agreement
with the reference data?

3. GrainLearning uses variational Gaussian mixture model of scikit-learn to approximate the poste-
rior distribution. Reduce the number of Gaussian components to 1 and see how that affects the
calibration result.

4. Suppose you have done quite a few tests and would like to put them all together for GrainLearning
to analyze. Have a look at the script triax_calibration_load_and_run.py to see how you could
do that and even restart the calibration from where you left off.

5. For demonstration purposes, the DEM simulation does not include an initial step to check if the
initial porosity is reached. Can you add this step to the DEM simulation and see how it affects the
calibration?

These tutorials are extracted from the GrainLearning repository. More advanced tutorials can be found
on https://grainlearning.readthedocs.io/.

4.7. Bayesian Calibration using GrainLearning 1549

https://github.com/GrainLearning/grainLearning/
https://grainlearning.readthedocs.io/

Yade Documentation, Release 3rd ed.

1550 Chapter 4. Theoretical background and extensions

Chapter 5

Performance enhancements

5.1 Accelerating Yade’s FlowEngine with GPU

(Note: we thank Robert Caulk for preparing and sharing this guide)

5.1.1 Summary

This document contains instructions for adding Suite Sparse’s GPU acceleration to Yade’s Pore Finite
Volume (PFV) scheme as demonstrated in [Caulk2019]. The guide is intended for intermediate to ad-
vanced Yade users. As such, the guide assumes the reader knows how to modify and compile Yade’s
source files. Readers will find that this guide introduces system requirements, installation of neces-
sary prerequisites, and installation of the modified Yade. Lastly, the document shows the performance
enhancement expected by acceleration of the factorization of various model sizes.

5.1.2 Hardware, Software, and Model Requirements

• Hardware:

– CUDA-capable GPU with >3 GB memory recommended (64 mb required)

• Software:

– NVIDIA CUDA Toolkit

– SuiteSparse (CHOLMOD v2.0.0+)

– Metis (comes with SuiteSparse)

– CuBlas

– OpenBlas

– Lapack

• Model:

– Fluid coupling (Pore Finite Volume aka Yade’s “FlowEngine”)

– >10k particles, but likely >30k to see significant speedups

– Frequent remeshing requirements

1551

https://developer.nvidia.com/cuda-gpus

Yade Documentation, Release 3rd ed.

5.1.3 Install CUDA

The following instructions to install CUDA are a boiled down version of these instructions.

lspci | grep -i nvidia #Check your graphics card
Install kernel headers and development packages
sudo apt-get install linux-headers-$(uname -r)
#Install repository meta-data (see **Note below):
sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb
sudo apt-get update #update the Apt repository cache
sudo apt-get install cuda #install CUDA
Add the CUDA library to your path
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Note: use this tool to determine your <distro>_<version>_<architecture> values.

Restart your computer.

Verify your CUDA installation by navigating to /usr/local/cuda/samples and executing the make com-
mand. Now you can navigate to /usr/local/cuda/samples/1_Utilities/deviceQuery/ and execute
./deviceQuery . Verify the Result = PASS.

5.1.4 Install OpenBlas, and Lapack

Execute the following command:

sudo apt-get install libopenblas-dev liblapack-dev

5.1.5 Install SuiteSparse

Download the SuiteSparse package and extract the files to /usr/local/. Run make config and ver-
ify CUDART_LIB and CUBLAS_LIB point to your cuda installed libraries. The typical paths will fol-
low CUDART_LIB=/usr/local/cuda-x.y/lib64 and CUBLAS_LIB=/usr/local/cuda-x.y/lib64. If the
paths are blank, you may need to navigate to to CUDA_PATH in /usr/local/SuiteSparse/SuiteSparse_-
config/SuiteSparse_config.mk and modify it manually to point to your cuda installation. Navigate
back to the main SuiteSparse folder and execute make. SuiteSparse is now compiled and installed on
your machine.

Test CHOLMOD’s GPU functionality by navigating to SuiteSparse/CHOLMOD/Demo and executing sh
gpu.sh. Note: you will need to download the nd6k.mtx from here and put it in your home directory.

5.1.6 Compile Yade

Following the instructions outlined here, run cmake with -DCHOLMOD_GPU=ON and -DSUITESPARSEPATH=/
usr/local/SuiteSparse (or your other custom path). Check the output to verify the paths to
CHOLMOD (and dependencies such as AMD), SuiteSparse, CuBlas, and Metis are all identified as
the paths we created when we installed these packages. Here is an example of the output you need to
inspect:

-- Found Cholmod in /usr/local/SuiteSparse/lib/libcholmod.so
-- Found OpenBlas in /usr/lib/libopenblas.so
-- Found Metis in /usr/local/SuiteSparse/lib/libmetis.so
-- Found CuBlas in /usr/local/cuda-x.y/libcublas.so
-- Found Lapack in /usr/lib/liblapack.so

1552 Chapter 5. Performance enhancements

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#axzz4nrhmLDbj
https://developer.nvidia.com/cuda-downloads
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.cise.ufl.edu/research/sparse/matrices
https://yade-dem.org/doc/installation.html

Yade Documentation, Release 3rd ed.

If you have multiple versions of any of these packages, it is possible the system finds the wrong one.
In this case, you will need to either uninstall the old libraries (e.g. sudo apt-get remove libcholmod
if the other library was installed with apt-get) or edit the paths within cMake/Find_____.cmake. If
you installed a version of Cuda in a different location than /usr/local, you will need to edit cMake/
FindCublas.cmake to reflect these changes before compilation.

Metis is compiled with SuiteSparse, so the Metis library and Metis include should link to files within
usr/local/SuiteSparse/. When ready, complete installation with make -jX install. Keep in mind
that adding CHOLMOD_GPU alters useSolver=4 so to work with the GPU and not the CPU. If you wish to
useSolver=4 with the CPU without unintended side effects (possible memory leaks), it is recommended
to recompile with CHOLMOD_GPU=OFF. Of course, useSolver=3 should always work on the CPU.

5.1.7 Controlling the GPU

The GPU accelerated solver can be activated within Yade by setting flow.useSolver=4`. There are sev-
eral environment variables that control the allowable memory, allowable GPU matrix size, etc. These are
highlighted within the CHOLMOD User Guide, which can be found in SuiteSparse/CHOLMOD/Doc. At
the minimum, the user needs to set the environment variable by executing export CHOLMOD_USE_GPU=1.
It is also recommended that you designate half of your available GPU memory with export CHOLMOD_-
GPU_MEM_BYTES=3000000000 (for a 6GB graphics card), if you wish to use the multithread=True func-
tionality. If you have a multi-gpu setup, you can tell Yade to use one (or both GPUs with SuiteSparse-
4.6.0-beta) by executing export CUDA_VISIBLE_DEVICES=1, where 1 is the GPU you wish to use.

5.1.8 Performance increase

[Catalano2012] demonstrated the performance of DEM+PFV coupling and highlighted its strengths and
weaknesses. A significant strength of the DEM+PFV coupling is the asymptotic nature of triangulation
costs, volume calculation costs, and force calculation costs ([Catalano2012], Figure 5.4). In other words,
increasing the number of particles beyond ~200k results in negligible additional computational costs. The
main weakness of the DEM+PFV coupling is the exponential increase of computational cost of factoring
and solving increasingly larger systems of linear equations ([Catalano2012], Figure 5.7). As shown in
Fig. fig-cpuvsgpu, the employment of Tesla K20 GPU decreases the time cost of factorization by up to
75% for 2.1 million DOFs and 356k particles.

0 80 160 240 320 400
0

20
40
60
80

100
120
140
160

Ti
m

e
(s

)

Factorize

1050 Ti GPU
10-core CPU
Tesla K20 GPU

0 80 160 240 320 400

Analyze

0 80 160 240 320 400

Total

0.0 0.6 1.2 1.8 2.4 0.0 0.6 1.2 1.8 2.4 0.0 0.6 1.2 1.8 2.4

Thousands of particles

Millions of degrees of freedom

Fig. 1: Time required to factorize and analyze various sized matrices for 10-core CPU, 1050Ti GPU, and
Tesla K20 GPU [Caulk2019].

Note: Tesla K20 5GB CPU + 10-core Xeon E5 2.8 GHz CPU

5.1. Accelerating Yade’s FlowEngine with GPU 1553

Yade Documentation, Release 3rd ed.

5.2 MPI parallelization

The module mpy implements parallelization by domain decomposition (distributed memory) using the
Message Passing Interface (MPI) implemented by OpenMPI. It aims at exploiting large numbers of com-
pute nodes by running independent instances of Yade on them. The shared memory and the distributed
memory approaches are compatible, i.e. it is possible to run hybrid jobs using both, and it may well be
the optimal solution in some cases.

Most (initially all) calls to OpenMPI library are done in Python using mpi4py. However for the sake
of efficiency some critical communications are triggered via python wrappers of C++ functions, wherein
messages are produced, sent/received, and processed.

This module development was started in 2018. It received contributions during a HPC hackathon. An
extension enables parallel coupling with OpenFoam.

Note: see also reference documentation of the mpy module.

Note: Disclaimer: even though the yade.mpy module provides the function mpirun, which may seem
as a simple replacement for O.run(), setting up a simulation with mpy might be deceptively triavial.
As of now, it is anticipated that, in general, a simple replacement of “run” by “mpirun” in an arbitrary
script will not speedup anything and may even fail miserably (it could be improved in the future). To
understand why, and to tackle the problems, basic knowledge of how MPI works will certainly help
(specifically mpi4py).

5.2.1 Concepts

subdomain: a (sub)set of bodies attached to one MPI process after domain decomposition - with
or without spatial coherence. The corresponding class in Yade is Subdomain, a Shape instance with
helper functions for MPI communications. In some sense Subdomain is to subscribed bodies what Clump
(another Shape) is to clump members.

rank: subdomain index from 0 to N -1 (with N the number of mpi processes) to identify subdomains.
The rank of the subdomain a body belongs to can be retrieved as Body.subdomain. Each subdomain
corresponds to an instance of Yade and a specific scene during parallel execution. The rank of the scene
is given by Scene.subdomain.

master: refers to subdomain with rank =0. This subdomain does not behave like others. In general
master will handle boundary conditions and it will control transitions and termination of the whole
simulation. Unlike standard subdomains it may not contain a large number of raw bodies (i.e. not
beyond objects bounding the scene such as walls or boxes). In interactive execution master is the process
responding to the python prompt.

splitting and merging: cutting a master Scene into a set of smaller, distributed, scenes is called
“splitting”. The split is undone by a ‘merge’, by which all bodies and (optionally) all interactions are
sent back to the master thread. Splitting, running, then merging, should leave the scene as if no MPI had
been used at all (i.e. as if the same number of iterations had been executed in single-thread). Therefore
normal O.run() after that should work as usual.

intersections: subsets of bodies in a subdomain intersected by the bounding box of other subdomains
(see fig-subdomains). intersection(i,j) refers to the bodies owned by current (i) subdomain and intersect-
ing subdomain j (retrieved as O._sceneObj.subD.intersections[j]); mirrorIntersection(i,j) refers to bodies
owned by j and intersecting current domain (retrieved as O._sceneObj.subD.mirrorIntersections[j]). The
bodies are listed by Body.id. By definition intersection(i,j)=mirrorIntersection(j,i).

The intersections and mirror intersections are updated automatically as part of parallel collision detec-
tion. They define which body states need to be communicated. The bodies in intersections need to be

1554 Chapter 5. Performance enhancements

https://mpi4py.readthedocs.io
http://geomec.net/newsletter/?p=432
https://mpi4py.readthedocs.io

Yade Documentation, Release 3rd ed.

sent to other subdomains (in pratice only updated position and velocity are sent at every iteration), the
bodies in mirrorIntersections need to be received from other subdomains.

Two overlapping subdomains and their intersections. In this sit-
uation we have SubD1.intersections[SubD2.subdomain]=[id4,id5] and
SubD1.mirrorIntersections[SubD2.subdomain]=[id1], with SubD1 and SubD2 instances of Subdomain.

5.2.2 Walkthrough

For demonstrating the main internal steps in the implemented parallel algorithm let us consider the
example script examples/mpi/testMPI_2D.py. Executing this script (interactive or passive mode) with
three MPI processes generates the scene as shown in fig-scene-mpi. It then executes mpirun, which
triggers the steps described hereafter.

In this scene, we have three MPI processes (three subdomains) and the raw bodies are partitioned among
the subdomains/ranks 1 and 2. The master process with subdomain=0 holds the boundary/wall type
body. Bodies can be manually assigned or automatically assigned via a domain decomposition algorithm.
Details on the dommain decomposition algorithm is presented in the later section of this document.

Scene splitting :

In the function mpy.splitScene, called at the beginning of mpi execution, specific engines are added
silently to the scene in order to handle what will happen next. That very intrusive operation can even
change settings of some pre-existing engines, in particular InsertionSortCollider, to make them behave
with MPI-friendlyness. InsertionSortCollider.verletDist is an important factor controlling the efficiency
of the simulations. The reason for this will become evident in the later steps.

Bounds dispatching : In the next step, the Body.bound is dispatched with the Aabb extended as shown
in figure fig-regularbounds (in dotted lines). Note that the Subdomain Aabb is obtained from taking the
min and max of the owned bodies, see figure fig-subDBounds with solid coloured lines for the subdomain
Aabb. At this time, the min and max of other subdomains are unknown.

Update of Domain bounds : Once the bounds for the regular bodies and the local subdomain
has been dispatched, information on the other subdomain bounds are obtained via the function

5.2. MPI parallelization 1555

https://gitlab.com/yade-dev/trunk/blob/master/examples/mpi/testMPI_2D.py

Yade Documentation, Release 3rd ed.

mpy.updateDomainBounds. In this collective communication, each subdomain broadcasts its Aabb.min
and Aabb.max to other subdomains. Figure fig-subdomain-bounds shows a schematic in which each
subdomain has received the Aabb.min and Aabb.max of the other subdomains.

Parallel Collision detection :

• Once the Aabb.min and Aabb.max of the other subdomains are obtained, the collision detection
algorithm is used to determine the bodies that have intersections with the remote subdomains.
The ids of the identified bodies are then used to build the Subdomain.intersections list.

• Next step involves obtaining the ids of the remote bodies intersecting with the current subdomain
(Subdomain.mirrorIntersections). Each subdomain sends its list of local body intersections to
the respective remote subdomains and also receives the list of intersecting ids from the other
subdomains. If the remote bodies do not exist within the current subdomain’s BodyContainer,
the subdomain then requests these remote bodies from the respective subdomain. A schematic
of this operation is shown in figure fig-mirrorIntersections, in which subdomain=1 receives three
bodies from subdomain=2, and 1 body from subdomain=0. subdomain=2 receives three bodies
from subdomain=1. subdomain=0 only sends its bodies and does not receive from the worker
subdomains. This operation sets the stage for communication of the body states to/from the other
subdomains.

Update states :

Once the subdomains and the associated intersecting bodies, and remote bodies are identified, State of
these bodies are sent and received every timestep, by peer-to-peer communications between the interact-
ing subdomains. In the case of an interaction with the master subdomain (subdomain=0), only the total
force and torque exerted on master’s bodies by a given subdomain are sent. Figure fig-sendRecvStates
shows a schematic in which the states of the remote bodies between subdomain=1 and subdomain=2
are communicated. Subdomain=0 receives forces and torques from subdomain=1 and subdomain=2.

1556 Chapter 5. Performance enhancements

Yade Documentation, Release 3rd ed.

5.2.3 MPI initialization and communications

The mpy modules tries to retain one of Yade’s most important features: interactive access to the objects
of scene (or of multiple scenes in this case), as explained below. Interactive execution does not use the
mpiexec command of OpenMPI, instead, a pool of workers is spawned by the mpy module after Yade
startup. In production one may use passive jobs, and in that case mpiexec will preceed the call to Yade.

Note: Most examples in this page use 4 mpi processes. It is not a problem, in principle, to run the
examples even if the number of available cores is less than 4 (this is called oversubscribing (it may also fail
depending on OS and MPI implementation). There is no performance gain to expect from oversubscribing
but it is useful for experiments (e.g. for testing the examples in this page on a single-core machine).

Interactive mode

The interactive mode aims primarily at inspecting the simulation after some MPI execution for debugging.
Functions shown here (especially sendCommand) may also be usefull in the general case, to achieve
advanced tasks such as controlling transitions between phases of a simulation, collecting and processing
results.

5.2. MPI parallelization 1557

Yade Documentation, Release 3rd ed.

Explicit initialization from python prompt

A pool of Yade instances can be spawned with mpy.initialize() as illustrated hereafter. Mind that the
next sequences of commands are supposed to be typed directly in the python prompt after starting Yade,
it will not give exactly the same result if it is pasted into a script executed by Yade (see the next section
on automatic initialization):

@suppress
Yade [1]: from yade.utils import *

@suppress
Yade [1]: O.engines=yade.utils.defaultEngines

Yade [2]: wallId=O.bodies.append(box(center=(0,0,0),extents=(2,0,1),fixed=True))

Yade [3]: for x in range(-1,2):
...: O.bodies.append(sphere((x,0.5,0),0.5))
...:

Yade [5]: from yade import mpy as mp

@suppress
Yade [5]: mp.COLOR_OUTPUT=False

@doctest
Yade [6]: mp.initialize(4)
Master: I will spawn 3 workers
-> [6]: (0, 4)

After mp.initialize(np) the parent instance of Yade takes the role of master process (rank=0). It is
the only one executing the commands typed directly in the prompt. The other instances (rank=1 to
rank=np-1) are idle and they wait for commands sent from master. Sending commands to the other
instances can be done with mpy.sendCommand(), which by default returns the result or the list of results.
We use that command below to verify that the spawned workers point to different (still empty) scenes:

Yade [8]: len(O.bodies)
-> [8]: 4

Yade [10]: mp.sendCommand(executors="all",command="len(O.bodies)",wait=True) #check␣
↪→content
-> [10]: [4, 0, 0, 0]

Yade [9]: mp.sendCommand(executors="all",command="str(O)") # check scene pointers
-> [9]:
['<yade.wrapper.Omega object at 0x7f9c0a399490>',
'<yade.wrapper.Omega object at 0x7f9231213490>',
'<yade.wrapper.Omega object at 0x7f20086a1490>',
'<yade.wrapper.Omega object at 0x7f622b47f490>']

Sending commands makes it possible to manage all types of message passing using calls to the underlying
mpi4py (see mpi4py documentation). Be carefull with sendCommand “blocking” behavior by default.
Next example would hang without “wait=False” since both master and worker would be waiting for a
message from each other.

Yade [3]: mp.sendCommand(executors=1,command="message=comm.recv(source=0); print(
↪→'received',message)",wait=False)

Yade [4]: mp.comm.send("hello",dest=1)
(continues on next page)

1558 Chapter 5. Performance enhancements

Yade Documentation, Release 3rd ed.

(continued from previous page)

received hello

Every picklable python object (namely, nearly all Yade objects) can be transmitted this way. Remark
hereafter the use of mpy.mprint (identifies the worker by number and by font colors). Note also that
the commands passed via sendCommand are executed in the context of the mpy module, for this reason
comm, mprint, rank and all objects of the module are accessed without the mp. prefix.

Yade [3]: mp.sendCommand(executors=1,command="O.bodies.append(comm.recv(source=0))",
↪→wait=False) # leaves the worker idle waiting for an argument to append()

Yade [4]: b=Body(shape=Sphere(radius=0.7)) # now create body in the context of master

Yade [5]: mp.comm.send(b,dest=1) # send it to worker 1

Yade [6]: mp.sendCommand(executors="all",command="mprint('received',[b.shape.radius␣
↪→if hasattr(b.shape,'radius') else None for b in O.bodies])")
Master: received [None, 0.5, 0.5, 0.5]
Worker1: received [0.7]
Worker3: received []
Worker2: received []
-> [5]: [None, None, None, None] # printing yields no return value, hence that empty␣
↪→list of returns, "wait=False" argument to sendCommand would suppress it

Explicit initialization from python script

Though usefull for advanced operations, the function sendCommand() is limited. Basic features of the
python language are missing, e.g. function definitions and loops are a problem - in fact every code
fragment which can’t fit on a single line is. In practice the mpy module provides a mechanism to
initialize from a script, where functions and variables will be declared.

Whenever Yade is started with a script as an argument, the script name will be remembered, and if
mpy.initialize() is called (by the script itself or interactively in the prompt), all Yade instances will be
initialized with that same script. It makes distributing function definitions and simulation parameters
trivial (and even distributing scene constructions as seen below).

This behaviour is what happens usually with MPI: all processes execute the same program. It is also
what happens with “mpiexec -np N yade …”.

If the first commands above are pasted into a script used to start Yade, all workers insert the same
bodies as master (with interactive execution only master was inserting). Here is the script:

script 'test1.py'
wallId=O.bodies.append(box(center=(0,0,0),extents=(2,0,1),fixed=True))
for x in range(-1,2):

O.bodies.append(sphere((x,0.5,0),0.5))
from yade import mpy as mp
mp.initialize(4)
print(mp.sendCommand(executors="all",command="str(O)",wait=True))
print(mp.sendCommand(executors="all",command="len(O.bodies)",wait=True))

and the output reads:

yade test1.py
...
Running script test1.py
Master: will spawn 3 workers
None

(continues on next page)

5.2. MPI parallelization 1559

Yade Documentation, Release 3rd ed.

(continued from previous page)

None
None
None
None
None
['<yade.wrapper.Omega object at 0x7feb979403a0>', '<yade.wrapper.Omega object at␣
↪→0x7f5b61ae9440>', '<yade.wrapper.Omega object at 0x7fdd466b8440>', '<yade.wrapper.
↪→Omega object at 0x7f8dc7b73440>']
[4, 4, 4, 4]

That’s because all instances execute the script in the initialize() phase. “None” is printed 2x3 times
because the script contains print(mp.sendCommand(…)) twice, the workers try to execute that too, but
for them sendCommand returns by default, hence the None.

Though logical, this result is not what we want if we try to split a simulation into pieces. The solution
(typical of all mpi programs) is to use the rank of the process in conditionals. Different parts of the
script can then be executed, differently, by each worker, depending on its rank. In order to produce the
same result as before, for instance, the script can be modified as follows:

script 'test2.py'
from yade import mpy as mp
mp.initialize(4)
if mp.rank==0: # only master

wallId=O.bodies.append(box(center=(0,0,0),extents=(2,0,1),fixed=True))
for x in range(-1,2):
O.bodies.append(sphere((x,0.5,0),0.5))

print(mp.sendCommand(executors="all",command="str(O)",wait=True))
print(mp.sendCommand(executors="all",command="len(O.bodies)",wait=True))
print(mp.sendCommand(executors="all",command="str(O)",wait=True))

Resulting in:

Running script test2.py
Master: will spawn 3 workers
['<yade.wrapper.Omega object at 0x7f21a8c8d3a0>', '<yade.wrapper.Omega object at␣
↪→0x7f3142e43440>', '<yade.wrapper.Omega object at 0x7fb699b1a440>', '<yade.wrapper.
↪→Omega object at 0x7f1e4231e440>']
[4, 0, 0, 0]

We could also use rank to assign bodies from different regions of space to different workers, as found in
example examples/mpi/helloMPI.py, with rank-dependent positions:

rank is accessed without "mp." prefix as it is interpreted in mpy module's scope
mp.sendCommand(executors=[1,2],command= "ids=O.bodies.append([sphere((xx,1.5+rank,0),
↪→0.5) for xx in range(-1,2)])")

Keep in mind that the position of the call mp.initialize(N) relative to the other commands has no
consequence for the execution by the workers (for them initialize() just returns), hence program logic
should not rely on it. The workers execute the script from begin to end with the same MPI context,
already set when the first line is executed. It can lead to counter intuitive behavior, here is a script:

testInit.py
script.py
O.bodies.append([Body() for i in range(100)])

from yade import mpy as mp
(continues on next page)

1560 Chapter 5. Performance enhancements

https://gitlab.com/yade-dev/trunk/blob/master/examples/mpi/helloMPI.py

Yade Documentation, Release 3rd ed.

(continued from previous page)

mp.mprint("before initialize: rank ", mp.rank,"/", mp.numThreads,"; ",len(O.bodies),"␣
↪→bodies")
mp.initialize(2)
mp.mprint("after initialize: rank ", mp.rank,"/", mp.numThreads,"; ",len(O.bodies),"␣
↪→bodies")

and the output:

Running script testInit.py
Master: before initialize: rank 0 / 1 ; 100 bodies
Master: will spawn 1 workers
Master: after initialize: rank 0 / 2 ; 100 bodies
Worker1: before initialize: rank 1 / 2 ; 100 bodies
Worker1: after initialize: rank 1 / 2 ; 100 bodies

mpirun (automatic initialization)

Effectively running a distributed DEM simulation on the basis of the previously described commands
would be tedious. The mpy module thus provides the function mpy.mpirun to automate most of the
steps, as described in introduction. Mainly, splitting the scene into subdomains based on rank assigned to
bodies and handling collisions between the subdomains as time integration proceeds (includes changing
the engine list agressively to make this all happen).

If needed, the first execution of mpirun will call the function initialize(), which can therefore be omitted
on the user’s side. The subdomains will be merged into a centralized scene on the master process at the
end of the iterations depending on the argument withMerge.

Here is a concrete example where a floor is assigned to master and multiple groups of spheres are assigned
to subdomains:

import os
from yade import mpy as mp

NSTEPS=5000 #turn it >0 to see time iterations, else only initilization
numThreads = 4 # number of threads to be spawned, (in interactive mode).

#materials
young = 5e6
compFricDegree = 0.0
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle =␣
↪→radians(compFricDegree), density= 2600, label='sphereMat'))
O.materials.append(FrictMat(young=young*100, poisson = 0.5, frictionAngle =␣
↪→compFricDegree, density =2600, label='wallMat'))

#add spheres

mn,mx=Vector3(0,0,0),Vector3(90,180,90)
pred = pack.inAlignedBox(mn,mx)
O.bodies.append(pack.regularHexa(pred,radius=2.80,gap=0, material='sphereMat'))

#walls (floor)

wallIds=aabbWalls([Vector3(-360,-1,-360),Vector3(360,360,360)],thickness=10.0,␣
↪→material='wallMat')
O.bodies.append(wallIds)

(continues on next page)

5.2. MPI parallelization 1561

Yade Documentation, Release 3rd ed.

(continued from previous page)

#engines
O.engines=[

ForceResetter(),
InsertionSortCollider([

Bo1_Sphere_Aabb(),
Bo1_Box_Aabb()], label = 'collider'), # always add labels.

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],
label="interactionLoop"

),
GlobalStiffnessTimeStepper(timestepSafetyCoefficient=0.3, ␣

↪→timeStepUpdateInterval=100, parallelMode=True, label = 'timeStepper'),
NewtonIntegrator(damping=0.1,gravity = (0, -0.1, 0), label='newton'),
VTKRecorder(fileName='spheres/3d-vtk-', recorders=['spheres', 'intr', 'boxes

↪→'], parallelMode=True,iterPeriod=500), #use .pvtu to open spheres, .pvtp for ints,␣
↪→and .vtu for boxes.
]

#set a custom verletDist for efficiency.
collider.verletDist = 1.5

######### RUN ##########
customize mpy
mp.ERASE_REMOTE_MASTER = True #keep remote bodies in master?
mp.DOMAIN_DECOMPOSITION= True #automatic splitting/domain decomposition
#mp.mpirun(NSTEPS) #passive mode run
mp.MERGE_W_INTERACTIONS = False
mp.mpirun(NSTEPS,numThreads,withMerge=True) # interactive run, numThreads is the␣
↪→number of workers to be initialized, see below for withMerge explanation.
mp.mergeScene() #merge scene after run.
if mp.rank == 0: O.save('mergedScene.yade')

#demonstrate getting stuff from workers, here we get kinetic energy from worker␣
↪→subdomains, notice that the master (mp.rank = 0), uses the sendCommand to tell␣
↪→workers to compute kineticEnergy.
if mp.rank==0:

print("kinetic energy from workers: "+str(mp.sendCommand([1,2],
↪→"kineticEnergy()",True)))

The script is then executed:

yade script.py

For running further timesteps, the mp.mpirun command has to be executed in yade prompt:

Yade [0]: mp.mpirun(100,4,withMerge=False) #run for 100 steps and no scene merge.

Yade [1]: mp.sendCommand([1,2],"kineticEnergy()",True) # get kineticEnergy from␣
↪→workers 1 and 2.

Yade [2]: mp.mpirun(1,4,withMerge=True) # run for 1 step and merge scene into master.␣
↪→Repeat multiple time to watch evolution in QGL view

1562 Chapter 5. Performance enhancements

Yade Documentation, Release 3rd ed.

Non-interactive execution

Instead of spawning mpi processes after starting Yade, it is possible to run Yade with the classical
“mpiexec” from OpenMPI. Importantly, it may be the only method allowed through HPC job submission
systems. When using mpiexec there is no interactive shell, or a broken one (which is ok in general in
production). The job needs to run (or “mpirun”) and terminate by itself.

The functions initialize and mpirun described above handle both interactive and passive executions
transparently, and the user scripts should behave the same in both cases. “Should”, since what happens
behind the scenes is not exactly the same at startup, and it may surface in some occasions (let us know).

Provided that a script calls mpy.mpirun with a number of timesteps, the simulation (see e.g. exam-
ples/mpi/vtkRecorderExample.py) is executed with the following command:

mpiexec -np NUMSUBD+1 yade vtkRecorderExample.py

where NUMSUBD corresponds to the required number of subdomains.

Note: Remember that the master process counts one while it does not handle an ordinary subdomain,
therefore the number of processes is always NUMSUBD +1.

5.2.4 Splitting

Splitting an initial scene into subdomains and updating the subdomains after particle motion are two
critical issues in terms of efficiency. The decomposition can be prescribed on users’s side (first section
below), but mpy module also provides algorithms for both.

Note: The mpy module has no requirement in terms of how the subdomains are defined, and using
the helper functions described here is not a requirement. Even assigning the bodies randomly from a
large cloud to a number of subdomains (such that the subdomains overlap each other and the scene
entirely) would work. It would only be suboptimal as the number of interactions between subdomains
would increase compared to a proper partition of space.

Split by yourself

In order to impose a decomposition it is enough to assign Body.subdomain a value corresponding to the
process rank it should belong to. This can be done either in one centralized scene that is later split,
or by inserting the correct subsets of bodies independently in each subdomain (see section on scene
construction)

In the example script examples/mpi/testMPI_2D.py the spheres are generated as follows (centralized
construction in this example, easily turned into distributed one). For each available worker a bloc of
spheres is generated with a different position in space. The spheres in each block are assigned a subdomain
rank (and a color for visualisation) so that they will be picked up by the right worker after mpirun().:

for sd in range(0,numThreads-1):
col = next(colorScale)
ids=[]
for i in range(N):#(numThreads-1) x N x M spheres, one thread is for master␣

↪→and will keep only the wall, others handle spheres
for j in range(M):

id = O.bodies.append(sphere((sd*N+i+j/30.,j,0),0.500,
↪→color=col)) #a small shift in x-positions of the rows to break symmetry

ids.append(id)
for id in ids: O.bodies[id].subdomain = sd+1

5.2. MPI parallelization 1563

https://gitlab.com/yade-dev/trunk/blob/master/examples/mpi/vtkRecorderExample.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/mpi/vtkRecorderExample.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/mpi/testMPI_2D.py

Yade Documentation, Release 3rd ed.

Don’t know how to split? Leave it to mpirun

Initial split

mpirun will decide by itself how to distribute the bodies across several subdomains if DO-
MAIN_DECOMPOSITION =True. In such case the difference between the sequential script
and its mpi version is limited to importing mpy and calling mpirun after turning the DO-
MAIN_DECOMPOSITION flag.

The automatic splitting of bodies to subdomains is based on the Orthogonal Recursive Bi-
section Algortithm of Berger [Berger1987], and [Fleissner2007]. The partitioning is based on
bisecting the space at several levels, with the longest axis in each level chosen as the bisection
axis. The number of levels is determined as int(log2(Nw)) with Nw being the number of
worker subdomains. A schematic of this decomposition is shown in fig-bisectionAlgo, with 4
worker subdomains. At the initial stage (level = 0), we assume that subdomain=1 contains
the information of the body positions (and bodies), the longest axis is first determined, this
forms the bisectioning axis/plane. The list containing the body positions is sorted along the
bisection axis, and the median of this sorted list is determined. The bodies with positions (bi-
section coordinate) less than the median is coloured with the current subdomain, (SD=1) and
the other half is coloured with SD = 2, the subdomain colouring at each level is determined
using the following rule:

if (subdomain < 1<<level) : this subdomain gets the bodies with position␣
↪→lower than the median.
if ((subdomain > 1<<level) and (subdomain < 1<<(level+1))) : this␣
↪→subdomain gets the bodies with position greater than median, from␣
↪→subdomain - (1<<level)

This process is continued until the number of levels are reached.

Figure fig-domainDecompose shows the resulting partitioning obtained using the ORB algo-
rithm : (a) for 4 subdomains, (b) for 8 subdomains. Odd number of worker subdomains are
also supported with the present implementation.

The present implementation can be found in py/bisectionDecomposition.py, and a parallel
version can be found here.

1564 Chapter 5. Performance enhancements

https://gitlab.com/yade-dev/trunk/blob/master/py/bisectionDecomposition.py
https://github.com/bchareyre/yade-mpi/blob/593a4d6abf7e488ab1ac633a1e6725ac301b2a14/py/tree_decomp.py

Yade Documentation, Release 3rd ed.

Note: importing py/bisectionDecomposition.py triggers the import of mpi4py and ultimately of the
MPI library and related environment variables. The mpy module may change some mpi settings on
import, therefore it is safer to only import bisectionDecomposition after some mpy.initialize().

Updating the decomposition (load balancing)

As the bodies move, each subdomain may experience overall distortion and diffusion of bodies leading to
an undesirable overlap between multiple subdomains. This subdomain overlap introduces inefficiencies
in communications between MPI workers, and thus we aim to keep the subdomains as compact as
possible by using an algorithm that dynamically reallocates bodies to new subdomains with an objective
of minimizing MPI communications. The algorithm exploits InsertionSortCollider to reassign bodies
efficiently and in synchronicity with collision detection, and it can be activated if mpy.REALLOCATE_-
FREQUENCY >0.

The algorithm is not centralized, which preserves scalability. Additionally, it only engages peer-to-peer
communications between MPI workers that share an intersection. The re-assignment depends on a filter
for making local decisions. At the moment, there is one filter available called mpy.medianFilter. Custom
filters can be used instead.

The median filter body re-allocation criterion criterion involves finding the position of a median plane
between two subdomains such that after discriminating bodies on the “+” and “-” side of that plane
the total number in each subdomain is preserved. It results in the type of split shown in the video
hereafter. Even though the median planes seem to rotate rather quickly at some point in this video,
there are actually five collision detections between each re-allocation, i.e. thousands of time iterations to
effectively rotate the split between two different colors. These progressive rotations are beneficial since
the initial split would have resulted in flat discs otherwise.

Note: This is not a load balancing in the sense of achieving an equal amount of work per core. In
fact that sort of balancing is achieved by definition already as soon as each worker is assigned the same
amount of bodies (and because a subdomain is really ultimately a list of bodies, not a specific region of
space). Instead the objective is to decrease the communication times overall.

Centralized versus distributed scene construction

For the centralized scene construction method, the master process creates all of the bodies of a scene
and assigns subdomains to them. As part of mpy initialization some engines will be modified or inserted,
then the scene is broadcasted to the workers. Each worker receives the entire scene, identifies its assigned
bodies via Body.subdomain (if worker’s rank==b.subdomain the bodies are retained) and erase the others.
Such a scene construction was used in the previous example and it is by far the simplest. It makes no
real difference with building a scene for non-MPI execution besides calling mp.mpirun instead or just
O.run.

For large number of bodies and processes, though, the centralized scene construction and distribution
can consume a significant amount of time. It can also be memory bound since the memory usage is
quadratic: suppose N bodies per thread on a 32-core node, centralized construction implies that 32
copies of the entire scene exist simultaneously in memory at some point in time (during the split), i.e.
322N bodies on one single node. For massively parallel applications distributed construction should be
prefered.

In distributed mode each worker instantiates its own bodies and insert them in the local BodyCon-
tainer. Attention need to be paid to properly assign bodies ids since no index should be owned by two
different workers initially. Insertion of bodies in BodyContainer with imposed ids is done with BodyCon-
tainer.insertAtId. The distributed mode is activated by setting the DISTRIBUTED_INSERT flag ON, the
user is in charge of setting up the subdomains and partitioning the bodies. An example of distributed
insertion can be found in examples/mpi/parallelBodyInsert3D.py.

5.2. MPI parallelization 1565

https://gitlab.com/yade-dev/trunk/blob/master/py/bisectionDecomposition.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/mpi/parallelBodyInsert3D.py

Yade Documentation, Release 3rd ed.

The relevant fragment, where the filtering is done by skipping all steps of a loop except the one with
proper rank (keep in mind that all workers will run the same loop but they all have a different rank
each), reads:

#add spheres
subdNo=0
import itertools
_id = 0 #will be used to count total number of bodies regardless of subdomain␣
↪→attribute, so that same ids are not reused for different bodies
for x,y,z in itertools.product(range(int(Nx)),range(int(Ny)),range(int(Nz))):

subdNo+=1
if mp.rank!=subdNo: continue
ids=[]
for i in range(L):#(numThreads-1) x N x M x L spheres, one thread is for␣

↪→master and will keep only the wall, others handle spheres
for j in range(M):

for k in range(N):
dxOndy = 1/5.; dzOndy=1/15. # shifts in x/y-

↪→positions to make columns inclines
px= x*L+i+j*dxOndy; pz= z*N+k+j*dzOndy; py =␣

↪→(y*M+j)*(1 -dxOndy**2 -dzOndy**2)**0.5 #so they are always nearly touching initialy
id = O.bodies.insertAtId(sphere((px,py,pz),0.500),_

↪→id+(N*M*L*(subdNo-1)))
_id+=1
ids.append(id)

for id in ids: O.bodies[id].subdomain = subdNo

if mp.rank==0: #the wall belongs to master
WALL_ID=O.bodies.insertAtId(box(center=(Nx*L/2,-0.5,Nz*N/2),extents=(2*Nx*L,0,

↪→2*Nz*N),fixed=True),(N*M*L*(numThreads-1)))

The bissection algorithm can be used for defining the initial split, in the distributed case too, since
it takes a points dataset as input. Provided that all workers work with the same dataset (e.g. the
same sequence of a random number generator) they will all reach the same partitioning, and they can
instantiate their bodies on this basis.

5.2.5 Merging

The possibility of a “merge”, shown in the previous example, can be performed using an optional argu-
ment of mpirun or as a standalone function mpy.mergeScene .

If withMerge=True in mpirun then the bodies in master scene are updated to reflect the evolution of
their distributed clones. This is done once after finishing the required number of iterations in mpirun.
This merge operation can include updating interactions. mpy.mergeScene does the same within the
current iteration. Merging is an expensive task which requires the communication of large messages and,
therefore, it should be done purposely and at a reasonable frequency. It can even be the main bottleneck
for massively parallel scenes. Nevertheless, it can be useful for debugging with the 3D view, or for various
post-processing tasks. The MERGE_W_INTERACTIONS provides a full merge, i.e. the interactions
in the worker subdomains and between the subdomains are included, otherwise, only the position and
states of the bodies are used. Merging with interactions should result in a usual Yade scene, ready for
further time-stepping in non-mpi mode or (more useful) for some post-processing. The merge operation
is not required for a proper time integration in general.

1566 Chapter 5. Performance enhancements

Yade Documentation, Release 3rd ed.

5.2.6 Hints and problems to expect

MPI support in engines

For MPI cases, the parallelMode flag for GlobalStiffnessTimeStepper and VTKRecorder have to be turned
on. They are the only two engines upgraded with MPI support at the moment.

For other things. Read next section and be careful. If you feel like implementing MPI support for other
engines, that would be great, consider using the two available examples as guides. Let us know!

Reduction (partial sums)

Quantities such as kinetic energy cannot be obtained for the entire scene just by summing the return value
of kineticEnergy() from each subdomain. This is because each subdmomain may contain also images of
bodies from intersecting subdomains and they may add their velocity, mass, or whatever is summed, to
what is returned by each worker. Although some most-used functions of Yade may progressively get mpi
support to filter out bodies from remote domains, it is not standard yet and therefore partial sums may
need to be implemented on a case-by-case basis, with proper filtering in the user script.

This is just an example of why many things may go wrong if run is directly replaced by mpirun in a
complex script.

Miscellaneous

• sendCommand() has a hardcoded latency of 0.001s to not keep all cores 100% busy waiting for a
command (with possibly little left to OS). If sendCommand() is used at high frequency in complex
algorithms it might be beneficial to decrease that sleep time.

5.2.7 Control variables

• VERBOSE_OUTPUT : Details on each operation/step (such as mpy.splitScene,
mpy.parallelCollide etc) is printed on the console, useful for debugging purposes

• ACCUMULATE_FORCES : Control force summation on bodies owned by the master.

• ERASE_REMOTE_MASTER : Erase remote bodies in the master subdomain or keep them as
unbounded ? Useful for fast merge.

• OPTIMIZE_COM, USE_CPP_MPI : Use optimized communication functions and MPI functions
from Subdomain class

• YADE_TIMING : Report timing statistics, prints time spent in communications, collision detection
and other operations.

• DISTRIBUTED_INSERT : Bodies are created and inserted by each subdomain, used for dis-
tributed scene construction.

• DOMAIN_DECOMPOSITION : If true, the bisection decomposition algorithm is used to assign
bodies to the workers/subdomains.

• MINIMAL_INTERSECTIONS : Reduces the size of position/velocity communications (at the end
of the colliding phase, we can exclude those bodies with no interactions besides body<->subdomain
from intersections).

• REALLOCATE_FREQUENCY : if > 0, bodies are migrated between subdomains for efficient load
balancing. If =1 realloc. happens each time collider is triggered, else every N collision detection

• REALLOCATE_MINIMAL : Intersections are minimized before reallocations, hence minimizing
the number of reallocated bodies

• USE_CPP_REALLOC : Use optimized C++ functions to perform body reallocations

5.2. MPI parallelization 1567

Yade Documentation, Release 3rd ed.

• FLUID_COUPLING : Flag for coupling with OpenFOAM.

5.2.8 Benchmark

Comments:

• From 1k particles/core to 8k particles/core there is a clear improvement. Obviously 1k is too small
and most of the time is spent in comunications.

• From 8k/core to 64k/core the throughput per core is more or less the same, and the performance
is not too far from linear. The data includes elimination of random noise, and overall it is not clear
to me which non-linearity comes from the code and which one comes from the hardware.

• Conclusion, if you don’t have at least 8k spheres/core (maybe less for more compex shapes) mpi is
not your friend. This in line with the estimate of 10k by Dion Weatherley (DEM8+beer)

• It looks like OpenMP sucks, but be aware that the benchmark script is heavily tuned for MPI. It
includes huges verletDist and more time wasted on virtual interactions to minimize global updates.

• I believe tuning for OpenMP could make -j26 (or maybe 2xMPIx -j13) on par or faster than 26
MPI threads for less than a million particle. Given the additional difficulty, MPI’s niche is for more
than a million particles or more than one compute node.

• the nominal per-core throughput is not impressive. On an efficient script my laptop can approach
1e6Cu while we get 0.3e6Cu per core on Dahu. MPI is not to blame here, my laptop would also
outperform Dahu on a single core.

5.3 Using YADE with cloud computing on Amazon EC2

(Note: we thank Robert Caulk for preparing and sharing this guide)

1568 Chapter 5. Performance enhancements

Yade Documentation, Release 3rd ed.

5.3.1 Summary

This guide is intended to help YADE users migrate their simulations to Amazon Web Service (AWS)
EC2. Two of the most notable benefits of using scalable cloud computing for YADE include decreased
upfront cost and increased productivity. The entire process, from launching an instance, to installing
YADE, to running a YADE simulation on the cloud can be executed in under 5 minutes. Once the
EC2 instance is running, you can submit YADE scripts the same way you would submit jobs on a local
workstation.

5.3.2 Launching an EC2 instance

Fig. 2: Amazon Web Services (AWS) Console

Start by signing into the console on Amazon EC2. This will require an existing or new Amazon account.

5.3. Using YADE with cloud computing on Amazon EC2 1569

https://aws.amazon.com/?nc2=h_lgl

Yade Documentation, Release 3rd ed.

Once you’ve signed in, you should find the EC2 console by clicking on ‘services’ in the upper left hand
corner of the AWS homepage. Start by clicking on the launch an instance blue button (Fig. fig-
console). Select the Amazon Machine Image (AMI): Ubuntu Server 16.04 LTS (Fig. fig-ubuntu).

Fig. 3: Select Ubuntu server 16.04 LTS AMI

You will now select the instance type. It is worth looking at the specifications for each of the instances
so you can properly select the power you need for you YADE simulation. This document will not go into
detail in the selection of size, but you can find plenty of YADE specific performance reports that will help
you decide. However, the instance type is an important selection. The Compute Optimized instances
are necessary for most YADE simulations because they provide access to high performing processors and
guaranteed computing power. The C3.2xlarge (Fig. fig-type) is equivalent to an 8 core 2.8ghz Xeon E5
with 25 mb of cache, which is likely the best option for medium-large scale YADE simulations.

Fig. 4: Compute optimized (C3) instance tier

Before launching, you will be asked to select an existing key pair or create a new key pair.
Create a new one, download it, and place it in a folder that you know the path to. Modify the permissions
on the file by navigating to the same directory in the terminal and typing:

chmod 400 KeyPair.pem

Now the instance is launched, you will need to connect to it via SSH. On unix systems this is as easy as
typing:

ssh -i path/to/KeyPair.pem ubuntu@ec2-XX-XXX-XX-XX.us-west-2.compute.amazon.com

into the terminal. There are other options such as using PuTTY, or even a java based terminal on the
AWS website. You can find the necessary information by navigating to Instances in the left menu of
the AWS console. Right click on the instance as shown in Fig. fig-connect and click connect.

You will be presented with the public DNS, which should look something like Fig. fig-dns.

1570 Chapter 5. Performance enhancements

https://aws.amazon.com/ec2/instance-types/
https://yade-dem.org/publi/1stWorkshop/booklet.pdf

Yade Documentation, Release 3rd ed.

Fig. 5: Connecting to the instance

Fig. 6: Public DNS

5.3.3 Installing YADE and managing files

After you’ve connected to the instance through SSH, you will need to install YADE. The following
commands should be issued to install yadedaily, python, and some other useful tools:

#install yadedaily
sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ xenial/" >> /etc/apt/
↪→sources.list'
wget -O - http://www.yade-dem.org/packages/yadedev_pub.gpg | sudo apt-key add -
sudo apt-get update
sudo apt-get install -y yadedaily

install python
sudo apt-get -y install python
sudo apt-get -y install python-pip python-dev build-essential

install htop
sudo apt-get -y install htop

Note that ..packages/ xenial/ should match the Ubuntu distribution. 16.04 LTS is Xenial, but if you
chose to start Ubuntu 14.04, you will need to change ‘xenial’ to ‘trusty’.

Finally, you will need to upload the necessary YADE files. If you have a folder with the contents of your
simulation titled yadeSimulation you can upload the folder and its contents by issuing the following
command:

scp -r -i path/to/KeyYADEbox.pem path/to/yadeSimulation ubuntu@ec2-XX-XXX-XX-XX.us-
↪→west-2.compute.amazonaws.com:~/yadeSimulation

You should now be able to run your simulation by changing to the proper directory and typing:

5.3. Using YADE with cloud computing on Amazon EC2 1571

Yade Documentation, Release 3rd ed.

yadedaily nameOfSimulation.py

In order to retrieve the output files (folder titled ‘out’ below) for post processing purposes, you will use
the same command that you used to upload the folder, but the remote and local file destinations should
be reversed:

scp -r -i path/to/KeyYADEbox.pem ubuntu@ec2-XX-XXX-XX-XX.us-west-2.compute.amazonaws.
↪→com:~/yadeSimulation/out/ path/to/yadeSimulation/out

5.3.4 Plotting output in the terminal

One of the main issues encountered with cloud computing is the lack of graphical feedback. There is
an easy solution for graphically checking the status of your simulations which makes use of gnuplot’s
wonderful ‘terminal dumb’ feature. Any data can be easily plotted by navigating to the subfolder where
the simulation is saving its output and typing:

gnuplot
set terminal dumb
plot ``data.txt" using 1:2 with lines

Where ‘1:2’ refers to the columns in data.txt that you wish to plot against one another. Your output
should look something like this:

Fig. 7: Gnuplot output

1572 Chapter 5. Performance enhancements

Yade Documentation, Release 3rd ed.

5.3.5 Comments

• Amazon AWS allows you to stop your instance and restart it again later with the same files and
package installations. If you wish to create several instances that all contain the same installation
and file directory you can create a snapshot of your default image which you will be able to use to
create various volumes that you can attach to new instances. These actions are all performed very
easily and graphically through the EC2 console

• You can use Spot Instances, which are a special type of instance that allow you to bid on unused
servers. The price is heavily discounted and worth looking into for any YADE user that wishes to
run hundreds of hours of simulations.

• For most simulations, your computational efficiency will decrease if you use above 8 cores per
simulation. It is preferable to use yadedaily-batch to distribute your cores accordingly so that you
always dedicate 8 cores to each simulation and ensure 100% of the processor is running.

• Create a tmux session to avoid ending YADE simulations upon disconnecting from the server.

tmux # starts a new session
tmux attach -t 0 # attach session 0
tmux kill -t 0 # kill session
cntrl - b - d to move back to home
cntrl - b - [to navigate within the session

5.4 High precision calculations

Yade supports high and arbitrary precision Real type for performing calculations (see [Kozicki2022] for
details). All tests and checks pass but still the current support is in testing phase. The backend library
is boost multiprecision along with corresponding boost math toolkit.

The supported types are following:

type bits decimal places1 notes
float 32 6 hardware accelerated (not useful, it is only for testing

purposes)
double 64 15 hardware accelerated
long double 80 18 hardware accelerated
boost
float128

128 33 depending on processor type it may be hardware accel-
erated, wrapped by boost

boost mpfr Nbit Nbit/(log(2)/
log(10))

uses external mpfr library, wrapped by boost

boost cpp_-
bin_float

Nbit Nbit/(log(2)/
log(10))

uses boost only, but is slower

The last two types are arbitrary precision, and their number of bits Nbit or decimal places is specified
as argument during compilation.

Note: See file Real.hpp for details. All Real types pass the real type concept test from boost concepts.
The support for Eigen and CGAL is done with numerical traits.

1 The amount of decimal places in this table is the amount of places which are completely determined by the binary
represenation. Few additional decimal digits is necessary to fully reconstruct binary representation. A simple python
example to demonstrate this fact: for a in range(16): print(1./pow(2.,a)), shows that every binary digit produces
“extra” …25 at the end of decimal representation, but these decimal digits are not completely determined by the binary
representation, because for example …37 is impossible to obtain there. More binary bits are necessary to represent …37, but
the …25 was produced by the last available bit.

5.4. High precision calculations 1573

https://github.com/boostorg/multiprecision
https://www.boost.org/doc/libs/1_72_0/libs/multiprecision/doc/html/index.html
https://github.com/boostorg/math
https://www.boost.org/doc/libs/1_72_0/libs/math/doc/html/index.html
https://www.boost.org/doc/libs/1_72_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/float128.html
https://www.boost.org/doc/libs/1_72_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/mpfr_float.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/Real.hpp
https://gitlab.com/yade-dev/trunk/blob/1b4ae97583bd8a6efc74cb0d0/py/high-precision/_math.cpp#L197
https://www.boost.org/doc/libs/1_72_0/libs/math/doc/html/math_toolkit/real_concepts.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp

Yade Documentation, Release 3rd ed.

5.4.1 Installation

The precompiled Yade Daily packages for Ubuntu 22.04 and Debian Bookworm, Trixie are provided
for high precision types long double, float128 and mpfr150. To use high precision on other linux
distributions Yade has to be compiled and installed from source code by following the regular installation
instructions. With extra following caveats:

1. Following packages are required to be installed: python3-mpmath libmpfr-dev
libmpfrc++-dev libmpc-dev (the mpfr and mpc related packages are necessary only to use
boost::multiprecision::mpfr type). These packages are already listed in the default require-
ments.

2. A g++ compiler version 9.2.1 or higher is required. It shall be noted that upgrading only the
compiler on an existing linux installation (an older one, in which packages for different versions of
gcc were not introduced) is difficult and it is not recommended. A simpler solution is to upgrade
entire linux installation.

3. During cmake invocation specify:

1. either number of bits as REAL_PRECISION_BITS=……,

2. or number of requested decimal places as REAL_DECIMAL_PLACES=……, but not both

3. optionally to use MPFR specify ENABLE_MPFR=ON (is OFF by default).

4. optionally decide about using quadruple, octuple or higher precisions with -DENABLE_MULTI_-
REAL_HP=ON (default). This feature is independent of selecting the precision of Real type (in
point 1. or 2. above) and works even when Real is chosen as double (i.e. no special choice is
made: the default settings).

The arbitrary precision (mpfr or cpp_bin_float) types are used only when more than 128 bits
or more than 39 decimal places are requested. In such case if ENABLE_MPFR=OFF then the slower
cpp_bin_float type is used. The difference in decimal places between 39 and 33 stems from the
fact that 15 bits are used for exponent. Note: a fast quad-double (debian package libqd-dev)
implementation with 62 decimal places is in the works with boost multiprecision team.

5.4.2 Supported modules

During compilation several Yade modules can be enabled or disabled by passing an ENABLE_* command
line argument to cmake. The following table lists which modules are currently working with high precision
(those marked with “maybe” were not tested):

1574 Chapter 5. Performance enhancements

https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format
https://github.com/boostorg/multiprecision/issues/184

Yade Documentation, Release 3rd ed.

ENABLE_* module name HP support cmake default setting notes
ENABLE_GUI yes ON native support2

ENABLE_CGAL yes ON native supportPage 1575, 2

ENABLE_VTK yes ON supported3

ENABLE_OPENMP partial ON partial support4

ENABLE_MPI maybe OFF not tested5

ENABLE_GTS yes ON supported6

ENABLE_GL2PS yes ON supported6

ENABLE_LINSOLV no OFF not supported7

ENABLE_PARTIALSAT no OFF not supported7

ENABLE_PFVFLOW no OFF not supported7

ENABLE_TWOPHASEFLOW no OFF not supported7

ENABLE_THERMAL no OFF not supported7

ENABLE_LBMFLOW yes ON supported6

ENABLE_SPH maybe OFF not tested8

ENABLE_LIQMIGRATION maybe OFF not tested8

ENABLE_MASK_ARBITRARY maybe OFF not tested8

ENABLE_PROFILING maybe OFF not tested8

ENABLE_POTENTIAL_BLOCKS no OFF not supported9

ENABLE_POTENTIAL_PARTICLES yes ON supported10

ENABLE_DEFORM maybe OFF not tested8

ENABLE_OAR maybe OFF not tested8

ENABLE_FEMLIKE yes ON supported6

ENABLE_ASAN yes OFF supported6

ENABLE_MPFR yes OFF native support2

ENABLE_LS_DEM no ON not supported11

The unsupported modules are automatically disabled during a high precision cmake stage.

5.4.3 Double, quadruple, octuple and higher precisions

Sometimes a critical section of the calculations in C++ would work better if it was performed in the
higher precision to guarantee that it will produce the correct result in the default precision. A simple
example is solving a system of linear equations (basically inverting a matrix) where some coefficients are
very close to zero. Another example of alleviating such problem is the Kahan summation algorithm.

If requirements are satisfied, Yade supports higher precision multipliers in such a way that RealHP<1> is
the Real type described above, and every higher number is a multiplier of the Real precision. RealHP<2>
is double precision of RealHP<1>, RealHP<4> is quadruple precision and so on. The general formula for
amount of decimal places is implemented in RealHP.hpp file and the number of decimal places used is

2 This feature is supported natively, which means that specific numerical traits were written for Eigen and for CGAL,
as well as GUI and python support was added.

3 VTK is supported via the compatibility layer which converts all numbers down to double type. See below.
4 The OpenMPArrayAccumulator is experimentally supported for long double and float128. For types mpfr and cpp_-

bin_float the single-threaded version of accumulator is used. File lib/base/openmp-accu.hpp needs further testing. If in
doubt, compile yade with ENABLE_OPENMP=OFF. In all other places OpenMP multithreading should work correctly.

5 MPI support has not been tested and sending data over network hasn’t been tested yet.
6 The module was tested, the yade --test and yade --check pass, as well as most of examples are working. But it

hasn’t been tested extensively for all possible use cases.
7 Not supported, the code uses external cholmod library which supports only double type. To make it work a native

Eigen solver for linear equations should be used.
8 This feature is OFF by default, the support of this feature has not been tested.
9 Potential blocks use external library coinor for linear programming, this library uses double type only. To make it

work a linear programming routine has to be implemented using Eigen or coinor library should start using C++ templates
or a converter/wrapper similar to LAPACK library should be used.

10 The module is enabled by default, the yade --test and yade --check pass, as well as most of examples are working.
However the calculations are performed at lower double precision. A wrapper/converter layer for LAPACK library has
been implemented. To make it work with full precision these routines should be reimplemented using Eigen.

11 Possible future enchancement. See comments there .

5.4. High precision calculations 1575

https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/RealHP.hpp#L84
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/gui/qt5/SerializableEditor.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ToFromPythonConverter.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/compatibility/VTKCompatibility.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/base/openmp-accu.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/compatibility/LapackCompatibility.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/compatibility/LapackCompatibility.hpp
https://gitlab.com/yade-dev/trunk/-/merge_requests/779

Yade Documentation, Release 3rd ed.

simply a multiple N of decimal places in Real precision, it is used when native types are not available.
The family of available native precision types is listed in the RealHPLadder type list.

All types listed in MathEigenTypes.hpp follow the same naming pattern: Vector3rHP<1> is the regular
Vector3r and Vector3rHP<N> for any supported N uses the precision multiplier N. One could then use an
Eigen algorithm for solving a system of linear equations with a higher N using MatrixXrHP<N> to obtain
the result with higher precision. Then continuing calculations in default Real precision, after the critical
section is done. The same naming convention is used for CGAL types, e.g. CGAL_AABB_treeHP<N> which
are declared in file AliasCGAL.hpp.

Before we fully move to C++20 standard, one small restriction is in place: the precision multipliers
actually supported are determined by these two defines in the RealHPConfig.hpp file:

1. #define YADE_EIGENCGAL_HP (1)(2)(3)(4)(8)(10)(20) - the multipliers listed here will work in
C++ for RealHP<N> in CGAL and Eigen. They are cheap in compilation time, but have to be listed
here nonetheless. After we move code to C++20 this define will be removed and all multipliers
will be supported via single template constraint. This inconvenience arises from the fact that both
CGAL and Eigen libraries offer template specializations only for a specific type, not a generalized
family of types. Thus this define is used to declare the required template specializations.

Hint: The highest precision available by default N= (20) corresponds to 300 decimal places when
compiling Yade with the default settings, without changing REAL_DECIMAL_PLACES=…… cmake compilation
option.

2. #define YADE_MINIEIGEN_HP (1)(2) - the precision multipliers listed here are exported to
python, they are expensive: each one makes compilation longer by 1 minute. Adding more can be
useful only for debugging purposes. The double RealHP<2> type is by default listed here to allow
exploring the higher precision types from python. Also please note that mpmath supports only one
precision at a time. Having different mpmath variables with different precision is poorly supported,
albeit mpmath authors promise to improve that in the future. Fortunately this is not a big problem
for Yade users because the general goal here is to allow more precise calculations in the critical
sections of C++ code, not in python. This problem is partially mitigated by changing mpmath
precision each time when a C++ � python conversion occurs. So one should keep in mind that the
variable mpmath.mp.dps always reflects the precision used by latest conversion performed, even if
that conversion took place in GUI (not in the running script). Existing mpmath variables are not
truncated to lower precision, their extra digits are simply ignored until mpmath.mp.dps is increased
again, however the truncation might occur during assignment.

On some occasions it is useful to have an intuitive up-conversion between C++ types of different pre-
cisions, say for example to add RealHP<1> to RealHP<2> type. The file UpconversionOfBasicOperator-
sHP.hpp serves this purpose. This header is not included by default, because more often than not,
adding such two different types will be a mistake (efficiency–wise) and compiler will catch them and
complain. After including this header this operation will become possible and the resultant type of such
operation will be always the higher precision of the two types used. This file should be included only in
.cpp files. If it was included in any .hpp file then it could pose problems with C++ type safety and will
have unexpected consequences. An example usage of this header is in the following test routine.

Warning: Trying to use N unregistered in YADE_MINIEIGEN_HP for a Vector3rHP<N> type inside the
YADE_CLASS_BASE_DOC_ATTRS_* macro to export it to python will not work. Only these N listed in
YADE_MINIEIGEN_HP will work. However it is safe (and intended) to use these from YADE_EIGENCGAL_-
HP in the C++ calculations in critical sections of code, without exporting them to python.

1576 Chapter 5. Performance enhancements

https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/RealHP.hpp#L100
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathEigenTypes.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/base/AliasCGAL.hpp
https://gitlab.com/yade-dev/trunk/blob/39a9a8c975a640dca6217355894c1c3b44963ecb/lib/high-precision/RealHPConfig.hpp#L15
https://en.cppreference.com/w/cpp/language/constraints
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/RealHPEigenCgal.hpp
http://mpmath.org/doc/current/basics.html#temporarily-changing-the-precision
http://mpmath.org/doc/current/basics.html#temporarily-changing-the-precision
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/lib/high-precision/ToFromPythonConverter.hpp#L32
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/lib/high-precision/ToFromPythonConverter.hpp#L32
https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/UpconversionOfBasicOperatorsHP.hpp#L134
https://gitlab.com/yade-dev/trunk/blob/26bffeb7ef4fd0d15e4faa025f68f97381621f04/lib/high-precision/UpconversionOfBasicOperatorsHP.hpp#L134
https://gitlab.com/yade-dev/trunk/blob/61fc7f208027344e27dc832052b3f8c911a5909e/py/high-precision/_math.cpp#L909

Yade Documentation, Release 3rd ed.

5.4.4 Compatibility

Python

To declare python variables with Real and RealHP<N> precision use functions math.Real(…),
math.Real1(…), math.Real2(…). Supported are precisions listed in YADE_MINIEIGEN_HP, but please note
the mpmath-conversion-restrictions.

Python has native support for high precision types using mpmath package. Old Yade scripts that use
supported modules can be immediately converted to high precision by switching to yade.minieigenHP.
In order to do so, the following line:

from minieigen import *

has to be replaced with:

from yade.minieigenHP import *

Respectively import minieigen has to be replaced with import yade.minieigenHP as minieigen, the
old name as minieigen being used only for the sake of backward compatibility. Then high precision
(binary compatible) version of minieigen is used when non double type is used as Real.

The RealHP<N> higher precision vectors and matrices can be accessed in python by using the .HPnmodule
scope. For example:

import yade.minieigenHP as mne
mne.HP2.Vector3(1,2,3) # produces Vector3 using RealHP<2> precision
mne.Vector3(1,2,3) # without using HPn module scope it defaults to RealHP<1>

The respective math functions such as:

import yade.math as mth
mth.HP2.sqrt(2) # produces square root of 2 using RealHP<2> precision
mth.sqrt(2) # without using HPn module scope it defaults to RealHP<1>

are supported as well and work by using the respective C++ function calls, which is usually faster than
the mpmath functions.

Warning: There may be still some parts of python code that were not migrated to high precision
and may not work well with mpmath module. See debugging section for details.

C++

Before introducing high precision it was assumed that Real is actually a POD double type. It was
possible to use memset(…), memcpy(…) and similar functions on double. This was not a good approach
and even some compiler #pragma commands were used to silence the compilation warnings. To make
Real work with other types, this assumption had to be removed. A single memcpy(…) still remains in file
openmp-accu.hpp and will have to be removed. In future development such raw memory access functions
are to be avoided.

All remaining double were replaced with Real and any attempts to use double type in the code will fail
in the gitlab-CI pipeline.

Mathematical functions of all high precision types are wrapped using file MathFunctions.hpp, these are
the inline redirections to respective functions of the type that Yade is currently being compiled with. The
code will not pass the pipeline checks if std:: is used. All functions that take Real argument should
now call these functions in yade::math:: namespace. Functions which take only Real arguments may
omit math:: specifier and use ADL instead. Examples:

5.4. High precision calculations 1577

https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ToFromPythonConverter.hpp
https://en.cppreference.com/w/cpp/named_req/PODType
https://gitlab.com/yade-dev/trunk/-/merge_requests/381
https://gitlab.com/yade-dev/trunk/blob/de696763ea3ab8a88136976fb4d11eb3bd79fcbc/lib/base/openmp-accu.hpp#L42
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathFunctions.hpp
https://en.cppreference.com/w/cpp/language/adl

Yade Documentation, Release 3rd ed.

1. Call to std::min(a,b) is replaced with math::min(a,b), because a or b may be int (non Real)
therefore math:: is necessary.

2. Call to std::sqrt(a) can be replaced with either sqrt(a) or math::sqrt(a) thanks to ADL,
because a is always Real.

If a new mathematical function is needed it has to be added in the following places:

1. lib/high-precision/MathFunctions.hpp or lib/high-precision/MathComplexFunctions.hpp or
lib/high-precision/MathSpecialFunctions.hpp, depending on function type.

2. py/high-precision/_math.cpp, see math module for details.

3. py/tests/testMath.py

4. py/tests/testMathHelper.py

The tests for a new function are to be added in py/tests/testMath.py in one of these functions:
oneArgMathCheck(…):, twoArgMathCheck(…):, threeArgMathCheck(…):. A table of approximate ex-
pected error tolerances in self.defaultTolerances is to be supplemented as well. To determine toler-
ances with better confidence it is recommended to temporarily increase number of tests in the test loop.
To determine tolerances for currently implemented functions a range(1000000) in the loop was used.

Note: When passing arguments in C++ in function calls it is preferred to use const Real& rather than
to make a copy of the argument as Real. The reason is following: in non high-precision regular case both
the double type and the reference have 8 bytes. However float128 is 16 bytes large, while its reference
is still only 8 bytes. So for regular precision, there is no difference. For all higher precision types it
is beneficial to use const Real& as the function argument. Also for const Vector3r& arguments the
speed gain is larger, even without high precision.

Using higher precisions in C++

As mentioned above RealHP<1> is the Real type and every higher number is a multiplier of the Real
precision. RealHP<2> is twice the precision of RealHP<1>, RealHP<4> is quadruple precision and so on. In
C++ you have access to these higher precision typedefs at all time, so it is possible to write some critical
part of an algorithm in higher precision by declaring the respective variables to be of type RealHP<2> or
RealHP<4> or higher.

String conversions

On the python side it is recommended to use math.Real(…) math.Real1(…), or math.toHP1(…) to declare
python variables and math.radiansHP1(…) to convert angles to radians using full Pi precision.

On the C++ side it is recommended to use yade::math::toString(…) and yade::math::fromStringReal(…)
conversion functions instead of boost::lexical_cast<std::string>(…). The toString and its high
precision version toStringHP functions (in file RealIO.hpp) guarantee full precision during conversion.
It is important to note that std::to_string does not guarantee this and boost::lexical_cast does
not guarantee this either.

For higher precision types it is possible to control in runtime the precision of C++ � python during the
RealHP<N> string conversion by changing the math.RealHPConfig.extraStringDigits10 static parameter.
Each decimal digit needs log10(2) ≈ 3.3219 bits. The std::numeric_limits<Real>::digits10 provides
information about how many decimal digits are completely determined by binary representation, meaning
that these digits are absolutely correct. However to convert back to binary more decimal digits are
necessary because log2(10) ≈ 0.3010299 decimal digits are used by each bit, and the last digit from
std::numeric_limits<Real>::digits10 is not sufficient. In general 3 or more in extraStringDigits10
is enough to have an always working number round tripping. However if one wants to only extract
results from python, without feeding them back in to continue calculations then a smaller value of
extraStringDigits10 is recommended, like 0 or 1, to avoid a fake sense of having more precision, when
it’s not there: these extra decimal digits are not correct in decimal sense. They are only there to have

1578 Chapter 5. Performance enhancements

https://en.cppreference.com/w/cpp/language/adl
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathFunctions.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathComplexFunctions.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathSpecialFunctions.hpp
https://gitlab.com/yade-dev/trunk/blob/master/py/high-precision/_math.cpp
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMathHelper.py
https://gitlab.com/yade-dev/trunk/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/py/tests/testMath.py#L593
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/lib/high-precision/RealIO.hpp#L78
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/lib/high-precision/RealIO.hpp#L80
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/lib/high-precision/RealIO.hpp#L37
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/RealIO.hpp
https://en.cppreference.com/w/cpp/string/basic_string/to_string
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_lexical_cast.html

Yade Documentation, Release 3rd ed.

working number round tripping. See also a short discussion about this with boost developers. Also see
file RealHPConfig.cpp for more details.

Note: The parameter extraStringDigits10 does not affect double conversions, because
boost::python uses an internal converter for this particular type. It might be changed in the future if
the need arises. E.g. using a class similar to ThinRealWrapper.

It is important to note that creating higher types such as RealHP<2> from string representation of
RealHP<1> is ambiguous. Consider following example:

import yade.math as mth

mth.HP1.getDecomposedReal(1.23)['bits']
Out[2]: '10011101011100001010001111010111000010100011110101110'

mth.HP2.getDecomposedReal('1.23')['bits'] # passing the same arg in decimal format␣
↪→to HP2 produces nonzero bits after the first 53 bits of HP1
Out[3]:
↪→'10011101011100001010001111010111000010100011110101110000101000111101011100001010001111010111000010100011110101110
↪→'

mth.HP2.getDecomposedReal(mth.HP1.toHP2(1.23))['bits'] # it is possible to use yade.
↪→math.HPn.toHPm(…) conversion, which preserves binary representation
Out[4]:
↪→'1001110101110000101000111101011100001010001111010111000
↪→'

Which of these two RealHP<2> binary representations is more desirable depends on what is needed:

1. The best binary approximation of a 1.23 decimal.

2. Reproducing the 53 binary bits of that number into a higher precision to continue the calculations
on the same number which was previously in lower precision.

To achieve 1. simply pass the argument '1.23' as string. To achieve 2. use math.HPn.toHPm(…) or
math.Realn(…) conversion, which maintains binary fidelity using a single static_cast<RealHP<m>>(…).
Similar problem is discussed in mpmath and boost documentation.

The difference between toHPn and Realn is following: the functions HPn.toHPm create a m × n matrix
converting from RealHP<n> to RealHP<m>. When n < m then extra bits are set to zero (case 2 above,
depending on what is required one might say that “precision loss occurs”). The functions math.Real(…),
math.Real1(…), math.Real2(…) are aliases to the diagonal of this matrix (case 1 above, depending on
what is required one might say that “no conversion loss occurs” when using them).

Hint: All RealHP<N> function arguments that are of type higher than double can also accept decimal
strings. This allows to preserve precision above python default floating point precision.

Warning: On the contrary all the function arguments that are of type double can not accept
decimal strings. To mitigate that one can use toHPn(…) converters with string arguments.

Hint: To make debugging of this problem easier the function math.toHP1(…) will raise RuntimeError
if the argument is a python float (not a decimal string).

5.4. High precision calculations 1579

https://github.com/boostorg/multiprecision/pull/249
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/RealHPConfig.cpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ThinRealWrapper.hpp
https://gitlab.com/yade-dev/trunk/blob/e9f92ab12791fdd27b24989/py/high-precision/_RealHPDiagnostics.cpp#L215
http://mpmath.org/doc/current/basics.html#providing-correct-input
https://www.boost.org/doc/libs/1_73_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/fp_eg/caveats.html
https://gitlab.com/yade-dev/trunk/blob/3c49f39078e5b82cf6522b7e8651d40895aac8ef/py/high-precision/math.py#L98

Yade Documentation, Release 3rd ed.

Warning: I cannot stress this problem enough, please try running yade --check (or yade ./
checkGravityRungeKuttaCashKarp54.py) in precision different than double after changing this line
into g = -9.81. In this (particular and simple) case the getCurrentPos() function fails on the
python side because low-precision g is multiplied by high-precision t.

Complex types

Complex numbers are supported as well. All standard C++ functions are available in lib/high-
precision/MathComplexFunctions.hpp and also are exported to python in py/high-precision/_math.cpp.
There is a cmake compilation option ENABLE_COMPLEX_MP which enables using better complex types from
boost::multiprecision library for representing ComplexHP<N> family of types: complex128, mpc_-
complex, cpp_complex and complex_adaptor. It is ON by default whenever possible: for boost version
>= 1.71. For older boost the ComplexHP<N> types are represented by std::complex<RealHP<N>> in-
stead, which has larger numerical errors in some mathematical functions.

When using the ENABLE_COMPLEX_MP=ON (default) the previously mentioned lib/high-
precision/UpconversionOfBasicOperatorsHP.hpp is not functional for complex types, it is a reported
problem with the boost library.

When using MPFR type, the libmpc-dev package has to be installed (mentioned above).

Eigen and CGAL

Eigen and CGAL libraries have native high precision support.

• All declarations required by Eigen are provided in files EigenNumTraits.hpp and MathEigen-
Types.hpp

• All declarations required by CGAL are provided in files CgalNumTraits.hpp and AliasCGAL.hpp

VTK

Since VTK is only used to record results for later viewing in other software, such as paraview, the record-
ing of all decimal places does not seem to be necessary (for now). Hence all recording commands in C++
convert Real type down to double using static_cast<double> command. This has been implemented
via classes vtkPointsReal, vtkTransformReal and vtkDoubleArrayFromReal in file VTKCompatibil-
ity.hpp. Maybe VTK in the future will support non double types. If that will be needed, the interface
can be updated there.

LAPACK

Lapack is an external library which only supports double type. Since it is not templatized it is not
possible to use it with Real type. Current solution is to down-convert arguments to double upon
calling linear equation solver (and other functions), then convert them back to Real. This temporary
solution omits all benefits of high precision, so in the future Lapack is to be replaced with Eigen or other
templatized libraries which support arbitrary floating point types.

1580 Chapter 5. Performance enhancements

https://gitlab.com/yade-dev/trunk/blob/e9f92ab12791fdd27b24989/scripts/checks-and-tests/checks/checkGravityRungeKuttaCashKarp54.py#L32
https://gitlab.com/yade-dev/trunk/blob/e9f92ab12791fdd27b24989/scripts/checks-and-tests/checks/checkGravityRungeKuttaCashKarp54.py#L102
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathComplexFunctions.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathComplexFunctions.hpp
https://gitlab.com/yade-dev/trunk/blob/master/py/high-precision/_math.cpp
https://www.boost.org/doc/libs/1_77_0/libs/multiprecision/doc/html/boost_multiprecision/tut/complex.html
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/UpconversionOfBasicOperatorsHP.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/UpconversionOfBasicOperatorsHP.hpp
https://github.com/boostorg/multiprecision/issues/363
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathEigenTypes.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/MathEigenTypes.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/base/AliasCGAL.hpp
https://www.paraview.org/
https://gitlab.com/yade-dev/trunk/blob/master/lib/compatibility/VTKCompatibility.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/compatibility/VTKCompatibility.hpp
https://gitlab.com/yade-dev/trunk/-/merge_requests/379

Yade Documentation, Release 3rd ed.

5.4.5 Debugging

High precision is still in the experimental stages of implementation. Some errors may occur during use.
Not all of these errors are caught by the checks and tests. Following examples may be instructive:

1. Trying to use const references to Vector3r members - a type of problem with results in a segmen-
tation fault during runtime.

2. A part of python code does not cooperate with mpmath - the checks and tests do not cover all
lines of the python code (yet), so more errors like this one are expected. The solution is to put
the non compliant python functions into py/high-precision/math.py. Then replace original calls to
this function with function in yade.math, e.g. numpy.linspace(…) is replaced with yade.math.
linspace(…).

The most flexibility in debugging is with the long double type, because special files ThinRealWrap-
per.hpp, ThinComplexWrapper.hpp were written for that. They are implemented with boost::operators,
using partially ordered field. Note that they do not provide operator++.

A couple of #defines were introduced in these two files to help debugging more difficult problems:

1. YADE_IGNORE_IEEE_INFINITY_NAN - it can be used to detect all occurrences when NaN or Inf are
used. Also it is recommended to use this define when compiling Yade with -Ofast flag, without
-fno-associative-math -fno-finite-math-only -fsigned-zeros

2. YADE_WRAPPER_THROW_ON_NAN_INF_REAL, YADE_WRAPPER_THROW_ON_NAN_INF_COMPLEX - can be
useful for debugging when calculations go all wrong for unknown reason.

Also refer to address sanitizer section, as it is most useful for debugging in many cases.

Hint: If crash is inside a macro, for example YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY, it is useful to know
where inside this macro the problem happens. For this purpose it is possible to use g++ preprocessor to
remove the macro and then compile the postprocessed code without the macro. Invoke the preprocessor
with some variation of this command:

g++ -E -P core/Body.hpp -I ./ -I /usr/include/eigen3 -I /usr/include/python3.7m > /
↪→tmp/Body.hpp

Maybe use clang-format so that this file is more readable:

./scripts/clang-formatter.sh /tmp/Body.hpp

Be careful because such files tend to be large and clang-format is slow. So sometimes it is more useful
to only use the last part of the file, where the macro was postprocessed. Then replace the macro in the
original file in question, and then continue debugging. But this time it will be revealed where inside a
macro the problem occurs.

Note: When asking questions about High Precision it is recommended to start the question title with
[RealHP].

5.4. High precision calculations 1581

https://gitlab.com/yade-dev/trunk/-/merge_requests/406
https://gitlab.com/yade-dev/trunk/-/merge_requests/414
https://gitlab.com/yade-dev/trunk/blob/master/py/high-precision/math.py
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ThinRealWrapper.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ThinRealWrapper.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ThinComplexWrapper.hpp
https://www.boost.org/doc/libs/1_72_0/libs/utility/operators.htm
https://www.boost.org/doc/libs/1_72_0/libs/utility/operators.htm#ordered_field_operators1
https://gitlab.com/yade-dev/trunk/-/merge_requests/407

Yade Documentation, Release 3rd ed.

1582 Chapter 5. Performance enhancements

Chapter 6

Short-courses

6.1 THM short-course

This tutorial was used by Bruno Chareyre and Robert Caulk to help teach the 3-day Thermo-Hydro-
Mechanical coupling short-course in Amsterdam on June 20, 2022.

Slides and other supplementary material can be downloaded here.

Meanwhile, the following hands-on guides are designed to be followed sequentially by someone who is
unfamiliar with Python and Yade:

6.1.1 Installing Yade (for Windows and Mac users)

In preparation for the THM short-course, we ask the participants to have a Linux Debian distribution
installed on their laptop prior to arrival.

If you already have a debian distribution on your laptop, please follow the installation instructions on
our website.

If you do not have a debian distribution on your laptop, you have three ways to get one:

Easiest way - Use our premade Virtual Machine (Windows)

We created a full debian machine preloaded with Yade + Paraview + Kate. You can install this easily
with the following steps:

1. Download and install VirtualBox for your OS.

2. Download this yade_machine.ova file (this step may take a few minutes, so please be patient. The
file is 6 gb.)

3. Open VirtualBox and click “Tools>Import”

4. Locate the ‘yade_machine.ova’ file that you downloaded, and click “Next”

5. Edit the system properties to suit your needs. Set the CPU count to half of your laptop CPUs and
the RAM to half of your total laptop RAM.

6. Click “Import” on bottom right.

7. Start the machine and it should bring you into the Ubuntu desktop where you can open a new
terminal (Ctrl-alt-T) and type

yadedaily --version

1583

http://yade-dem.org/publi/YadeCourseAmsterdam2022/
https://yade-dem.org/doc/installation.html#packages
https://yade-dem.org/doc/installation.html#packages
https://www.virtualbox.org/wiki/Downloads
https://u.pcloud.link/publink/show?code=XZWvTHVZPlgEiVh0iELW8ifMCGU8J0qivdHX

Yade Documentation, Release 3rd ed.

To test that yade is already installed and ready to go.

Login details (feel free to change these as soon as you are into your new VM): user: yadeuser password:
yadeuser

Less easy way - Create your own Virtual Machine (MacOS)

This is if the direction above do not work for you. The end result is the same.

1. Download and install VirtualBox for your OS

2. Download the Ubuntu 20.04 image

3. Open VirtualBox and select “Machine>New…”

4. Select “Type” as “Linux” and “Version” as “Ubuntu (64-bit)” (If you do not see Ubuntu 64-bit,
contact me directly for assistance).

5. Select at least 4gb of ram (preferably 8gb), Select “Create a virtual hard disk now”

6. Name the machine and then click “Create”

7. Choose 20-30gb of storage, leave the remaining options as default.

8. Click “create”

9. Click “Start” and then find the Ubuntu 20.04 .iso that you downloaded from Step 2.

10. Follow the installation instructions (this will take some time depending on your HDD speed)

11. Once Ubuntu is fully installed and you are inside the machine, go ahead and install yade by opening
a terminal (Ctrl-alt-T to open a new terminal).

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ focal main" >> /etc/apt/
↪→sources.list.d/yadedaily.list'
wget -O - http://www.yade-dem.org/packages/yadedev_pub.gpg | sudo tee /etc/apt/
↪→trusted.gpg.d/yadedaily.asc
sudo apt-get update
sudo apt-get install yadedaily

1. Download and install Paraview.

You are all set!

Hard way - Dual Boot (MacOS or Windows)

Find instructions here

6.1.2 Introduction to Bash and Python

Terminal

The terminal is a shell designed to let us interact with the computer and its filing system with a basic
set of commands:

user@machine:~$ # user operating at machine, in the directory␣
↪→~ (= user's home directory)
user@machine:~$ ls . # list contents of the current directory
user@machine:~$ ls foo # list contents of directory foo, relative to␣
↪→the dcurrent directory ~ (= ls ~/foo = ls /home/user/foo)
user@machine:~$ ls /tmp # list contents of /tmp
user@machine:~$ cd foo # change directory to foo

(continues on next page)

1584 Chapter 6. Short-courses

https://www.virtualbox.org/wiki/Downloads
https://releases.ubuntu.com/20.04.4/?_ga=2.37188649.861267526.1652781821-22456328.1652781821
https://opensource.com/article/18/5/dual-boot-linux

Yade Documentation, Release 3rd ed.

(continued from previous page)

user@machine:~/foo$ ls ~ # list home directory (= ls /home/user)
user@machine:~/foo$ cd bar # change to bar (= cd ~/foo/bar)
user@machine:~/foo/bar$ cd ../../foo2 # go to the parent directory twice, then to␣
↪→foo2 (cd ~/foo/bar/../../foo2 = cd ~/foo2 = cd /home/user/foo2)
user@machine:~/foo2$ cd # go to the home directory (= ls ~ = ls /home/
↪→user)
user@machine:~$

Keys

Useful keys on the command-line are:

<tab> show possible completions of what is being typed (use abundantly!)
^C (=Ctrl+C) delete current line
^D exit the shell
↑↓ move up and down in the command history
^C interrupt currently running program
^\ kill currently running program
Shift-PgUp scroll the screen up (show past output)
Shift-PgDown scroll the screen down (show future output; works only on quantum computers)

Starting yade

If yade is installed on the machine, it can be (roughly speaking) run as any other program; without any
arguments, it runs in the “dialog mode”, where a command-line is presented:

user@machine:~$ yade
Welcome to Yade 2022.01a
TCP python prompt on localhost:9002, auth cookie `adcusk'
XMLRPC info provider on http://localhost:21002
[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9␣
↪→generator, F8 plot.]]
Yade [1]: #### hit ^D to exit
Do you really want to exit ([y]/n)?
Yade: normal exit.

The command-line is in fact python, enriched with some yade-specific features. (Pure python interpreter
can be run with python or ipython commands).

Instead of typing commands one-by-one on the command line, they can be be written in a file (with the
.py extension) and given as argument to Yade:

user@machine:~$ yade simulation.py

For a complete help, see man yade

6.1. THM short-course 1585

Yade Documentation, Release 3rd ed.

Exercises

1. Open the terminal, navigate to your home directory

2. Create a new empty file and save it in ~/first.py

3. Change directory to /tmp; delete the file ~/first.py

4. Run program xeyes

5. Look at the help of Yade.

6. Look at the manual page of Yade

7. Run Yade, exit and run it again.

Yade basics

Yade objects are constructed in the following manner (this process is also called “instantiation”, since we
create concrete instances of abstract classes: one individual sphere is an instance of the abstract Sphere,
like Socrates is an instance of “man”):

Yade [1]: Sphere # try also Sphere?
Out[1]: yade.wrapper.Sphere

Yade [2]: s=Sphere() # create a Sphere, without specifying any attributes

Yade [3]: s.radius # 'nan' is a special value meaning "not a number" (i.e.␣
↪→not defined)
Out[3]: nan

Yade [4]: s.radius=2 # set radius of an existing object

Yade [5]: s.radius
Out[5]: 2.0

Yade [6]: ss=Sphere(radius=3) # create Sphere, giving radius directly

Yade [7]: s.radius, ss.radius # also try typing s.<tab> to see defined attributes
Out[7]: (2.0, 3.0)

Particles

Particles are the “data” component of simulation; they are the objects that will undergo some processes,
though do not define those processes yet.

Singles

There is a number of pre-defined functions to create particles of certain type; in order to create a sphere,
one has to (see the source of utils.sphere for instance):

1. Create Body

2. Set Body.shape to be an instance of Sphere with some given radius

3. Set Body.material (last-defined material is used, otherwise a default material is created)

4. Set position and orientation in Body.state, compute mass and moment of inertia based on Material
and Shape

1586 Chapter 6. Short-courses

Yade Documentation, Release 3rd ed.

In order to avoid such tasks, shorthand functions are defined in the utils module; to mention a few of
them, they are utils.sphere, utils.facet, utils.wall.

Yade [8]: s=utils.sphere((0,0,0),radius=1) # create sphere particle centered at (0,
↪→0,0) with radius=1

Yade [9]: s.shape # s.shape describes the geometry of the␣
↪→particle
Out[9]: <Sphere instance at 0x49f9b20>

Yade [10]: s.shape.radius # we already know the Sphere class
Out[10]: 1.0

Yade [11]: s.state.mass, s.state.inertia # inertia is computed from density and␣
↪→geometry
Out[11]:
(4188.790204786391,
Vector3(1675.516081914556253,1675.516081914556253,1675.516081914556253))

Yade [12]: s.state.pos # position is the one we prescribed
Out[12]: Vector3(0,0,0)

Yade [13]: s2=utils.sphere((-2,0,0),radius=1,fixed=True) # explanation below

In the last example, the particle was fixed in space by the fixed=True parameter to utils.sphere; such a
particle will not move, creating a primitive boundary condition.

A particle object is not yet part of the simulation; in order to do so, a special function O.bodies.append
(also see Omega::bodies and Scene) is called:

Yade [14]: O.bodies.append(s) # adds particle s to the simulation; returns␣
↪→id of the particle(s) added
Out[14]: 0

Packs

There are functions to generate a specific arrangement of particles in the pack module; for instance, cloud
(random loose packing) of spheres can be generated with the pack.SpherePack class:

Yade [15]: from yade import pack

Yade [16]: sp=pack.SpherePack() # create an empty cloud; SpherePack␣
↪→contains only geometrical information

Yade [17]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2) # put spheres with defined radius␣
↪→inside box given by corners (1,1,1) and (2,2,2)
Out[17]: 5

Yade [18]: for c,r in sp: print(c,r) # print center and radius of all␣
↪→particles (SpherePack is a sequence which can be iterated over)

....:
Vector3(1.660211732982437294,1.497399190658756707,1.350329208151807014) 0.2
Vector3(1.229150973706984562,1.376343019256617062,1.241349292784831526) 0.2
Vector3(1.415141853894400947,1.415283156760315686,1.70251911544097001) 0.2
Vector3(1.21003785956760912,1.782208073996769837,1.464623515495137251) 0.2
Vector3(1.698011353283978231,1.695479953201884049,1.789003021217048461) 0.2

(continues on next page)

6.1. THM short-course 1587

Yade Documentation, Release 3rd ed.

(continued from previous page)

Yade [19]: sp.toSimulation() # create particles and add them to␣
↪→the simulation
Out[19]: [1, 2, 3, 4, 5]

Boundaries

utils.facet (triangle Facet) and utils.wall (infinite axes-aligned plane Wall) geometries are typically used
to define boundaries. For instance, a “floor” for the simulation can be created like this:

Yade [20]: O.bodies.append(utils.wall(-1,axis=2))
Out[20]: 6

There are other conveinence functions (like utils.facetBox for creating closed or open rectangular box, or
family of ymport functions)

Look inside

The simulation can be inspected in several ways. All data can be accessed from python directly:

Yade [21]: len(O.bodies)
Out[21]: 7

Yade [22]: O.bodies[10].shape.radius # radius of body #10 (will give error if not␣
↪→sphere, since only spheres have radius defined)
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[22], line 1[0m
[0;32m----> 1[0m [43mO[49m[38;5;241;43m.[39;49m[43mbodies[49m[43m[[49m[38;5;241;
↪→43m10[39;49m[43m][49m[38;5;241m.[39mshape[38;5;241m.[39mradius [38;5;66;03m#␣
↪→radius of body #10 (will give error if not sphere, since only spheres have radius␣
↪→defined)[39;00m

[0;31mIndexError[0m: Body id out of range.

Yade [23]: O.bodies[12].state.pos # position of body #12
[0;31m---[0m
[0;31mIndexError[0m Traceback (most recent call last)
Cell [0;32mIn[23], line 1[0m
[0;32m----> 1[0m [43mO[49m[38;5;241;43m.[39;49m[43mbodies[49m[43m[[49m[38;5;241;
↪→43m12[39;49m[43m][49m[38;5;241m.[39mstate[38;5;241m.[39mpos [38;5;66;03m#␣
↪→position of body #12[39;00m

[0;31mIndexError[0m: Body id out of range.

Besides that, Yade says this at startup (the line preceding the command-line):

[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9␣
↪→generator, F8 plot.]]

Controller
Pressing F12 brings up a window for controlling the simulation. Although typically no human
intervention is done in large simulations (which run “headless”, without any graphical interaction),
it can be handy in small examples. There are basic information on the simulation (will be used
later).

1588 Chapter 6. Short-courses

Yade Documentation, Release 3rd ed.

3d view
The 3d view can be opened with F11 (or by clicking on button in the Controller – see below).
There is a number of keyboard shortcuts to manipulate it (press h to get basic help), and it can
be moved, rotated and zoomed using mouse. Display-related settings can be set in the “Display”
tab of the controller (such as whether particles are drawn).

Inspector
Inspector is opened by clicking on the appropriate button in the Controller. It shows (and updates)
internal data of the current simulation. In particular, one can have a look at engines, particles
(Bodies) and interactions (Interactions). Clicking at each of the attribute names links to the
appropriate section in the documentation.

Engines

Engines define processes undertaken by particles. As we know from the theoretical introduction, the
sequence of engines is called simulation loop. Let us define a simple interaction loop:

Yade [24]: O.engines=[# newlines and indentations are not␣
↪→important until the brace is closed

....: ForceResetter(),

....: InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Wall_Aabb()]),

....: InteractionLoop(# dtto for the parenthesis here

....: [Ig2_Sphere_Sphere_ScGeom(),Ig2_Wall_Sphere_ScGeom()],

....: [Ip2_FrictMat_FrictMat_FrictPhys()],

....: [Law2_ScGeom_FrictPhys_CundallStrack()]

....:),

....: NewtonIntegrator(damping=.2,label='newtonCustomLabel') # define a␣
↪→label newtonCustomLabel under which we can access this engine easily

....:]

....:

Yade [25]: O.engines
Out[25]:
[<ForceResetter instance at 0x496f810>,
<InsertionSortCollider instance at 0x4acb1f0>,
<InteractionLoop instance at 0x496ed90>,
<NewtonIntegrator instance at 0x4cc1100>]

Yade [26]: O.engines[-1]==newtonCustomLabel # is it the same object?
Out[26]: True

Yade [27]: newtonCustomLabel.damping
Out[27]: 0.2

Instead of typing everything into the command-line, one can describe simulation in a file (script) and
then run yade with that file as an argument. We will therefore no longer show the command-line unless
necessary; instead, only the script part will be shown. Like this:

O.engines=[# newlines and indentations are not important until the␣
↪→brace is closed

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Wall_Aabb()]),
InteractionLoop(# dtto for the parenthesis here

[Ig2_Sphere_Sphere_ScGeom(),Ig2_Wall_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
GravityEngine(gravity=(0,0,-9.81)), # 9.81 is the gravity␣

(continues on next page)

6.1. THM short-course 1589

Yade Documentation, Release 3rd ed.

(continued from previous page)

↪→acceleration, and we say that
NewtonIntegrator(damping=.2,label='newtonCustomLabel') # define a label under␣

↪→which we can access this engine easily
]

Besides engines being run, it is likewise important to define how often they will run. Some engines can
run only sometimes (we will see this later), while most of them will run always; the time between two
successive runs of engines is timestep (∆t). There is a mathematical limit on the timestep value, called
critical timestep, which is computed from properties of particles. Since there is a function for that, we
can just set timestep using utils.PWaveTimeStep:

O.dt=utils.PWaveTimeStep()

Each time when the simulation loop finishes, time O.time is advanced by the timestep O.dt:

Yade [28]: O.dt=0.01

Yade [29]: O.time
Out[29]: 0.0

Yade [30]: O.step()

Yade [31]: O.time
Out[31]: 0.01

For experimenting with a single simulations, it is handy to save it to memory; this can be achieved, once
everything is defined, with:

O.saveTmp()

6.1.3 Day 1 - Yade Hands-on part 1

Let’s create a bouncing sphere

First we need to define a material for our sphere:

Start by defining a material
O.materials.append(FrictMat(young=1.0e9, poisson=0.2, density=2500, label='frictmat'))

O is our scene, it contains all the information that we need to run a DEM simulation. We can edit various
components of the scene such as materials here. We use the python function .append() to add this
material to the existing list of materials inside Python.

The FrictMat is a type of material available in Yade. Yade boasts a wide variety of materials such as
CohFrictMat. These materials all have different constitutive laws associated with them. For now we
stick with the simplest one, FrictMat.

Next, we need to create two spheres by appending two bodies to our scene, O:

O.bodies.append(
[
fixed: particle's position in space will not change (support)
sphere(center=(0, 0, 0), radius=.5, fixed=True),
this particles is free, subject to dynamics
sphere((0, 0, 2), .5)
]

)

1590 Chapter 6. Short-courses

https://www.yade-dem.org/doc//yade.wrapper.html#yade.wrapper.Material

Yade Documentation, Release 3rd ed.

We see that we appended a sphere to the scene by designating its center and radius. Yade has a variety
of shapes that can be appended as bodies such as Facet, Box, and others.

Now it is time to define how these spheres should move. The scene O has an “engines” list in O.engines
which is a list of actions that are taken for each iteration in our simulation.

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom()], # collision geometry
[Ip2_FrictMat_FrictMat_FrictPhys()], # collision "physics"
[Law2_ScGeom_FrictPhys_CundallStrack()] # contact law -- apply forces

),
Apply gravity force to particles. damping: numerical dissipation of energy.
NewtonIntegrator(gravity=(0, 0, -9.81), damping=0.1)

]

Some of this may look foreign to you, but there is a logic to it. The ForceResetter() resets all forces
stored in the scene, InsertionSortCollider is simply creating a sorted list of possible body interac-
tions. InteractionLoop() is where we assign the interaction geometry (Ig2_Sphere_Sphere_ScGeom())
which conveniently matches our appended body shape (Sphere), the collision physics Ip2_FrictMat_-
FrictMat_FrictPhys() conveniently matches our material assignment (FrictMat). Finally, the con-
stitutive law is defined with Law2_ScGeom_FrictPhys_CundallStrack(), so we are using the classical
CundallStrack contact law here. The timeintegration occurs in the last component NewtonIntegrator
where we can add a gravitational force and damping.

Although we have already added our material, body, and engines to the scene, we should still take care
to define the time step in O.dt:

O.dt = .5 * PWaveTimeStep()

Where the PWaveTimeStep() automatically estimates the critical time step associated with the stiffness
of the packing. We factor that down by 1/2 to be safe, since it is but an estimate.

Starting the Script

Now that we have the full script written for our bouncing ball, it is time to start it by executing:

yade bouncing_sphere.py

in our terminal.

6.1.4 Day 1 - Yade Hands-on part 2

Building a rotating-drum

We know where to start:

angularVelocity = 2 #

Steel = O.materials.append(FrictMat(young=210e9, poisson=0.2, density=7200, label=
↪→'Steel'))
M1 = O.materials.append(FrictMat(young=1.0e9, poisson=0.2, density=2500, label='M1'))

Now download the drum walls

The next step is to import the sphere and wall text files that we just downloaded:

6.1. THM short-course 1591

https://www.yade-dem.org/doc//yade.wrapper.html#shape
doc/sphinx/tutorial-short-course-rotating-drum.rst

Yade Documentation, Release 3rd ed.

from yade import ymport
facets = ymport.textFacets('Case2_Drum_Walls.txt', color=(0, 1, 0), material=Steel)
drum_ids = range(len(facets))
O.bodies.append(facets)
sp = pack.SpherePack()
sp.makeCloud(minCorner=(-0.06, -0.02, -0.06), maxCorner=(0.06, 0.02, 0.06), rMean=.
↪→004, rRelFuzz=0, num=1000)
sp.toSimulation()

Where we are using a module called ymport, which has plenty of additional functionality, to import our
facets. We are also introducing a very useful function called makeCloud which allows us to create clouds
of particles with user defined properties such as the mean radius, rMean. Our SpherePack() object has
a convenient method for sending the sphere pack to the simulation with toSimulation().

We can now define the engine list for our rotating drum:

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Facet_Aabb()], label="collider"),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_MindlinPhys()],
[Law2_ScGeom_MindlinPhys_Mindlin()],

),
NewtonIntegrator(damping=0, gravity=[0, 0, -9.81], label="newton"),
RotationEngine(

rotateAroundZero=True, zeroPoint=(0, 0, 0), rotationAxis=(0, 1, 0),␣
↪→angularVelocity=angularVelocity, ids=drum_ids, label='rotation'

),
VTKRecorder(iterPeriod=1000,fileName='Case2_drum-',recorders=['spheres','facets'],

↪→ label='vtkrecorder'),
]

We see some familiar commands as well as some unfamiliar ones here. Bo1_Facet_Aabb() and Ig2_-
Facet_Sphere_ScGeom() tell Yade that our model needs to detect collisions between our spheres and
our facets. As for the contact law, this time we will use MindlinPhys() to determine interparticle
stiffnesses for our force calculations. Again we see our familiar NewtonIntegrator() applying gravity
to our rotating drum. But now, we add a new engine calld RotationEngine() which allows us to rotate
bodies in our scene. We see some expected arguments to the function such as angularVelocity and
zeroPoint. Finally, we want to visualize the process so we are going to add what is referred to as a
VTKRecorder(). This will save vtk files to our disk so we can visualize them in Paraview later.

Let’s now set our time-step:

O.dt=0.8*PWaveTimeStep()

Here we used our familiar PWaveTimeStep() to estimate the critical step. We now need to tell the scene
that we are ready to start:

O.run()

Finally, we run it with our familiar command in the terminal (using the -j flag to indicate the number
of cores we want to run the simulation on):

yade -j4 rotating_drum.py

Note: Yade will run indefinitely since we didnt provide O.run() with a number of iterations. The user
needs to manually stop/pause when they are finished watching the simulation.

1592 Chapter 6. Short-courses

https://yade-dem.org/doc/yade.ymport.html

Yade Documentation, Release 3rd ed.

Visualizing the output files

Now that we have run our simulation and collected our vtk files using VTKRecorder(), we can now view
those files in Paraview. Start by opening Paraview (via the GUI or via command line):

Now we can click on file -> open and navigate to the folder where you saved the vtk files from the
rotating drum. Click on the spheres and facet files (hold ctrl to select multiple) and select ok from the
file dialog.

Next, we will click on the green “Apply” button on the left of the window. Now we see the drum, but it
is opaque, so we cant seee any particles on the inside. Paraview gives full control over the visualization
of the objects. For example, we change the opacity of the drum by clicking on the drum-facets in the
Pipeline Browser on the left, and then scrolling down to change the Opacity. Click on the green Play
button at the top of the window to iterate thru the steps.

We see that the particles are not the proper size, so we can fix that by clicking on the Glyph icon right
above the Pipeline Browser on the left. We can select the Glyph Type, to be sphere and the Scale Array
to be radii. It should look something like the following image:

Fig. 1: Example of a paraview pipeline.

6.1. THM short-course 1593

Yade Documentation, Release 3rd ed.

Example script

Please find a full script located in the examples folder

Today we will build a script which will simulate fluid flow through a spherical packing using Yade’s
FlowEngine.

6.1.5 Day 2 - Fluids Hands-on part 1

First let’s import the libraries and set some parameters for future tweaking:

from yade import pack

num_spheres = 1000 # number of spheres
young = 1e6
compFricDegree = 3 # initial contact friction during the confining phase
finalFricDegree = 30 # contact friction during the deviatoric loading
mn, mx = Vector3(0, 0, 0), Vector3(1, 1, 1) # corners of the initial packing

Next, we already know how to add materials and geometry:

append sphere and wall materials
O.materials.append(FrictMat(young=young, poisson=0.5,␣
↪→frictionAngle=radians(compFricDegree), density=2600, label='spheres'))
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=0, density=0,␣
↪→label='walls'))

create and append 4 walls of a cube sized to our mn, mx parameters
walls = aabbWalls([mn, mx], thickness=0, material='walls')
wallIds = O.bodies.append(walls)

use makeCloud to generate a cloud of spheres inside our mn, mx bounds
sp = pack.SpherePack()
sp.makeCloud(mn, mx, -1, 0.3333, num_spheres, False, 0.95, seed=1) #"seed" make the
↪→"random" generation always the same
sp.toSimulation(material='spheres')

These commands should all look familiar after passing the previous two tutorials. In brief, we are
appending the FrictMat material type, then we assign that material to a set of walls which we then
append to the scene with O.bodies.append(walls). Following the walls, we create and append the spheres.

Notice how we add the walls first and then we add the spheres. FlowEngine expects by default to see
the walls in the first 6 bodies (ids 0 through 5). If we need to place the walls in a different location,
we can do so but we would need to set additional parameters in the FlowEngine engine. For now, we
append the walls first.

Triaxial Stress Control

Next, we will create our TriaxialStressController (full parameter list with descriptions found here) and
set some standard parameters to it:

triax = TriaxialStressController(
internalCompaction=True,
stressMask=7,
goal1=-10000,
goal2=-10000,
goal3=-10000,

(continues on next page)

1594 Chapter 6. Short-courses

https://gitlab.com/yade-dev/trunk/-/blob/master/examples/DEM2020Benchmark/Case2_rotating_drum_openmp.py
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.TriaxialStressController

Yade Documentation, Release 3rd ed.

(continued from previous page)

maxMultiplier=1. + 2e4 / young, # spheres growing factor (fast growth)
finalMaxMultiplier=1. + 2e3 / young, # spheres growing factor (slow growth)

)

Most of these parameters are geared towards how the stress is applied and achieved inside our specimen.
internalCompaction tells TriaxialStressController() that we want the stress to be achieved by holding
the walls fixed and growing the particles until the desired stress is achieved. stressMask is an integer
between 0 and 7 which indicates the loading conditions (stress or strain, or which axis, more details
found here). stressMask = 7 tells TriaxialStressController() that we want all axes loaded to a constant
stress condition. goalX indicates the value along each of the three axes. So here we are asking for all 3
axes to achieve a constant compressive stress of -10000. maxMultiplier and finalMaxMultiplier control
how quickly the particles can grow, more details found here.

Engine list

Next, we will set up our engine list, as usual:

O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Box_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom(), Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],
label="iloop"

),
FlowEngine(dead=1, label="flow"), #introduced as a dead engine for the␣

↪→moment, see 2nd section
GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100,␣

↪→timestepSafetyCoefficient=0.8),
triax,
NewtonIntegrator(damping=0.2, label="newton")

]

This should look familiar based on the previous two tutorials we completed. In summary, we need to
ensure that Yade knows to expect collisions between our spheres and our walls (boxes), so we add the
Ig2_Sphere_Sphere_ScGeom() and the Ig2_Box_sphere_ScGeom(). Here we will stick to the classic
Cundall Strack contact law. Next we add the FlowEngine which is set to dead=1 so that we can run
some non-flow time steps before initiating our flow simulation (see below). Here we introduce a new
engine called the GlobalStiffnessTimeStepper which will automatically control the timestep during the
simulation (see more details here). We then see the placement of our predefined triax followed by the
familiar NewtonIntegrator. Our engine list now contains all the engines necessary to run a fluid-coupling
simulation in Yade.

Finding an equilibrated state

But before running and fluid simulation, we need our spheres to be in a balanced and packed state. In
order to achieve this, we can run some steps and check the unbalancedForce() while the particles grow
(remember, we set internalCompaction=True):

while 1:
O.run(1000, True)
unb = unbalancedForce()
if unb < 0.001 and abs(-10000 - triax.meanStress) / 10000 < 0.001:

break

6.1. THM short-course 1595

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.TriaxialStressController.stressMask
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.TriaxialStressController.stressMask
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.TriaxialStressController.maxMultiplier
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.GlobalStiffnessTimeStepper

Yade Documentation, Release 3rd ed.

This while loop will start by telling Yade to run 1000 iterations through our O.engines list. Next it will
check the total unbalancedForce() between all the particles. Finaly, it will ensure that the meanStress is
close to our desired stress. If the unbalanced force and mean stress are not adequate, it will repeat the
proces again until the break criteria is satisfied.

When this loop is completed, we know we have achieved a packed state, and we can check this visually
by activating the viewer:

yade.qt.View()

It is common to keep the friction low to expedite the unbalanced force phase. But once the packing is
acheived, we can simply increase the friction to match our physical properties:

setContactFriction(radians(finalFricDegree))

Setting up the FlowEngine

we are almost ready to run a fluid coupled test, but first we want to set up the FlowEngine parameters:

flow.dead = 0
boundaries
flow.bndCondIsPressure = [0, 0, 1, 1, 0, 0]
flow.bndCondValue = [0, 0, 1, 0, 0, 0]
flow.boundaryUseMaxMin = [0, 0, 0, 0, 0, 0]
permeability control
flow.permeabilityFactor = 1
flow.viscosity = 10
remeshing criteria

All these parameters, and more, can be found with full descriptions here. flow.dead = 0 tells Yade that
we now want to activate the FlowEngine. Next we set the boundary conditions using bndCondIsPressure
and bndCondValue. These tell FlowEngine whch boundaries should have a dirichlet boundary condition
and what that pressure value should be at those boundaries. boundaryUseMaxMin tells FlowEngine if
the boundary should be set automatically using max min coordinates of the bodies, or if it should use
the locations of the appended walls. We appended walls and thus set all 6 components of this array to
False (0).

Next we are setting the permeability parameters. permeabilityFactor=1 tells FlowEngine that the per-
meability between pores should be set according to the Poisseuille equation. More details associated
with this parameter can be found in the class reference. Similar to permeabilityFactor, viscosity sets the
viscosity used within the Poisseuille equation as well as the viscous forces.

Remeshing parameters

Understanding the remeshing methods in FlowEngine is integral to using the FlowEngine properly.
During our presentations, you saw how FlowEngine uses a Delauay triangulation with a Voronoi dual to
triangulate the pores. However, as the particles are moving, the mesh also needs to be re-computed since
all the geometrical information associated with each of the pores will change (which changes permeability
and force integrals). This remeshing process is expensive, so we need to find a way to remesh frequently
enough that we capture the deformation, but not too frequently that the computer spends all of its time
remeshing instead of running the simulation. We control the frequency of remeshing using the following
parameters:

flow.defTolerance = 0.3
flow.meshUpdateInterval = 200

Where the defTolerance is a value which detects the maximum volumetric deformation within the system
and triggers a remesh if the deformation is in excess of this value. Meanwhile, the meshUpdateInterval

1596 Chapter 6. Short-courses

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.FlowEngine
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.FlowEngine.permeabilityFactor

Yade Documentation, Release 3rd ed.

forces a remesh every XXX iterations (here we are asking for a new mesh every 200 iterations). Details
about these parameters can be found here.

There are a few final settings that any FlowEngine user should be made aware of:

solver
flow.useSolver = 3
manually setting the timestep
O.dt = 0.1e-3
O.dynDt = False

Here we see a useSolver parameter which tells FlowEngine which of the various solvers we want to employ
for our simulation. Both 3 and 4 are direct solvers employing a Cholesky decomposition. The difference
is that 4 is more parallelized and ready for GPU acceleration. We also set the time step here manually
with O.dt and O.dynDt = False. This is because there is currently no automated way to set a stable
timestep for FlowEngine This means the user should use trial and error to find a stable timestep since
it depends strongly on the dynamics/geometry of the simulation.

Getting the starting permeability

O.run(1, 1)
Qin = flow.getBoundaryFlux(2)
Qout = flow.getBoundaryFlux(3)
permeability = abs(Qin) / 1.e-4 #size is one, we compute K=V/�H
print("Qin=", Qin, " Qout=", Qout, " permeability=", permeability)

We employ an easy FlowEngine method called getBoundaryFlux() for obtaining fluxes into and out of
the specimen for the second and third walls in our model. We can compute the permeability here
(remembering that pressure = density * gravity * head).

Starting the oedometer

The next part will require your help, we know we need new boundary conditions for the oedometer, so
complete the bndCondIsPressure and bndCondValue entries below.

flow.bndCondIsPressure = [_, _, _, _, _, _]
flow.bndCondValue = [_, _, _, _, _, _]
flow.updateTriangulation = True #force remeshing to reflect new BC immediately
newton.damping = 0

Before we start, we need to make sure we can collect data for plotting.

def history():
plot.addData(

e22=triax.strain[_],
t=O.time,
p=flow.getPorePressure((_, _, _)),
s22=triax.stress(_)[_]

)

We can add any data collection we wish inside this function. For example, here we will collect the triaxial
strain using the strain function in our TriaxialStressController. We are also using a FlowEngine function
called getPorePressure which lets use obtain the pore pressure at any user defined cooradinate. As we’ve
mentioned before, you can find a variety of additional functions in the Yade class reference

Complete the history() function above before proceeding to the next code block.

We need Yade to call our history() function once per loop. We can do that by creating a PyRunner:

6.1. THM short-course 1597

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.FlowEngine.defTolerance
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.FlowEngine

Yade Documentation, Release 3rd ed.

O.engines = O.engines + [PyRunner(iterPeriod=200, command='history()', label='recorder
↪→')]

Here we are appending the PyRunner to our existing O.engines list. We are telling the PyRunner that
we want it to call the command history() once every 200 ierations.

Plotting live data

Yade has a module for plotting live data, the details of the ‘plot module can be found here <https:
//yade-dem.org/doc/yade.plot.html>‘_tutorial-fluids

Here is an example of how we can plot the data live:

from yade import plot
plot.plots = {'t': (('e22', 'b--'), None, ('s22', 'g--'), ('p', 'g-'))}
plot.plot()

The plot module is letting us plot t vs e22 using a blue line (b–) for the principle y-axis. Meanwhile, it
is plotting s22 and p using a green lines on the secondary y-axis.

We are now all set to run the fluid coupling simulation.

Example script

Please find a full script located in the examples folder

Today we will learn how to build a script that simulates heat conduction through a spherical packing
and compares the numerical values to Fourier’s analytical solution.

6.1.6 Day 3 - Thermal Hands-on part 1

We know where to start, let’s import the necessary libraries and set our variables:

from yade import pack
from yade import timing
import numpy as np

num_spheres=1000
young=1e6
rad=0.003

mn,mx=Vector3(0,0,0),Vector3(1.0,0.008,0.008)

These are all recognizable variables from previous hands-on sessions. Next, we append our materials and
walls as we’ve done in the past:

O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=radians(3),
↪→density=2600,label='spheres'))
O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=0,density=0,label=
↪→'walls'))
walls=aabbWalls([mn,mx],thickness=0,material='walls')
wallIds=O.bodies.append(walls)

O.bodies.append(pack.regularOrtho(pack.inAlignedBox(mn,mx),radius=rad,gap=-1e-8,
↪→material='spheres'))

1598 Chapter 6. Short-courses

https://yade-dem.org/doc/yade.plot.html
https://yade-dem.org/doc/yade.plot.html
https://gitlab.com/yade-dev/trunk/-/blob/master/examples/FluidCouplingPFV/oedometer.py

Yade Documentation, Release 3rd ed.

Here we see that we are appending a new type of sphere packing called regularOrtho. As the name
suggests, this creates a regular orthogonal packing which will be useful for ensuring that randomness
doesn’t affect our comparison to the analytic conduction solution later.

Next, we need to construct our engines list as usual:

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius),Bo1_Box_

↪→Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius),Ig2_Box_
↪→Sphere_ScGeom()],

[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],label="iloop"

),
FlowEngine(label="flow"),
ThermalEngine(label='thermal'),
GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,

↪→timestepSafetyCoefficient=0.8),
VTKRecorder(iterPeriod=500,fileName='VTK'+timeStr+identifier+'/spheres-',

↪→recorders=['spheres','thermal','intr'],dead=1,label='VTKrec'),
NewtonIntegrator(damping=0.2)

]

Most of this should look familiar based on our previous hands-on sessions. But we see two important
components including FlowEngine and ThermalEngine. These two engines rely intimately on one another
for simulating THM processes, and thus ThermalEngine cannot be used without FlowEngine. We in-
stantiate both of these engines without setting any parameters so that we can do so in detail in following
steps.

We are only interested in validating the thermal conduction scheme in Yade, so we need to turn many
default functionalities off starting with body dynamics:

for b in O.bodies:
if isinstance(b.shape, Sphere):

b.dynamic = False

b.dynamic is a body parameter which tells Yade to consider it for force calculations or not. Setting this
value to false ensures that these spheres will not move during the entirety of our simulation.

Next, we set our thermal parameters:

thermal.conduction = True
thermal.thermoMech = False
thermal.advection = False
thermal.fluidThermoMech = False
thermal.solidThermoMech = False
thermal.fluidConduction = False

thermal.bndCondIsTemperature = [1,1,0,0,0,0]
thermal.thermalBndCondValue = [0,0,0,0,0,0]
thermal.particleDensity = 2600 # kg/m^3
thermal.particleT0 = 400 # K
thermal.particleCp = 710 #J(kg K)
thermal.particleK = 2. #W/(mK)
thermal.particleAlpha = 11.6e-3
thermal.useKernMethod = False

The full set of available ThermalEngine parameters and all their specific details can be found here inside

6.1. THM short-course 1599

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.ThermalEngine

Yade Documentation, Release 3rd ed.

our Class Reference. We see that we need to ensure many of the functionalities are set to False for
the basic conduction example here. Next, we set our boundary conditions in the same way we learned
how to set boundary conditions during the previous FlowEngine hands-on session. Meanwhile, the
initial temperature of the particles is set with particleT0. Finally, we set the basic thermal conduction
parameters such as the particle density (particleDensity), thermal conductivity (particleK), heat capacity
(particleCp), and diffusivity (particleAlpha).

Now we need to employ the FlowEngine for one step so that it can identify the boundaries for our
ThermalEngine. We do not require the FlowEngine beyond this step because we are not simulating any
fluid fluxes in the present conduction example:

O.dt=1.
O.dynDt=False

flow.updateTriangulation=True
flow.dead=0
flow.emulateAction()
flow.dead=1

Here we see that we are forcing FlowEngine to update the triangulation in a fake timestep with
flow.emulateAction. Once this is done, we reset the FlowEngine to dead=1 So that we do not waste
computational effort calculating pressure fields.

Gathering field data

Since we are comparing our numerical conduction to an analytical scheme, we need a way to obtain field
data from arbitrary coordinates. Here is an example of one way to do so:

def bodyByPos(x,y,z):
cBody = O.bodies[1]
cDist = Vector3(100,100,100)
for b in O.bodies:

if isinstance(b.shape, Sphere):
dist = b.state.pos - Vector3(x,y,z)
if np.linalg.norm(dist) < np.linalg.norm(cDist):

cDist = dist
cBody = b

print('found closest body ', cBody.id, ' at ', cBody.state.pos)
return cBody

Where we simply feed it arbitrary coordinates and it will return the closest body with which we can
extract physical quantities such as temperature, velocity, etc.

Let’s use this function to grab 10 bodies along the x-axis for us to track during the simulation:

axis = np.linspace(mn[0], mx[0], num=11)
axisBodies = [None] * len(axis)
axisTrue = np.zeros(len(axis))
for i,x in enumerate(axis):

axisBodies[i] = bodyByPos(x, mx[1]/2, mx[2]/2)
axisTrue[i] = axisBodies[i].state.pos[0]

Additionally, we need a way to compute the analytical solution. Here is the solution to the heat equation
for a uniform initial temperature condition and boundary conditions at 0 K:

k = 2
Cp = 710
rho = 2600

(continues on next page)

1600 Chapter 6. Short-courses

Yade Documentation, Release 3rd ed.

(continued from previous page)

alpha = 6.*k/(np.pi*Cp*rho)

def analyticalHeatSolution(x,t,u0,L,alpha):
ns = np.linspace(1,1000,1000)
solution = 0
for i,n in enumerate(ns):

integral = (-2./L)*u0*L*(np.cos(n*np.pi)-1.) / (n*np.pi)
solution += integral * np.sin(n*np.pi*x/L)*np.exp((-alpha*(n*np.pi/L)**2)*t)

return solution

Where x is the x coordainte along the x-axis, t is the time of measurement, u0 is the initial temperature
of the rod, L is the length of the rod, and k is the thermal diffusivity of the rod. alpha is an effective
thermal diffusivity which scales the discrete elements to cubical continuum elements.

Finally, we need to collect and plot the data during the simulation. The temperature can be obtained
via the body state. And you have the bodies of interest set in axisBodies. Using the information from
previous hands-on sessions, fill out the following template to collect data for

def history():
plot.addData(

t = O.time,
i = O.iter,
temp1 = ________,
temp2 = ________,
temp3 = ________,
tempAnalytic1 = analyticalHeatSolution(________),
tempAnalytic2 = analyticalHeatSolution(________),
tempAnalytic3 = analyticalHeatSolution(________)

)
plot.saveDataTxt('conductionAnalyticalComparison.txt',vars=('t','i','temp1','temp2

↪→','temp3','tempAnalytic1','tempAnalytic2','tempAnalytic3'))

O.engines=O.engines+[PyRunner(iterPeriod=500,command='history()',label='recorder')]

Use the lessons we learned from previous hands-on sessions to:

1. plot the comparison between the numerical temperature and the analytical temperature.

2. ensure that our VTKRecorder is also collecting and printing files for paraview.

3. start the simulation.

6.1. THM short-course 1601

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.ThermalState

Yade Documentation, Release 3rd ed.

Example script

Please find a full script located in the examples folder

Part 2 of our Thermal Hands-on session will focus on the full THM coupling.

6.1.7 Day 3 - Thermal Hands-on part 2

Let’s build a triaxially loaded cubic specimen:

from yade import pack, ymport, plot, utils, export, timing
import numpy as np

young=5e6

mn,mx=Vector3(0,0,0),Vector3(0.05,0.05,0.05)

O.materials.append(FrictMat(young=young*100,poisson=0.5,frictionAngle=0,
↪→density=2600e10,label='walls'))
O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=radians(30),
↪→density=2600e10,label='spheres'))

walls=aabbWalls([mn,mx],thickness=0,material='walls')
wallIds=O.bodies.append(walls)

sp=pack.SpherePack()
sp.makeCloud(mn,mx,rMean=0.0015,rRelFuzz=0.333,num=100,seed=1)
sp.toSimulation(color=(0.752, 0.752, 0.752),material='spheres')

Here we see that we are appending a sphere cloud to the simulation (we will compact them after setting
the O.engines list).

Next, we need to construct our engines list as usual:

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=1,label='is2aabb'),Bo1_

↪→Box_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=1,label='ss2sc'),Ig2_Box_

↪→Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],label="iloop"
),
GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,

↪→timestepSafetyCoefficient=0.5),
TriaxialStressController(label='triax'),
FlowEngine(dead=1,label="flow"),
ThermalEngine(dead=1,label='thermal'),
VTKRecorder(iterPeriod=500,fileName='./spheres-',recorders=['spheres','thermal',

↪→'intr'],dead=1,label='VTKrec'),
NewtonIntegrator(damping=0.5)

]

Now we have the full O.engines list set, which contains a TriaxialStressController() for our stress control,
a FlowEngine() for the fluid fluxes and heat advection, and a ThermalEngine() for our thermal coupling.

1602 Chapter 6. Short-courses

https://gitlab.com/yade-dev/trunk/-/blob/master/examples/ThermalEngine/conductionVerification.py

Yade Documentation, Release 3rd ed.

Compacting the specimen

Let’s setup the TriaxialStressController() for our compaction:

triax.maxMultiplier=1.+2e4/young
triax.finalMaxMultiplier=1.+2e3/young
triax.thickness = 0
triax.stressMask = 7
triax.internalCompaction=True
tri_pressure = 1000
triax.goal1=triax.goal2=triax.goal3=-tri_pressure
triax.stressMask=7

while 1:
O.run(1000, True)
unb=unbalancedForce()
print('unbalanced force:',unb,' mean stress: ',triax.meanStress)
if unb<0.1 and abs(-tri_pressure-triax.meanStress)/tri_pressure<0.001:

break

triax.internalCompaction=False

Here we see that we are running a loop where we run 1000 iterations of internalCompaction (particles
grow in radius to achieve stress), then testing the unbalancedForce() and ultimately stopping if our
stopping criteria is achieved. We can’t forget that our FlowEngine() and ThermalEngine() are both set
to dead=1 in the O.engines list, so they will not activate during this compaction stage.

Setting up the FlowEngine()

initial pressure condition
flow.pZero = 10
flow.meshUpdateInterval = 2
we will activate compressibility in the fluid
flow.fluidBulkModulus = 2.2e9
flow.useSolver = 4
enforcing a darcy permeability in the specimen
flow.permeabilityFactor = -1e-5
flow.viscosity = 0.001
setting the boundary conditions
flow.bndCondIsPressure = [0,0,0,0,1,1]
flow.bndCondValue = [0,0,0,0,10,10]

Thermal Stuff
flow.bndCondIsTemperature [0,0,0,0,0,0]
activate the thermal engine
flow.thermalEngine = True
flow.thermalBndCondValue = [0,0,0,0,0,0]
initial temperature conditions
flow.tZero = 25

flow.dead=0

6.1. THM short-course 1603

Yade Documentation, Release 3rd ed.

Setting up the ThermalEngine()

thermal.dead = 0
thermal.conduction = True
thermal.fluidConduction = True
thermal.thermoMech = True
thermal.solidThermoMech = True
thermal.fluidThermoMech = True
thermal.advection = True
thermal.useKernMethod = False
thermal.bndCondIsTemperature = [0,0,0,0,0,1]
thermal.thermalBndCondValue = [0,0,0,0,0,45]
thermal.fluidK = 0.650
thermal.fluidBeta = 2e-5
thermal.particleT0 = 25
thermal.particleK = 2.0
thermal.particleCp = 710
thermal.particleAlpha = 3.0e-5
thermal.particleDensity = 2700
thermal.tsSafetyFactor = 0
thermal.uniformReynolds = 10

We won’t describe each parameter here, those descriptions can be found in the Class Reference. However,
it is clear we are activating conduction, advection, the thermo-fluid mechanical coupling, the solid-fluid
mechanical coupling, and fluid conduction. Each component can be deactivated in case the user does
not need the full THM coupling. We also see a similar assignment of boundary conditions as we saw
in the previous hands-on sessions. Some additional parameters shown here include the fluid thermal
conductivity (thermal.fluidK), the coefficient of thermal expansion for the fluid (thermal.fluidBeta).

Running the coupled simulation

The simulation is set and ready to run, first we will let FlowEngine() detect and assign the boundary
conditions by running flow.emulateAction():

O.dt=1e-4
O.dynDt=False
thermal.dead=0
flow.emulateAction()

Now it is up to you to finish the script

1. collect the temperature at some interesting points in the specimen

2. plot the temperature

3. export the VTK files for viewing in paraview

Example script

Please find a full script located in the examples folder

1604 Chapter 6. Short-courses

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.ThermalEngine
https://gitlab.com/yade-dev/trunk/-/blob/master/examples/ThermalEngine/thermoHydroMechanical_coupling.py

Chapter 7

Literature

7.1 Yade Technical Archive

7.1.1 About

The Yade Technical Archive (YTA) seeks to improve the reproducibility of Yade related publications
by clarifying the theory that underlies Yade’s opensource code, explaining algorithmic implementations,
and providing practical tutorials. In doing so, YTA removes the opacity that commonly exists between
readers and computational journal articles, strengthens and improves visibility of existing Yade journal
papers, enables academic collaborations, and broadens open access academia.

7.1.2 Contribute

YTA seeks a variety of Yade related materials including, but not limited to:

• theoretical descriptions of code packages

• user guides and tutorials for code packages

• presentations

• course materials

• supplementary materials for journal articles

7.1.3 Contact

If you wish to contribute, please contact rob.caulk@gmail.com. Questions about individual publications
are referred to the email address attached to the document description. If you have general questions
regarding code, we refer you to our Q&A forum.

1605

https://gitlab.com/yade-dev
mailto:rob.caulk@gmail.com
https://gitlab.com/yade-dev/answers

Yade Documentation, Release 3rd ed.

7.1.4 Archive

Chareyre, Bruno; Caulk, Robert; Chèvremont, William; Guntz, Thomas; Kneib, François; Kunhappen,
Deepak; Pourroy, Jean (2019), Calcul distribué MPI pour la dynamique de systèmes particulaires. Yade
Technical Archive. download full text , watch video summary , read the poster summary

Pirnia, Pouyan; Duhaime Francois; Ethier Yannic; Dubé, Jean-Sébastien (2019), COMSOL-Yade In-
terface (ICY) instruction guide. Yade Technical Archive. download full text, send an email seyed-
pouyan.pirnia.1@ens.etsmtl.ca , download helper files

Maurin, Raphael (2018), YADE 1D vertical VANS fluid resolution: Numerical resolution details. Yade
Technical Archive. download full text, send an email raphael.maurin@imft.fr, follow the tutorial: Using
YADE 1D vertical VANS fluid resolution

Maurin, Raphael (2018), YADE 1D vertical VANS fluid resolution: Theoretical basis. Yade Technical
Archive. download full text, send an email raphael.maurin@imft.fr, follow the tutorial: Using YADE 1D
vertical VANS fluid resolution

Maurin, Raphael (2018), YADE 1D vertical VANS fluid resolution: validations. Yade Technical Archive.
download full text, send an email raphael.maurin@imft.fr, follow the tutorial: Using YADE 1D vertical
VANS fluid resolution

Caulk, Robert (2018), Stochastic Augmentation of the Discrete Element Method for Investigation of
Tensile Rupture in Heterogeneous Rock. Yade Technical Archive. DOI 10.5281/zenodo.1202039. down-
load full text , send an email rob.caulk@gmail.com , follow the tutorial: Simulating Acoustic Emissions
in Yade

7.2 Publications on Yade

Publications on Yade itself or done with Yade are listed on this page.

The first section gives the reference that we kindly ask you to use for citing Yade in publications, as
explained in the “Acknowledging Yade” section.

With the increasing rate of publications using Yade it became difficult to list them all, therefore coverage
of recent years is only partial. You can help us: if you publish or you know publications related to Yade
do not hesitate to add it to this list. If you don’t have direct access to the source code, please send the
reference (as a bibtex item) to Yade developpers. If a pdf PDF is freely available, add url for direct
fulltext downlad. Yade’s web server will gladly host such PDF if legally permitted.

Note: This file is generated from doc/yade-articles.bib, doc/yade-conferences.bib, doc/yade-theses.bib,
and doc/yade-tech-archive.bib.

7.2.1 Journal articles

7.2.2 Conference materials and book chapters

7.2.3 Master and PhD theses

7.2.4 Yade Technical Archive

7.3 References

All external articles referenced in Yade documentation.

1606 Chapter 7. Literature

https://www.yade-dem.org/publi/YadeTechnicalArchive/YadeMPIhackathon.pdf
https://www.yade-dem.org/publi/YadeTechnicalArchive/hackathonvideo.avi
https://www.yade-dem.org/publi/YadeTechnicalArchive/hackathonposter.pdf
https://yade-dem.org/publi/YadeTechnicalArchive/ICYinstructionguide.pdf
mailto:seyed-pouyan.pirnia.1@ens.etsmtl.ca
mailto:seyed-pouyan.pirnia.1@ens.etsmtl.ca
https://www.yade-dem.org/publi/YadeTechnicalArchive/ICYInstructionGuide.zip
https://yade-dem.org/publi/YadeTechnicalArchive/Yade1DFluidVANS_NumericalResolution.pdf
mailto:raphael.maurin@imft.fr
https://yade-dem.org/publi/YadeTechnicalArchive/Yade1DFluidVANS_TheoreticalBasis.pdf
mailto:raphael.maurin@imft.fr
https://yade-dem.org/publi/YadeTechnicalArchive/Yade1DFluidVANS_Validations.pdf
mailto:raphael.maurin@imft.fr
https://www.yade-dem.org/publi/YadeTechnicalArchive/Caulkr_stochasticaugmentationofDEM-301118.pdf
https://www.yade-dem.org/publi/YadeTechnicalArchive/Caulkr_stochasticaugmentationofDEM-301118.pdf
mailto:rob.caulk@gmail.com
citing.html
mailto:yade-dev@lists.launchpad.net
https://gitlab.com/yade-dev/trunk/blob/master/doc/yade-articles.bib
https://gitlab.com/yade-dev/trunk/blob/master/doc/yade-conferences.bib
https://gitlab.com/yade-dev/trunk/blob/master/doc/yade-theses.bib
https://gitlab.com/yade-dev/trunk/blob/master/doc/yade-tech-archive.bib

Yade Documentation, Release 3rd ed.

Note: This file is generated from doc/references.bib.

7.3. References 1607

https://gitlab.com/yade-dev/trunk/blob/master/doc/references.bib

Yade Documentation, Release 3rd ed.

1608 Chapter 7. Literature

Chapter 8

Yade community events

8.1 Yade community events

8.1.1 1st Yade hackathon

The first Yade Hackathon took place in Freiberg, Germany on June 23rd and 24th of 2022!

Eight developers were on site while one joined remotely during the presentation sessions. This tight knit
group of Yade developers already meets bi-monthly via zoom, but the Yade Hackathon gave them the
opportunity to meet offline to discuss issues in the software, prognose the future of the project, fix bugs,
work on the code, and even tour the city together.

A former core developer, Vaclav Smilauer, made a special guest appearance during the first day where
he even contributed some expert advice to the hackathon.

Main topics of discussion included:

• Install documentation update, e.g., split installation dependencies, depending on the required fea-
tures. MR

• Drop the wiki page and moving the valuable information to the documentation or on the website.
Issue

• Check the last publications, where the Yade was cited and put the links into the documentation.
MR

• Add support of the Qt6, which is already available in Debian repositories Issue. Follow up actions
are identified.

• Distribute the yade-dem.org domain permissions to increase the bus factor for the project.

• Fix the newly added gitlab runner nova1. Issue

• Present the latest work, based on Yade and newer features added in the source code recently.

• Drop google-analytics code from the website. Issue, MR.

• Create a Yade short-course section on the website and include all content associated with a recent
short-course. MR

• Discuss a future paper in Computer Physics Communications.

• Explore technical and non-technical discussions.

In contrast to their traditional means of communication via week-long email and issue tracking ex-
changes, the Yade developers found that this offline Hackathon provided an opportunity to quickly
discuss problems and solutions.

We want to thank everybody who made this event possible:

1609

https://gitlab.com/yade-dev/trunk/-/merge_requests/870
https://gitlab.com/yade-dev/trunk/-/issues/283
https://gitlab.com/yade-dev/trunk/-/merge_requests/875
https://gitlab.com/yade-dev/trunk/-/issues/279
https://gitlab.com/yade-dev/trunk/-/issues/276
https://gitlab.com/yade-dev/trunk/-/issues/280
https://gitlab.com/yade-dev/trunk/-/merge_requests/873
https://gitlab.com/yade-dev/trunk/-/merge_requests/871

Yade Documentation, Release 3rd ed.

Fig. 1: From left to right, Vasileios Angelidakis, Anton Gladky, Katia Boschi, Jerome Duriez, Robert
Caulk, Bruno Chareyre, Janek Kozicki, Vaclav Smilauer (not pictured Klaus Theoni)

1610 Chapter 8. Yade community events

Yade Documentation, Release 3rd ed.

• TU Bergakademie Freiberg for a general support.

• Institute for Informatics of the TU Bergakademie Freiberg, and personally Christian Schubert,
Birgit Steffen and Sebastian Zug.

• Institute for the processing machines and recycling system technick, TU Bergakademie Freiberg,
and personally Dr.-Ing. Prof. Holger Lieberwirth

• Institute of dynamics and flow mechanics, TU Bergakademie Freiberg, and personally Dr.-Ing.
Prof. Rüdiger Schwarze

• Haver Engineering GmbH, and personally Jan Lampke and Hagen Müller.

Improvement plans for the next Hackathon include:

• Block out more time for the hacking. Ideally - many more days and until the evening

• Locate a better meeting place for the international group (Frankfurt-Am-Main)

8.1.2 2nd Yet Another Discrete Element Workshop

Aix-en-Provence, April 26-27, 2018

Web-Site about the workshop

8.1.3 1st Yet Another Discrete Element Workshop

Grenoble, July 7-9, 2014

NEW: The booklet of presentations is available

Objectives

The 1st Yade Workshop will be held on 7-9 July in Grenoble, France.

Particle-scale modeling remains an area of active developments, decades after the pioneering work of P.
Cundall. A large part of these developments is mirrored by contributions to the open source platform
Yade-DEM.

The objective of this workshop is to gather people interested in DEM and DEM-related developments,
with special focus on new models and couplings, algorithmic issues, performance and parallelization.

Download the program

Check also the access map

The list of sessions includes:

• DEM applications

• Numerical methods and modeling techniques

• Complex shapes

• Multiphase couplings

The last day will take the form of short talks and less formal meetings focused on the Yade-DEM project.
A coding and brainstorming session will be organised for Yade devs, and coordinated by Klaus Thoeni.
For more info see Brainstorming.

The 1st Yade Workshop will be an opportunity for the people developing Yade-DEM and other DEM
codes to meet each other, share ideas and elaborate workplans and cooperations.

8.1. Yade community events 1611

https://tu-freiberg.de/
https://tu-freiberg.de/fakult1/inf
https://tu-freiberg.de/user/983
https://tu-freiberg.de/user/319
https://tu-freiberg.de/fakult1/inf/professuren/softwaretechnologie-und-robotik
https://tu-freiberg.de/fakult4/iart
https://www.linkedin.com/in/lieberwirth
https://tu-freiberg.de/fakult4/imfd
https://www.linkedin.com/in/rüdiger-schwarze-9b197764
https://www.haverengineering.de
https://www.linkedin.com/in/jan-lampke-b92881118
https://www.linkedin.com/in/dr-hagen-m%C3%BCller-19ba0053/
https://2ndyadeworkshop.sciencesconf.org/
Brainstorming

Yade Documentation, Release 3rd ed.

Contact & Registration

We will still accept a limited number of registrations

For registration and practical informations email us.

Invited Speakers

• Anton Gladky(TU Freiberg)

• Klaus Thoeni (Univ. Newcastle AU)

• Alexander Eulitz (TU Berlin)

• Frédéric Donzé(Univ. Grenoble)

• Jan Stránský (TU Prague)

• Jérôme Duriez(Univ. Grenoble)

• Christian Jakob (TU Freiberg)

• Burak ER

• François Kneib(IRSTEA Grenoble)

• Václav Šmilauer (Prague)

• Ricardo Pieralisi (Univ. Catalunya)

• Janek Kozicki (TU Gdansk)

• Emanuele Catalano (Itasca CG Lyon)

Organizing Comitee

• Bruno Chareyre (Grenoble Inst. of Tech. / 3SR Lab)

• Caroline Chalak (Grenoble Inst. of Tech. / 3SR Lab)

Acknowledgement

The workshop is supported by

• Maimosine

• Fédération VOR

• Fédération 3G

• Université Grenoble Alpes

• région Rhône-Alpes.

1612 Chapter 8. Yade community events

mailto:yadedemboard@gmail.com
http://www.maimosine.fr/

Chapter 9

Indices and tables

• genindex

• modindex

• search

1613

Yade Documentation, Release 3rd ed.

1614 Chapter 9. Indices and tables

Bibliography

[Abdallah2022] Abdallah, Ali, Aboul Hosn, Rodaina, Al Tfaily, Bilal, Sibille, Luc (2022), Identifying
parameters of a discrete numerical model of soil from a geotechnical field test.
European Journal of Environmental and Civil Engineering, pages 1–20.

[Abdallah2024] Abdallah, Ali, Vincens, Eric, Magoariec, H’el‘ene, Picault, Christophe (2024), DEM
filtration modelling for granular materials: Comparative analysis of dry and wet
approaches. International Journal for Numerical and Analytical Methods in Geomechanics
(48), pages 870–886.

[Abdi2022] Abdi, Rezvan, Krzaczek, Marek, Tejchman, J (2022), Comparative study of high-
pressure fluid flow in densely packed granules using a 3D CFD model in a
continuous medium and a simplified 2D DEM-CFD approach. Granular Matter
(24), pages 1–25.

[Abdi2023] Abdi, Rezvan, Krzaczek, Marek, Tejchman, J (2023), Simulations of high-pressure fluid
flow in a pre-cracked rock specimen composed of densely packed bonded spheres
using a 3D CFD model and simplified 2D coupled CFD-DEM approach. Powder
Technology (417), pages 118238.

[Aboul2017] Aboul Hosn, R., Sibille, L., Benahmed, N., Chareyre, B. (2017), Discrete numerical
modeling of loose soil with spherical particles and interparticle rolling friction.
Granular Matter (19). DOI 10.1007/s10035-016-0687-0

[Aboul2018] Aboul R. Hosn, L. Sibille, N. Benahmed, B. Chareyre (2018), A discrete
numerical model involving partial fluid-solid coupling to describe suf-
fusion effects in soils. Computers and Geotechnics (95), pages 30–39. DOI
https://doi.org/10.1016/j.compgeo.2017.11.006

[Albaba2015] Albaba, A, Lambert, S, Nicot, F, Chareyre, B (2015), Relation between microstruc-
ture and loading applied by a granular flow to a rigid wall using DEM modeling.
Granular Matter (17), pages 603–616. DOI 10.1007/s10035-015-0579-8

[Ali2024] Ali, Usman, Kikumoto, Mamoru, Ciantia, Matteo Oryem, Cui, Ying, Previtali, Marco (2024),
Why Modeling Particle Shape Matters: Significance of Particle-Scale Modeling
in Describing Global and Local Granular Responses. Journal of Geotechnical and
Geoenvironmental Engineering (150), pages 04024079.

[AlTfaily2024] Al Tfaily, Bilal, Sibille, Luc, Hosn, Rodaina Aboul, Bennabi, Abdelkrim (2024), Pre-
diction ability of discrete element model of loose granular media subjected to
complex loadings. Powder Technology (433), pages 119251.

[Angelidakis2021] Angelidakis, Vasileios, Nadimi, Sadegh, Utili, Stefano (2021), SHape Analyser for
Particle Engineering (SHAPE): Seamless characterisation and simplification of
particle morphology from imaging data. Computer Physics Communications, pages
107983.

[Angelidakis2024] Angelidakis, Vasileios, Boschi, Katia, Brzezi’nski, Karol, Caulk, Robert A, Chareyre,
Bruno, Del Valle, Carlos Andr’es, Duriez, J’er^ome, Gladky, Anton, Van Der Haven, Dinge-
man LH, Kozicki, Janek, others (2024), YADE-An extensible framework for the inter-
active simulation of multiscale, multiphase, and multiphysics particulate systems.
Computer Physics Communications (304), pages 109293.

1615

http://dx.doi.org/10.1007/s10035-016-0687-0
http://dx.doi.org/https://doi.org/10.1016/j.compgeo.2017.11.006
http://dx.doi.org/10.1007/s10035-015-0579-8

Yade Documentation, Release 3rd ed.

[Asadi2022] Asadi, Mohsen, Mahboubi, Ahmad, Thoeni, Klaus (2022), Towards more realistic
modelling of sand-rubber mixtures considering shape, deformability and micro-
mechanics. Canadian Geotechnical Journal.

[Audry2023] Audry, Nils, Harthong, Barth’el’emy, Imbault, Didier (2023), Comparison between pe-
riodic and non-periodic boundary conditions in the multi-particle finite element
modelling of ductile powders. Powder Technology (429), pages 118871.

[Audry2024] Audry, Nils, Harthong, Barth’el’emy, Imbault, Didier (2024), The mesoscale mechan-
ics of compacted ductile powders under shear and tensile loads. Journal of the
Mechanics and Physics of Solids, pages 105807.

[Bance2014] Bance, S., Fischbacher, J., Schrefl, T., Zins, I., Rieger, G., Cassignol, C. (2014), Micro-
magnetics of shape anisotropy based permanent magnets. Journal of Magnetism
and Magnetic Materials (363), pages 121–124.

[Barbosa2022b] Barbosa, Luis Alfredo Pires, Gerke, Kirill M, Gerke, Horst H (2022), Modelling of soil
mechanical stability and hydraulic permeability of the interface between coated
biopore and matrix pore regions. Geoderma (410), pages 115673.

[Barbosa2022a] Barbosa, Luis Alfredo Pires, Gerke, Kirill M, Munkholm, Lars J, Keller, Thomas, Gerke,
Horst H (2022), Discrete element modeling of aggregate shape and internal struc-
ture effects on Weibull distribution of tensile strength. Soil and Tillage Research
(219), pages 105341.

[Barbosa2020b] Barbosa, Luis Alfredo Pires, Keller, Thomas, de Oliveira Ferraz, Antonio Carlos (2020),
Scale effect of aggregate rupture: Using the relationship between friability and
fractal dimension to parameterise discrete element models. Powder Technology
(375), pages 327–336.

[Barbosa2020] Barbosa, Luis Alfredo Pires (2020), Modelling the aggregate structure of a bulk
soil to quantify fragmentation properties and energy demand of soil tillage tools
in the formation of seedbeds. Biosystems Engineering (197), pages 203–215.

[Barros2023] Barros, Guilherme, Pereira, Andre, Rojek, Jerzy, Carter, John, Thoeni, Klaus (2023), Ef-
ficient multi-scale staggered coupling of discrete and boundary element methods
for dynamic problems. Computer Methods in Applied Mechanics and Engineering (415),
pages 116227.

[Basson2023] Basson, Mandeep Singh, Martinez, Alejandro (2023), Numerical and experimental
estimation of anisotropy in granular soils using multi-orientation shear wave
velocity measurements. Granular Matter (25), pages 55.

[Basson2024a] Basson, Mandeep Singh, Martinez, Alejandro, DeJong, Jason T (2024), DEM investi-
gation of the effect of gradation on the strength, dilatancy, and fabric evolution
of coarse-grained soils. Journal of Geotechnical and Geoenvironmental Engineering (150),
pages 04024060.

[Basson2024b] Basson, Mandeep Singh, Martinez, Alejandro, DeJong, Jason T (2024), DEM simula-
tions of the liquefaction resistance and post-liquefaction strain accumulation of
coarse-grained soils with varying gradations. Computers and Geotechnics (174), pages
106649.

[Benniou2020] Benniou, H., Accary, A., Malecot, Y., Briffaut, M., Daudeville, L. (2020), Discrete
element modeling of concrete under high stress level: influence of saturation
ratio. Computational Particle Mechanics. DOI 10.1007/s40571-020-00318-5

[Binelo2022] Binelo, Manuel O, Lima, Rodolfo F, Faoro, Vanessa, Binelo, Marcia FB (2022), Compu-
tational modelling of a grain spreader for use in silos. Biosystems Engineering (223),
pages 29–40.

[Bonilla2015] Bonilla-Sierra, V., Scholtès, L., Donzé, F.V., Elmouttie, M.K. (2015), Rock slope stabil-
ity analysis using photogrammetric data and DFN–DEM modelling. Acta Geotech-
nica, pages 1–15. DOI 10.1007/s11440-015-0374-z

1616 Bibliography

http://dx.doi.org/10.1007/s40571-020-00318-5
http://dx.doi.org/10.1007/s11440-015-0374-z

Yade Documentation, Release 3rd ed.

[Boon2015] Boon, C.W., Houlsby, G.T., Utili, S. (2015), A new rock slicing method
based on linear programming. Computers and Geotechnics (65), pages 12–29. DOI
10.1016/j.compgeo.2014.11.007

[Boon2015b] Boon, C.W., Houlsby, G.T., Utili, S. (2015), Designing Tunnel Support in Jointed
Rock Masses Via the DEM. Rock Mechanics and Rock Engineering (48), pages 603–632.
DOI 10.1007/s00603-014-0579-8

[Boon2014] Boon, C.W., Houlsby, G.T., Utili, S. (2014), New insights into the 1963 Vajont slide
using 2D and 3D distinct-element method analyses. Géotechnique (64), pages 800–
816. DOI 10.1680/geot.14.P.041

[Boon2013] Boon, C.W., Houlsby, G.T., Utili, S. (2013), A new contact detection algorithm for
three-dimensional non-spherical particles. Powder Technology (248), pages 94–102.
DOI 10.1016/j.powtec.2012.12.040

[Boon2012] Boon, C.W., Houlsby, G.T., Utili, S. (2012), A new algorithm for contact detection be-
tween convex polygonal and polyhedral particles in the discrete element method.
Computers and Geotechnics (44), pages 73–82. DOI 10.1016/j.compgeo.2012.03.012

[Bourrier2013] Bourrier, F., Kneib, F., Chareyre, B., Fourcaud, T. (2013), Discrete model-
ing of granular soils reinforcement by plant roots. Ecological Engineering. DOI
10.1016/j.ecoleng.2013.05.002

[Bourrier2015] Bourrier, F., Lambert, S., Baroth, J. (2015), A reliability-based approach for the
design of rockfall protection fences. Rock Mechanics and Rock Engineering (48), pages
247–259.

[Brzezinski2022] Brzezinski Karol, Anton Gladky (2022), Clump breakage algorithm for DEM
simulation of crushable aggregates. Tribology International (173), pages 107661. DOI
https://doi.org/10.1016/j.triboint.2022.107661

[Brzezinski2023a] Brzezinski Karol, Zbiciak Artur, Anton Gladky (2023), Implementation of a vis-
coelastic boundary condition to Yade – open source DEM software. Journal of
Theoretical and Applied Mechanics (62), pages 355–364. DOI https://doi.org/10.15632/jtam-
pl/163053

[Brzezinski2023b] Brzezi’nski, Karol, Cike.zkowski, Pawel, Bkak, Sebastian (2023), Tricking the frac-
tal nature of granular materials subjected to crushing. Powder Technology (425),
pages 118601.

[Catalano2014a] Catalano, E., Chareyre, B., Barthélémy, E. (2014), Pore-scale modeling of fluid-
particles interaction and emerging poromechanical effects. International Journal for
Numerical and Analytical Methods in Geomechanics (38), pages 51–71. DOI 10.1002/nag.2198
(http://arxiv.org/pdf/1304.4895.pdf)

[Caulk2019] Caulk Robert A., Emanuele Catalano, Bruno Chareyre (2019), Accelerating Yade’s
poromechanical coupling with matrix factorization reuse, parallel task manage-
ment, and GPU computing. Computer Physics Communications, pages 106991. DOI
https://doi.org/10.1016/j.cpc.2019.106991

[Caulk2020b] Caulk Robert, Luc Sholtès, Marek Krzaczek, Bruno Chareyre (2020), A pore-
scale thermo–hydro-mechanical model for particulate systems. Com-
puter Methods in Applied Mechanics and Engineering (372), pages 113292. DOI
https://doi.org/10.1016/j.cma.2020.113292

[Caulk2020] Caulk, Robert A. (2020), Modeling acoustic emissions in heterogeneous rocks dur-
ing tensile fracture with the Discrete Element Method. Open Geomechanics (2).
DOI 10.5802/ogeo.5

[Chalak2017] Chalak, C., Chareyre, B., Nikooee, E., Darve, F. (2017), Partially saturated media:
from DEM simulation to thermodynamic interpretation. European Journal of Envi-
ronmental and Civil Engineering (21), pages 798–820. DOI 10.1080/19648189.2016.1164087

[Chapelle2021] Chapelle, David, Maynadier, Anne, Bebon, Ludovic, Thi’ebaud, Fr’ed’eric (2021), Hy-
drogen Storage: Different Technologies, Challenges and Stakes. Focus on TiFe

Bibliography 1617

http://dx.doi.org/10.1016/j.compgeo.2014.11.007
http://dx.doi.org/10.1007/s00603-014-0579-8
http://dx.doi.org/10.1680/geot.14.P.041
http://dx.doi.org/10.1016/j.powtec.2012.12.040
http://dx.doi.org/10.1016/j.compgeo.2012.03.012
http://dx.doi.org/10.1016/j.ecoleng.2013.05.002
http://dx.doi.org/https://doi.org/10.1016/j.triboint.2022.107661
http://dx.doi.org/https://doi.org/10.15632/jtam-pl/163053
http://dx.doi.org/https://doi.org/10.15632/jtam-pl/163053
http://dx.doi.org/10.1002/nag.2198
http://arxiv.org/pdf/1304.4895.pdf
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2019.106991
http://dx.doi.org/https://doi.org/10.1016/j.cma.2020.113292
http://dx.doi.org/10.5802/ogeo.5
http://dx.doi.org/10.1080/19648189.2016.1164087

Yade Documentation, Release 3rd ed.

Hydrides. In Advances in Renewable Hydrogen and Other Sustainable Energy Carriers
Springer ,

[Chareyre2012a] Chareyre, B., Cortis, A., Catalano, E., Barthélemy, E. (2012), Pore-Scale Modeling
of Viscous Flow and Induced Forces in Dense Sphere Packings. Transport in Porous
Media (92), pages 473–493. DOI 10.1007/s11242-011-9915-6

[Chassagne2020] Chassagne, Rémi, Frey, Philippe, Maurin, Raphaël, Chauchat, Julien (2020), Mobility
of bidisperse mixtures during bedload transport. Physical Review Fluids (5), pages
114307.

[Chassagne2023] Chassagne, R’emi, Bonamy, Cyrille, Chauchat, Julien (2023),A frictional–collisional
model for bedload transport based on kinetic theory of granular flows: discrete
and continuum approaches. Journal of Fluid Mechanics (964), pages A27.

[Chen2007] Chen, F., Drumm, E. C., Guiochon, G. (2007), Prediction/Verification of Particle
Motion in One Dimension with the Discrete-Element Method. International Journal
of Geomechanics, ASCE (7), pages 344–352. DOI 10.1061/(ASCE)1532-3641(2007)7:5(344)

[Chen2011a] Chen, F., Drumm, E., Guiochon G. (2011), Coupled discrete element and finite vol-
ume solution of two classical soil mechanics problems. Computers and Geotechnics.
DOI 10.1016/j.compgeo.2011.03.009

[Chen2014] Chen, J., Huang, B., Shu, X., Hu, C. (2014), DEM Simulation of Laboratory Com-
paction of Asphalt Mixtures Using an Open Source Code. Journal of Materials in
Civil Engineering.

[Chen2012] Chen, Jingsong, Huang, Baoshan, Chen, Feng, Shu, Xiang (2012), Application of discrete
element method to Superpave gyratory compaction. Road Materials and Pavement
Design (13), pages 480–500. DOI 10.1080/14680629.2012.694160

[Cheng2016] Cheng, H., Yamamoto, H., Thoeni, K. (2016), Numerical study on stress states and
fabric anisotropies in soilbags using the DEM. Computers and Geotechnics (76), pages
170–183. DOI 10.1016/j.compgeo.2016.03.006

[Chevremont2020] Chèvremont, William, Bodiguel, Hugues, Chareyre, Bruno (2020), Lubricated con-
tact model for numerical simulations of suspensions. Powder Technology (372), pages
600–610.

[Chevremont2019] Chèvremont, William, Chareyre, Bruno, Bodiguel, Hugues (2019), Quantitative
study of the rheology of frictional suspensions: Influence of friction coefficient
in a large range of viscous numbers. Physical Review Fluids (4), pages 064302.

[Coulibaly2020] Coulibaly, Jibril B, Shah, Manan, Loria, Alessandro F Rotta (2020), Thermal cycling
effects on the structure and physical properties of granular materials. Granular
Matter (22), pages 1–19.

[Cuomo2016] Cuomo, S., Chareyre, B., d’Arista, P., Sala, M.D., Cascini, L. (2016), Micromechanical
modelling of rainsplash erosion in unsaturated soils by Discrete Element Method.
CATENA (147), pages 146–152.

[Dang2010a] Dang, H. K., Meguid, M. A. (2010), Algorithm to Generate a Discrete Element
Specimen with Predefined Properties. International Journal of Geomechanics (10),
pages 85–91. DOI 10.1061/(ASCE)GM.1943-5622.0000028

[Dang2010b] Dang, H. K., Meguid, M. A. (2010), Evaluating the performance of an
explicit dynamic relaxation technique in analyzing non-linear geotechni-
cal engineering problems. Computers and Geotechnics (37), pages 125–131. DOI
10.1016/j.compgeo.2009.08.004

[DePue2019] De Pue Jan, Gemmina Di Emidio, R. Daniel Verastegui Flores, Adam Bezuijen, Wim
M. Cornelis (2019), Calibration of DEM material parameters to simulate stress-
strain behaviour of unsaturated soils during uniaxial compression. Soil and Tillage
Research (194), pages 104303. DOI https://doi.org/10.1016/j.still.2019.104303

1618 Bibliography

http://dx.doi.org/10.1007/s11242-011-9915-6
http://dx.doi.org/10.1061/(ASCE)1532-3641(2007)7:5(344)
http://dx.doi.org/10.1016/j.compgeo.2011.03.009
http://dx.doi.org/10.1080/14680629.2012.694160
http://dx.doi.org/10.1016/j.compgeo.2016.03.006
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000028
http://dx.doi.org/10.1016/j.compgeo.2009.08.004
http://dx.doi.org/https://doi.org/10.1016/j.still.2019.104303

Yade Documentation, Release 3rd ed.

[DePue2019b] De Pue, Jan, Cornelis, Wim M (2019), DEM simulation of stress trans-
mission under agricultural traffic Part 1: Comparison with continuum
model and parametric study. Soil and Tillage Research (195), pages 104408. DOI
https://doi.org/10.1016/j.still.2019.104408

[DePue2020a] De Pue, Jan, Lamand’e, Mathieu, Cornelis, Wim M (2020), DEM simula-
tion of stress transmission under agricultural traffic Part 2: Shear stress
at the tyre-soil interface. Soil and Tillage Research (203), pages 104660. DOI
https://doi.org/10.1016/j.still.2020.104660

[DePue2020b] De Pue, Jan, Lamand’e, Mathieu, Schjonning, Per, Cornelis, Wim M (2020), DEM
simulation of stress transmission under agricultural traffic Part 3: Evalu-
ation with field experiment. Soil and Tillage Research (200), pages 104606. DOI
https://doi.org/10.1016/j.still.2020.104606

[Deng2021] Deng, Na, Wautier, Antoine, Thiery, Yannick, Yin, Zhen-Yu, Hicher, Pierre-Yves, Nicot,
Franccois (2021), On the attraction power of critical state in granular materials.
Journal of the Mechanics and Physics of Solids (149), pages 104300.

[Dincc2023] Dincc G”oug”ucs, ”Ozge, Avcsar, Elif, Develi, Kayhan, cCalik, Ayten (2023), Quantifying
the Rock Damage Intensity Controlled by Mineral Compositions: Insights from
Fractal Analyses. Fractal and Fractional (7), pages 383.

[Donze2008] Donzé, F.V. (2008), Impacts on cohesive frictional geomaterials. European Journal
of Environmental and Civil Engineering (12), pages 967–985.

[Donze2021] Donzé, Frédéric-Victor, Klinger, Yann, Bonilla-Sierra, Viviana, Duriez, Jérôme, Jiao,
Liqing, Scholtès, Luc (2021), Assessing the brittle crust thickness from strike-slip
fault segments on Earth, Mars and Icy moons. Tectonophysics (805), pages 228779.

[Duriez2013] Duriez J., Darve F., Donzé F.V. (2013), Incrementally non-linear plasticity applied
to rock joint modelling. International Journal for Numerical and Analytical Methods in
Geomechanics (37), pages 453–477. DOI 10.1002/nag.1105

[Duriez2011] Duriez J., Darve F.and Donzé F.V. (2011), A discrete modeling-based constitutive
relation for infilled rock joints. International Journal of Rock Mechanics & Mining
Sciences (48), pages 458–468. DOI 10.1016/j.ijrmms.2010.09.008

[Duriez2017c] Duriez J., M. Eghbalian, R. Wan, F. Darve (2017), The micromechanical nature of
stresses in triphasic granular media with interfaces. Journal of the Mechanics and
Physics of Solids (99), pages 495–511. DOI 10.1016/j.jmps.2016.10.011

[Duriez2018] Duriez J., R. Wan, M. Pouragha Mehdi, F. Darve Revisiting the existence of an effec-
tive stress for wet granular soils with micromechanics. International Journal for Nu-
merical and Analytical Methods in Geomechanics (42), pages 959–978. DOI 10.1002/nag.2774

[Duriez2016b] Duriez J., R. Wan (2016), Stress in wet granular media with interfaces via homog-
enization and discrete element approaches. Journal of Engineering Mechanics (142).
DOI 10.1061/(ASCE)EM.1943-7889.0001163

[Duriez2017] Duriez J., R. Wan (2017), Subtleties in discrete-element modelling of wet granular
soils. Géotechnique (67), pages 365–370. DOI 10.1680/jgeot.15.P.113

[Duriez2017b] Duriez J., R. Wan (2017), Contact angle mechanical influence for wet granular
soils. Acta Geotechnica (12), pages 67–83. DOI 10.1007/s11440-016-0500-6

[Duriez2018b] Duriez J., R. Wan (2018), A micromechanical �UNSAT effective stress expression
for stress-strain behaviour of wet granular materials. Geomechanics for Energy and
the Environment (15), pages 10–18. DOI 10.1016/j.gete.2017.12.003

[Duriez2021a] Duriez J., S. Bonelli (2021), Precision and computational costs of Level Set-
Discrete Element Method (LS-DEM) with respect to DEM. Computers and Geotech-
nics (134), pages 104033. DOI 10.1016/j.compgeo.2021.104033

Bibliography 1619

http://dx.doi.org/https://doi.org/10.1016/j.still.2019.104408
http://dx.doi.org/https://doi.org/10.1016/j.still.2020.104660
http://dx.doi.org/https://doi.org/10.1016/j.still.2020.104606
http://dx.doi.org/10.1002/nag.1105
http://dx.doi.org/10.1016/j.ijrmms.2010.09.008
http://dx.doi.org/10.1016/j.jmps.2016.10.011
http://dx.doi.org/10.1002/nag.2774
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001163
http://dx.doi.org/10.1680/jgeot.15.P.113
http://dx.doi.org/10.1007/s11440-016-0500-6
http://dx.doi.org/10.1016/j.gete.2017.12.003
http://dx.doi.org/10.1016/j.compgeo.2021.104033

Yade Documentation, Release 3rd ed.

[Duriez2016] Duriez J., Scholtès L., Donzé F.V. (2016), Micromechanics of wing crack propagation
for different flaw properties. Engineering Fracture Mechanics (153), pages 378 – 398. DOI
10.1016/j.engfracmech.2015.12.034

[Duriez2021b] Duriez Jérôme, Cédric Galusinski (2021), A Level Set-Discrete Element Method
in YADE for numerical, micro-scale, geomechanics with refined grain shapes.
Computers and Geosciences (157), pages 104936. DOI 10.1016/j.cageo.2021.104936

[Dyck2015] Dyck, N.J., Straatman, A.G. (2015),A new approach to digital generation of spherical
void phase porous media microstructures. International Journal of Heat and Mass
Transfer (81), pages 470–477.

[Effeindzourou2016] Effeindzourou, A., Chareyre, B., Thoeni, K., Giacomini, A., Kneib, F. (2016),
Modelling of deformable structures in the general framework of the dis-
crete element method. Geotextiles and Geomembranes (44), pages 143–156. DOI
10.1016/j.geotexmem.2015.07.015

[Elias2014] Eliáš Jan (2014), Simulation of railway ballast using crushable polyhedral particles.
Powder Technology (264), pages 458–465. DOI 10.1016/j.powtec.2014.05.052

[Epifancev2013] Epifancev, K., Nikulin, A., Kovshov, S., Mozer, S., Brigadnov, I. (2013), Modeling
of Peat Mass Process Formation Based on 3D Analysis of the Screw Machine
by the Code YADE. American Journal of Mechanical Engineering (1), pages 73–75. DOI
10.12691/ajme-1-3-3

[Epifantsev2012] Epifantsev, K., Mikhailov, A., Gladky, A. (2012), Proizvodstvo kuskovogo torfa,
ekstrudirovanie, forma zakhodnoi i kalibriruyushchei chasti fil’ery matritsy,
metod diskretnykh elementov [RUS]. Mining informational and analytical bulletin (sci-
entific and technical journal), pages 212–219.

[Escobar2023] Escobar, Andr’es, Guillard, Franccois, Einav, Itai, Faug, Thierry (2023), A scaling law
for the length of granular jumps down smooth inclines. Journal of Fluid Mechanics
(973), pages R1.

[Farahnak2024a] Farahnak, Mojtaba, Wan, Richard, Pouragha, Mehdi, Nicot, Franccois (2024), A mul-
tiscale bifurcation analysis using micromechanical-based constitutive tensor for
granular material. International Journal of Solids and Structures (298), pages 112866.

[Farahnak2024b] Farahnak, Mojtaba, Wan, Richard, Pouragha, Mehdi (2024), Exploring the tenso-
rial nature of capillary stress and the constitutive role of contact stress in wet
granular materials. Computers and Geotechnics (173), pages 106492.

[Favier2009a] Favier, L., Daudon, D., Donzé, F.V., Mazars, J. (2009), Predicting the drag coeffi-
cient of a granular flow using the discrete element method. Journal of Statistical
Mechanics: Theory and Experiment (2009), pages P06012.

[Favier2012] Favier, L., Daudon, D., Donzé, F.V. (2012),Rigid obstacle impacted by a supercritical
cohesive granular flow using a 3D discrete element model. Cold Regions Science and
Technology (85), pages 232–241.

[Feng2021] Feng, Shaochuan, Kamat, Amar M, Sabooni, Soheil, Pei, Yutao (2021), Experimental and
numerical investigation of the origin of surface roughness in laser powder bed
fused overhang regions. Virtual and Physical Prototyping, pages 1–19.

[Firouzabadi2023] Firouzabadi, Mahdeyeh, Esmaeili, Kamran, Rashkolia, Gholamreza Saeedi, Asadi,
Mohsen (2023), A discrete element modelling of gravity flow in sublevel caving
considering the shape and size distribution of particles. International Journal of
Mining, Reclamation and Environment (37), pages 255–276.

[Gao2024a] Gao, Yan, Sun, Ketian, Yuan, Quan, Shi, Tiangen (2024), Stiffness Anisotropy and
Micro-Mechanism of Calcareous Sand with Different Particle Breakage Ratios
Subjected to Shearing Based on DEM Simulations. Journal of Marine Science and
Engineering (12), pages 702.

1620 Bibliography

http://dx.doi.org/10.1016/j.engfracmech.2015.12.034
http://dx.doi.org/10.1016/j.cageo.2021.104936
http://dx.doi.org/10.1016/j.geotexmem.2015.07.015
http://dx.doi.org/10.1016/j.powtec.2014.05.052
http://dx.doi.org/10.12691/ajme-1-3-3

Yade Documentation, Release 3rd ed.

[Gao2024b] Gao, Xuesong, Aryan, Aryan, Zhang, Wei (2024), Numerical Analysis of Rotating
Scans’ Effect on Surface Roughness in Laser-Powder Bed Fusion. Journal of Ma-
terials Research and Technology.

[Giuliano2023] Giuliano, Lorenzo Vasquez, Buffo, Antonio, Vanni, Marco, Frungieri, Graziano (2023),
Micromechanics and strength of agglomerates produced by spray drying. JCIS
Open (9), pages 100068.

[Gladky2017] Gladkyy, Anton, Kuna, Meinhard (2017), DEM simulation of polyhedral particle
cracking using a combined Mohr–Coulomb–Weibull failure criterion. Granular
Matter (19), pages 41. DOI 10.1007/s10035-017-0731-8

[Gladky2014] Gladkyy, Anton, Schwarze, Rüdiger (2014), Comparison of different capillary bridge
models for application in the discrete element method. Granular Matter, pages 1–10.
DOI 10.1007/s10035-014-0527-z

[Gougucs2020] Göğüş, Özge Dinç (2020), 3D discrete analysis of damage evolution of hard rock
under tension. Arabian Journal of Geosciences (13), pages 1–11.

[Grabowski2021] Grabowski, A, Nitka, M, Tejchman, J (2021), Micro-modelling of shear localiza-
tion during quasi-static confined granular flow in silos using DEM. Computers and
Geotechnics (134), pages 104108.

[Grabowski2020] Grabowski, Aleksander, Nitka, Michal (2020), 3D DEM SIMULATIONS OF BA-
SIC GEOTECHNICAL TESTS WITH EARLY DETECTION OF SHEAR LO-
CALIZATION.. Studia Geotechnica et Mechanica.

[Grujicic2013] Grujicic, M, Snipes, JS, Ramaswami, S, Yavari, R (2013), Discrete Element Model-
ing and Analysis of Structural Collapse/Survivability of a Building Subjected
to Improvised Explosive Device (IED) Attack. Advances in Materials Science and
Applications (2), pages 9–24.

[Guo2015] Guo N., J. Zhao (2015), Multiscale insights into classical geomechanics problems.
International Journal for Numerical and Analytical Methods in Geomechanics. (under review)

[Guo2014] Guo, Ning, Zhao, Jidong (2014), A coupled FEM/DEM approach for hierarchical
multiscale modelling of granular media. International Journal for Numerical Methods
in Engineering (99), pages 789–818. DOI 10.1002/nme.4702

[Gusenbauer2018] Gusenbauer Markus, Thomas Schrefl (2018), Simulation of magnetic particles
in microfluidic channels. Journal of Magnetism and Magnetic Materials (446), pages
185–191. DOI 10.1016/j.jmmm.2017.09.031

[Gusenbauer2012] Gusenbauer, M., Kovacs, A., Reichel, F., Exl, L., Bance, S., Özelt, H., Schrefl, T.
(2012), Self-organizing magnetic beads for biomedical applications. Journal of Mag-
netism and Magnetic Materials (324), pages 977–982.

[Gusenbauer2014] Gusenbauer, M., Nguyen, H., Reichel, F., Exl, L., Bance, S., Fischbacher, J., Özelt,
H., Kovacs, A., Brandl, M., Schrefl, T. (2014), Guided self-assembly of magnetic beads
for biomedical applications. Physica B: Condensed Matter (435), pages 21–24.

[Hadda2015] Hadda, N., Nicot, F., Wan, R., Darve, F. (2015), Microstructural self-organization in
granular materials during failure. Comptes Rendus Mécanique.

[Hadda2013] Hadda, Nejib, Nicot, François, Bourrier, Franck, Sibille, Luc, Radjai, Farhang, Darve, Félix
(2013),Micromechanical analysis of second order work in granular media. Granular
Matter (15), pages 221–235. DOI 10.1007/s10035-013-0402-3

[Harthong2012b] Harthong, B., Jerier, J.-F., Richefeu, V., Chareyre, B., Doremus, P., Imbault, D.,
Donzé, F.V. (2012), Contact impingement in packings of elastic–plastic spheres,
application to powder compaction. International Journal of Mechanical Sciences (61),
pages 32–43.

[Harthong2009] Harthong, B., Jerier, J.F., Doremus, P., Imbault, D., Donzé, F.V. (2009), Mod-
eling of high-density compaction of granular materials by the Discrete Ele-

Bibliography 1621

http://dx.doi.org/10.1007/s10035-017-0731-8
http://dx.doi.org/10.1007/s10035-014-0527-z
http://dx.doi.org/10.1002/nme.4702
http://dx.doi.org/10.1016/j.jmmm.2017.09.031
http://dx.doi.org/10.1007/s10035-013-0402-3

Yade Documentation, Release 3rd ed.

ment Method. International Journal of Solids and Structures (46), pages 3357–3364. DOI
10.1016/j.ijsolstr.2009.05.008

[Hartmann2022] Hartmann, Philipp, Thoeni, Klaus, Rojek, Jerzy (2022), A generalised multi-scale
Peridynamics–DEM framework and its application to rigid–soft particle mix-
tures. Computational Mechanics, pages 1–20.

[Hartong2012a] Harthong, B., Scholtès, L., Donzé, F.-V. (2012), Strength characterization of rock
masses, using a coupled DEM–DFN model. Geophysical Journal International (191),
pages 467–480. DOI 10.1111/j.1365-246X.2012.05642.x

[Hasan2016] Hasan, Alsidqi, Karrech, Ali, Chareyre, Bruno (2016), Evaluating Force Distributions
within Virtual Uncemented Mine Backfill Using Discrete Element Method. In-
ternational Journal of Geomechanics, pages 06016042.

[Hassan15] Hassan, Nadine Ali, Nguyen, Ngoc Son, Marot, Didier, Bendahmane, Fateh (2021), Effect
of Scalping on the Mechanical Behavior of Coarse Soils. International Journal of
Geotechnical and Geological Engineering (15), pages 64–74.

[Haustein2017] Haustein Martin, Anton Gladkyy, Rüdiger Schwarze (2017), Discrete element
modeling of deformable particles in YADE. SoftwareX (6), pages 118–123. DOI
https://doi.org/10.1016/j.softx.2017.05.001 ()

[He2021] He, Hantao, Zheng, Junxing, Li, Zhaochao (2021), Accelerated simulations of direct
shear tests by physics engine. Computational Particle Mechanics (8), pages 471–492.

[Heider2021] Heider, Yousef, Suh, Hyoung Suk, Sun, WaiChing (2021), An offline multi-scale un-
saturated poromechanics model enabled by self-designed/self-improved neural
networks. International Journal for Numerical and Analytical Methods in Geomechanics.

[Hilton2013] Hilton, J. E., Tordesillas, A. (2013), Drag force on a spherical intruder in a gran-
ular bed at low Froude number. Phys. Rev. E (88), pages 062203. DOI 10.1103/Phys-
RevE.88.062203

[Horvath2022] Horv’ath, D’aniel, Tam’as, Korn’el, Po’os, Tibor (2022), Viscoelastic contact model
development for the discrete element simulations of mixing process in agitated
drum. Powder Technology (397), pages 117038.

[Hosseinkhani2023] Hosseinkhani, Elham, Habibagahi, Ghassem, Nikooee, Ehsan (2023), Cyclic mod-
eling of unsaturated sands using a pore-scale hydromechanical approach. Interna-
tional Journal for Numerical and Analytical Methods in Geomechanics (47), pages 457–481.

[Houlsby2009] Houlsby G.T. (2009), Potential particles: a method for modelling non-
circular particles in DEM. Computers and Geotechnics (36), pages 953–959. DOI
10.1016/j.compgeo.2009.03.001

[Hu2022] Hu, Z, Yang, ZX, Guo, N, Zhang, YD (2022), Multiscale modeling of seepage-induced
suffusion and slope failure using a coupled FEM–DEM approach. Computer Meth-
ods in Applied Mechanics and Engineering (398), pages 115177.

[Huber2024] Marius Huber, Luc Scholtès, Jérôme Lavé (2024), Stability and failure modes of slopes
with anisotropic strength: Insights from discrete element models. Geomorphology
(444), pages 108946. DOI https://doi.org/10.1016/j.geomorph.2023.108946

[Hung2023] Hung, Chien-Cheng, Niemeijer, Andr’e R, Raoof, Amir, Sweijen, Thomas (2023), Investi-
gation of strain localization in sheared granular layers using 3-D discrete element
modeling. Tectonophysics, pages 229974.

[Ita2023] Ita, Paola, Santa-Cruz, Sandra, Daudon, Dominique, Tarque, Nicola, P’arraga, Anghie,
Ramos, Vladimir (2023), Out-of-plane analysis of dry-stone walls using a pseudo-
static experimental and numerical approach in natural-scale specimens. Engineer-
ing Structures (288), pages 116153.

[Ivannikov2022] Ivannikov, V, Thomsen, F, Ebel, T, Willumeit–R”omer, R (2022), Coupling the dis-
crete element method and solid state diffusion equations for modeling of metallic
powders sintering. Computational Particle Mechanics, pages 1–23.

1622 Bibliography

http://dx.doi.org/10.1016/j.ijsolstr.2009.05.008
http://dx.doi.org/10.1111/j.1365-246X.2012.05642.x
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.05.001
http://dx.doi.org/10.1103/PhysRevE.88.062203
http://dx.doi.org/10.1103/PhysRevE.88.062203
http://dx.doi.org/10.1016/j.compgeo.2009.03.001
http://dx.doi.org/https://doi.org/10.1016/j.geomorph.2023.108946

Yade Documentation, Release 3rd ed.

[Jasik2018] Jasik P., J. Kozicki, T. Kilich, J.E. Sienkiewicz, N. E. Henriksen (2018), Electronic struc-
ture and rovibrational predissociation of the 21Π state in KLi. Physical Chemistry
Chemical Physics (20), pages 18663–18670. DOI 10.1039/c8cp02551g

[Jerier2010b] Jerier, J.-F., Hathong, B., Richefeu, V., Chareyre, B., Imbault, D., Donzé, F.-V., Doremus,
P. (2010), Study of cold powder compaction by using the discrete element method.
Powder Technology (In Press). DOI 10.1016/j.powtec.2010.08.056

[Jerier2009] Jerier, J.-F., Imbault, D.and Donzé, F.V., Doremus, P. (2009), A geometric algorithm
based on tetrahedral meshes to generate a dense polydisperse sphere packing.
Granular Matter (11). DOI 10.1007/s10035-008-0116-0

[Jerier2010a] Jerier, J.-F., Richefeu, V., Imbault, D., Donzé, F.V. (2010), Packing spherical discrete
elements for large scale simulations. Computer Methods in Applied Mechanics and
Engineering. DOI 10.1016/j.cma.2010.01.016

[Jiang2023a] Jiang, Xiao-Qiong, Liu, En-Long (2023), Evolution of the force chain structure of
partially saturated granular material under triaxial compression conditions. Com-
puters and Geotechnics (157), pages 105335.

[Jiao2023b] Jiao, Liqing, Tapponnier, Paul, Donz’e, Fr’ed’eric-Victor, Scholt‘es, Luc, Gaudemer, Yves,
Xu, Xiwei (2023), Discrete element modeling of Southeast Asia’s 3D lithospheric
deformation during the Indian collision. Journal of Geophysical Research: Solid Earth
(128), pages e2022JB025578.

[Jiao2024] Jiao, Liqing, Tapponnier, Paul, Coudurier-Curveur Mccallum, Aur’elie, Xu, Xiwei (2024),
The shape of the Himalayan “Arc”: An ellipse pinned by syntaxial strike-slip
fault tips. Proceedings of the National Academy of Sciences (121), pages e2313278121.

[Jiaxin2024] Jiaxin, Liu, Tian, Yang, Wang, Zhongkui, Li, Longchuan, Ma, Shugen (2024), Modeling
the impact of terrain surface deformation on drag force using discrete element
method and empirical formulation. Applied Mathematical Modelling, pages 115636.

[Jin2024] Jin, Ziyu, Liu, Jiaying, Sun, Honglei, Sun, Miaomiao, Xu, Xiaorong (2024), Influence of
gradation range on strong contact network in granular materials. Granular Matter
(26), pages 37.

[Kalogeropoulos2022] Kalogeropoulos A.D , Michalakopoulos T.N (2022), The effect of grain inter-
locking in discrete element modelling of rock cutting. Geomechanics and Geoengi-
neering, pages 1–24. DOI 10.1080/17486025.2022.2064553

[Kalogeropoulos2022b] A.D Kalogeropoulos, T.N Michalakopoulos (2022), A Method for Selecting
Optimum Microparameters’ Values in the Numerical Simulation of Rock Cut-
ting. Mining, Metallurgy & Exploration. DOI 10.1007/s42461-022-00724-8

[Kaufmann2023] Kaufmann, Georg, Romanov, Douchko, Werban, Ulrike, Vienken, Thomas (2023), The
M”unsterdorf sinkhole cluster: void origin and mechanical failure. Solid Earth (14),
pages 333–351.

[Kozicki2012] Kozicki J., J. Tejchman, Z. Mróz (2012), Effect of grain roughness on strength,
volume changes, elastic and dissipated energies during quasi-static homoge-
neous triaxial compression using DEM.. Granular Matter (14), pages 457–468. DOI
10.1007/s10035-012-0352-1

[Kozicki2008] Kozicki, J., Donzé, F.V. (2008), A new open-source software developed for nu-
merical simulations using discrete modeling methods. Computer Methods in Applied
Mechanics and Engineering (197), pages 4429–4443. DOI 10.1016/j.cma.2008.05.023

[Kozicki2009] Kozicki, J., Donzé, F.V. (2009),YADE-OPEN DEM: an open-source software using
a discrete element method to simulate granular material. Engineering Computations
(26), pages 786–805. DOI 10.1108/02644400910985170

[Kozicki2006a] Kozicki, J., Tejchman, J. (2006), 2D Lattice Model for Fracture in Brittle Mate-
rials. Archives of Hydro-Engineering and Environmental Mechanics (53), pages 71–88.

Bibliography 1623

http://dx.doi.org/10.1039/c8cp02551g
http://dx.doi.org/10.1016/j.powtec.2010.08.056
http://dx.doi.org/10.1007/s10035-008-0116-0
http://dx.doi.org/10.1016/j.cma.2010.01.016
http://dx.doi.org/10.1080/17486025.2022.2064553
http://dx.doi.org/10.1007/s42461-022-00724-8
http://dx.doi.org/10.1007/s10035-012-0352-1
http://dx.doi.org/10.1016/j.cma.2008.05.023
http://dx.doi.org/10.1108/02644400910985170

Yade Documentation, Release 3rd ed.

[Kozicki2007a] Kozicki, J., Tejchman, J. (2007), Effect of aggregate structure on fracture process
in concrete using 2D lattice model”. Archives of Mechanics (59), pages 365–384.

[Kozicki2016] Kozicki, J., Tejchman, J. (2016), DEM investigations of two-dimensional granular
vortex- and anti-vortex structures during plane strain compression.. Granular
Matter (18). DOI 10.1007/s10035-016-0627-z

[Kozicki2017] Kozicki, J., Tejchman, J. (2017), Investigations of quasi-static vortex structures in
2D sand specimen under passive earth pressure conditions based on DEM and
Helmholtz-Hodge vector field decomposition. Granular Matter (19), pages 31. DOI
10.1007/s10035-017-0714-9

[Kozicki2018] Kozicki, J., Tejchman, J. (2018), Relationship between vortex structures and shear
localization in 3D granular specimens based on combined DEM and Helmholtz-
Hodge decomposition. Granular Matter (20), pages 48. DOI 10.1007/s10035-018-0815-0

[Kozicki2014] Kozicki, J., Tejchman, Jacek, Mühlhaus, Hans-Bernd (2014), Discrete simulations of a
triaxial compression test for sand by DEM. International Journal for Numerical and
Analytical Methods in Geomechanics (38), pages 1923–1952. DOI 10.1002/nag.2285

[Kozicki2022] Kozicki, Janek, Gladky, Anton, Thoeni, Klaus (2022), Implementation of high-
precision computation capabilities into the open-source dynamic simulation
framework YADE. Computer Physics Communications (270), pages 108167. DOI
10.1016/j.cpc.2021.108167

[Kozicki2019] Krzaczek, M., Nitka, M., Kozicki, J., Tejchman, J. (2019), Simulations of hydro-
fracking in rock mass at meso-scale using fully coupled DEM/CFD approach.
Acta Geotechnica. DOI 10.1007/s11440-019-00799-6

[Krzaczek2021] Krzaczek, Marek, Nitka, Michal, Tejchman, J (2021), Effect of gas content in macro-
pores on hydraulic fracturing in rocks using a fully coupled DEM/CFD approach.
International Journal for Numerical and Analytical Methods in Geomechanics (45), pages
234–264.

[Krzaczek2023] Krzaczek, M, Tejchman, J (2023), Hydraulic fracturing process in rocks–small-
scale simulations with a novel fully coupled DEM/CFD-based thermo-hydro-
mechanical approach. Engineering Fracture Mechanics, pages 109424.

[Krzaczek2024a] Krzaczek, Marek, Tejchman, J, Nitka, Michal (2024), Effect of free water on the
quasi-static compression behavior of partially-saturated concrete with a fully
coupled DEM/CFD approach. Granular Matter (26), pages 38.

[Krzaczek2024b] Krzaczek, Marek, Tejchman, J, Nitka, Michal (2024), Coupled DEM/CDF analysis
of impact of free water on the static and dynamic response of concrete in tension
regime. Computers and Geotechnics (172), pages 106449.

[Kunhappan2017] Kunhappan, D, Harthong, B, Chareyre, B, Balarac, G, Dumont, PJJ (2017), Nu-
merical modeling of high aspect ratio flexible fibers in inertial flows. Physics of
Fluids. DOI 10.3390/min7040056

[Lapcevic2017] Lapčević, Veljko, Torbica, Slavko (2017), Numerical Investigation of Caved Rock
Mass Friction and Fragmentation Change Influence on Gravity Flow Formation
in Sublevel Caving. Minerals (7). DOI 10.3390/min7040056

[Li2021] Li, Guang-yao, Zhan, Liang-tong, Hu, Zheng, Chen, Yun-min (2021), Effects of particle
gradation and geometry on the pore characteristics and water retention curves
of granular soils: a combined DEM and PNM investigation. Granular Matter (23),
pages 1–16.

[Li2023] Li, Weichao, Chu, Yifan, Deng, Gang, Cai, Hong, Xie, Dingsong, Lee, Min Lee (2023), Study
of shear induced stress redistribution in gap-graded soils by discrete element
method. Computers and Geotechnics (156), pages 105248.

[Li2024] Li, Xin, Kouretzis, George, Thoeni, Klaus (2024), Discrete Element Modelling of uplift
of rigid pipes deeply buried in dense sand. Computers and Geotechnics (166), pages
105957.

1624 Bibliography

http://dx.doi.org/10.1007/s10035-016-0627-z
http://dx.doi.org/10.1007/s10035-017-0714-9
http://dx.doi.org/10.1007/s10035-018-0815-0
http://dx.doi.org/10.1002/nag.2285
http://dx.doi.org/10.1016/j.cpc.2021.108167
http://dx.doi.org/10.1007/s11440-019-00799-6
http://dx.doi.org/10.3390/min7040056
http://dx.doi.org/10.3390/min7040056

Yade Documentation, Release 3rd ed.

[Liang2023] Liang, Chenguang, Yin, Yan, Wang, Wenxuan, Yi, Min (2023), A thermodynamically
consistent non-isothermal phase-field model for selective laser sintering. Interna-
tional Journal of Mechanical Sciences, pages 108602.

[Liu2022] Liu, Jiaying, Wautier, Antoine, Nicot, Franccois, Darve, F’elix, Zhou, Wei (2022), How
meso shear chains bridge multiscale shear behaviors in granular materials: a
preliminary study. International Journal of Solids and Structures (252), pages 111835.

[Liu2024] Liu, Xin, Zhou, Annan, Wang, Xiaonan, Shen, Shui-Long (2024), A fully coupled micro-
hydromechanical (micro-HM) model for partially saturated soils based on DEM.
Computers and Geotechnics (173), pages 106531.

[Lomine2013] Lominé, F., Scholtès, L., Sibille, L., Poullain, P. (2013), Modelling of fluid-solid inter-
action in granular media with coupled LB/DE methods: application to piping
erosion. International Journal for Numerical and Analytical Methods in Geomechanics (37),
pages 577–596. DOI 10.1002/nag.1109

[Mahmoodlu2016] Mahmoodlu, MG, Raoof, A, Sweijen, T, van Genuchten, M TH (2016), Effects of
Sand Compaction and Mixing on Pore Structure and the Unsaturated Soil Hy-
draulic Properties. Vadose Zone (15). DOI 10.2136/vzj2015.10.0136

[Marcato2022] Marcato, Agnese, Boccardo, Gianluca, Marchisio, Daniele (2022), From Computa-
tional Fluid Dynamics to Structure Interpretation via Neural Networks: An
Application to Flow and Transport in Porous Media. Industrial & Engineering Chem-
istry Research.

[Mariani2021] Mariani, Marco, Beltrami, Ruben, Brusa, Paolo, Galassi, Carmen, Ardito, Raffaele, Lecis,
Nora (2021), 3D printing of fine alumina powders by binder jetting. Journal of the
European Ceramic Society.

[Marzougui2015] Marzougui, Donia, Chareyre, Bruno, Chauchat, Julien (2015), Microscopic origins
of shear stress in dense fluid–grain mixtures. Granular Matter, pages 1–13. DOI
10.1007/s10035-015-0560-6

[Massoumi2023] Massoumi, Sina, Challamel, No”el, Lerbet, Jean, Wautier, Antoine, Nicot, Franccois,
Darve, F’elix (2023), Shear vibration modes of granular structures: Continuous and
discrete approaches. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift
f”ur Angewandte Mathematik und Mechanik (103), pages e202200391.

[Maurin2015b] Maurin, R., Chauchat, J., Chareyre, B., Frey, P. (2015), A minimal coupled fluid-
discrete element model for bedload transport. Physics of Fluids (27), pages 113302.
DOI 10.1063/1.4935703

[Maurin2016] Maurin, R., Chauchat, J., Frey, P. (2016), Dense granular flow rheology in tur-
bulent bedload transport. Journal of Fluid Mechanics (804), pages 490–512. DOI
10.1017/jfm.2016.520

[Maurin2018] Maurin, R., Chauchat, J., Frey, P (2018), Revisiting slope influence in turbulent
bedload transport: consequences for vertical flow structure and transport rate
scaling. Journal of Fluid Mechanics (839), pages 135–156. DOI 10.1017/jfm.2017.903

[Mede2018] Mede, T., Chambon, G., Hagenmuller, P., Nicot, F. (2018), A medial axis based method
for irregular grain shape representation in DEM simulations. Granular Matter (20),
pages 16. DOI 10.1007/s10035-017-0785-7

[Mede2024] Mede, Tijan, Godec, Matjavz (2024), Relevance of inter-particle interaction in di-
rected energy deposition powder stream. Powder Technology (435), pages 119393.

[Montella2016] Montellà, E. P., Toraldo, M., Chareyre, B., Sibille, L. (2016), Localized fluidization
in granular materials: Theoretical and numerical study. Phys. Rev. E 5 (94), pages
052905. DOI 10.1103/PhysRevE.94.052905

[Montella2020] Montellà, Eduard Puig, Yuan, Chao, Chareyre, Bruno, Gens, Antonio (2020), Hybrid
multi-scale model for partially saturated media based on a pore network ap-
proach and lattice boltzmann method. Advances in Water Resources (144), pages
103709.

Bibliography 1625

http://dx.doi.org/10.1002/nag.1109
http://dx.doi.org/10.2136/vzj2015.10.0136
http://dx.doi.org/10.1007/s10035-015-0560-6
http://dx.doi.org/10.1063/1.4935703
http://dx.doi.org/10.1017/jfm.2016.520
http://dx.doi.org/10.1017/jfm.2017.903
http://dx.doi.org/10.1007/s10035-017-0785-7
http://dx.doi.org/10.1103/PhysRevE.94.052905

Yade Documentation, Release 3rd ed.

[Montella2020b] Montellà, EP, Chareyre, B, Salager, S, Gens, A (2020), Benchmark cases for a multi-
component Lattice–Boltzmann method in hydrostatic conditions. MethodsX (7),
pages 101090.

[Morimoto2024] Morimoto, Tokio, O’Sullivan, Catherine, Taborda, David MG (2024), Applying Net-
work Modeling to Determine Seepage-Induced Forces on Soil Particles. Journal
of Geotechnical and Geoenvironmental Engineering (150), pages 04024029.

[Mostafa2023] Mostafa, Ahmad, Scholt‘es, Luc, Golfier, Fabrice (2023), Pore-scale hydro-mechanical
modeling of gas transport in coal matrix. Fuel (345), pages 128165.

[Munch2024] Munch, Peter, Ivannikov, Vladimir, Cyron, Christian, Kronbichler, Martin (2024), On the
construction of an efficient finite-element solver for phase-field simulations of
many-particle solid-state-sintering processes. Computational Materials Science (231),
pages 112589.

[Nguyen2021b] Nguyen, Hien Nho Gia, Scholtès, Luc, Guglielmi, Yves, Donzé, Frédéric Victor, Ouraga,
Zady, Souley, Mountaka (2021), Micromechanics of Sheared Granular Layers Acti-
vated by Fluid Pressurization. Geophysical Research Letters (48), pages e2021GL093222.
DOI 10.1029/2021GL093222 (e2021GL093222 2021GL093222)

[Nguyen2021a] Nguyen, Ngoc-Son, Taha, Habib, Marot, Didier (2021), A new Delaunay
triangulation-based approach to characterize the pore network in granular ma-
terials. Acta Geotechnica, pages 1–19.

[Nicot2011] Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F. (2011), Failure mechanisms in
granular media: a discrete element analysis. Granular Matter (13), pages 255–260.
DOI 10.1007/s10035-010-0242-3

[Nicot2013a] Nicot, F., Hadda, N., Darve, F. (2013), Second-order work analysis for granular ma-
terials using a multiscale approach. International Journal for Numerical and Analytical
Methods in Geomechanics. DOI 10.1002/nag.2175

[Nicot2013b] Nicot, F., Hadda, N., Guessasma, M., Fortin, J., Millet, O. (2013), On the definition
of the stress tensor in granular media. International Journal of Solids and Structures.
DOI 10.1016/j.ijsolstr.2013.04.001

[Nicot2012] Nicot, F., Sibille, L., Darve, F. (2012), Failure in rate-independent granular materials
as a bifurcation toward a dynamic regime. International Journal of Plasticity (29),
pages 136–154. DOI 10.1016/j.ijplas.2011.08.002

[Niedostatkiewicz2013] Niedostatkiewicz M., J. Kozicki, J. Tejchman, H.B. Mühlhaus (2013), Discrete
modelling results of a direct shear test for granular materials versus FE results..
Granular Matter (15). DOI 10.1007/s10035-013-0423-y

[Nitka2015b] Nitka M., J. Tejchman, J. Kozicki, D. Leśniewska (2015), DEM analysis of micro-
structural events within granular shear zones under passive earth pressure con-
ditions.. Granular Matter (17). DOI 10.1007/s10035-015-0558-0

[Nitka2015a] Nitka, M., Tejchman, J. (2015), Modelling of concrete behaviour in uniaxial com-
pression and tension with DEM. Granular Matter, pages 1–20.

[Nitka2024] Nitka, Michal, Tejchman, Jacek (2024), Mesoscopic simulations of a fracture process
in reinforced concrete beam in bending using a 2D coupled DEM/micro-CT
approach. Engineering Fracture Mechanics (304), pages 110153.

[Noel2022] No”el, Emeline, Teixeira, David (2022), New framework for upscaling gas-solid heat
transfer in dense packing. International Journal of Heat and Mass Transfer (189), pages
122745.

[Noel2023] No”el, Emeline, Teixeira, David, Preux, Gauthier (2023), Modelling of gas-solid heat
transfer and pressure drop in a rock-packed bed using pore-scale simulations.
International Journal of Heat and Mass Transfer (214), pages 124432.

1626 Bibliography

http://dx.doi.org/10.1029/2021GL093222
http://dx.doi.org/10.1007/s10035-010-0242-3
http://dx.doi.org/10.1002/nag.2175
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.001
http://dx.doi.org/10.1016/j.ijplas.2011.08.002
http://dx.doi.org/10.1007/s10035-013-0423-y
http://dx.doi.org/10.1007/s10035-015-0558-0

Yade Documentation, Release 3rd ed.

[Orosz2023] Orosz, ’Akos, Bagi, Katalin (2023), Comparison of contact treatment methods for
rigid polyhedral discrete element models. International Journal of Rock Mechanics
and Mining Sciences (170), pages 105550.

[Ostanin2020] Ostanin, Igor A, Oganov, Artem R, Magnanimo, Vanessa (2020), Collapse modes in
simple cubic and body-centered cubic arrangements of elastic beads. Physical
Review E (102), pages 032901.

[Pan2022] Pan, Jin-Hong, Zhang, Jian-Min, Wang, Rui (2022), Influence of small particle sur-
face asperities on macro and micro mechanical behavior of granular material.
International Journal for Numerical and Analytical Methods in Geomechanics (46), pages
961–978.

[Papachristos2017] Papachristos, E, Scholtès, L, Donzé, F.V, Chareyre, B (2017), Intensity and vol-
umetric characterizations of hydraulically driven fractures by hydro-mechanical
simulations. International Journal of Rock Mechanics and Mining Sciences (93), pages
163–178.

[Papachristos2023] Papachristos, E, Stefanou, I, Sulem, J (2023), A discrete elements study of the
frictional behavior of fault gouges. Journal of Geophysical Research: Solid Earth (128),
pages e2022JB025209.

[Pekmezi2020] Pekmezi, Gerald, Littlefield, David, Chareyre, Bruno (2020), Statistical distributions
of the elastic moduli of particle aggregates at the mesoscale. International Journal
of Impact Engineering (139), pages 103481.

[Pekmezi2024] Pekmezi, Gerald, Chareyre, Bruno, Littlefield, David (2024), Uniform boundary con-
ditions on models of spherical particles through alpha shape surface tracking and
Laguerre–Voronoi diagrams. Computer Physics Communications (301), pages 109214.

[Pelech2022] Pelech, T, Barnett, N, Dello-Iacovo, M, Oh, J, Saydam, S (2022), Analysis of the sta-
bility of micro-tunnels in lunar regolith with the Discrete Element Method. Acta
Astronautica (196), pages 1–12.

[Pirnia2018] Pirnia Pouyan, François Duhaime, Yannic Ethier, Jean-Sébastien Dubé (2018), ICY:
An interface between COMSOL multiphysics and discrete element code
YADE for the modelling of porous media. Computers & Geosciences. DOI
https://doi.org/10.1016/j.cageo.2018.11.002

[Pirrone2023] Pirrone, Serena RM, Del Dottore, Emanuela, Sibille, Luc, Mazzolai, Barbara (2023), A
methodology to investigate the design requirements of plant root-inspired robots
for soil exploration. IEEE Robotics and Automation Letters.

[Pol2021] Pol, Antonio, Gabrieli, Fabio, Brezzi, Lorenzo (2021), Discrete element analysis of the
punching behaviour of a secured drapery system: from laboratory characteriza-
tion to idealized in situ conditions. Acta Geotechnica, pages 1–21.

[Pol2022] Pol, Antonio, Gabrieli, Fabio (2022), Anchor plate bearing capacity in flexible mesh
facings. Soils and Foundations (62), pages 101222.

[Pouragha2021] Pouragha, Mehdi, Kruyt, Niels P, Wan, Richard (2021), Non-coaxial Plastic Flow of
Granular Materials through Stress Probing Analysis. International Journal of Solids
and Structures.

[Puckett2011] Puckett, J.G., Lechenault, F., Daniels, K.E. (2011), Local origins of volume fraction
fluctuations in dense granular materials. Physical Review E (83), pages 041301. DOI
10.1103/PhysRevE.83.041301

[Redaelli2021] Redaelli, Irene, di Prisco, Claudio (2021), DEM numerical tests on dry granular
specimens: the role of strain rate under evolving/unsteady conditions. Granular
Matter (23), pages 1–34.

[Reiner2023] Reiner, Johannes, Nguyen, Nhu HT (2023), Meshfree simulation of progressive dam-
age in composite laminates using discrete element analysis. Journal of Composite
Materials (57), pages 1135–1148.

Bibliography 1627

http://dx.doi.org/https://doi.org/10.1016/j.cageo.2018.11.002
http://dx.doi.org/10.1103/PhysRevE.83.041301

Yade Documentation, Release 3rd ed.

[Rioual2024] Rioual, Franccois, Gbehe, Paule Emmanuelle Eva (2024), Characterisation of the gran-
ular dynamics at the interface between a pipe and a granular flow in a rotating
drum. Particuology (86), pages 117–125.

[Rojas2023] Rojas, Eduardo, Alarc’on, H’ector, Salinas, Vicente, Castillo, Gustavo, Guti’errez, Pablo
(2023), Stability of a tilted granular monolayer: How many spheres can we pick
before the collapse?. Physical Review E (108), pages 064904.

[Salomon2024] Salomon, Jose, O’Sullivan, Catherine, Patino-Ramirez, Fernando (2024), On data
benchmarking and verification of discrete granular simulations. Data in Brief (53),
pages 110252.

[Saomoto2023] Saomoto, Hidetaka, Kikkawa, Naotaka, Moriguchi, Shuji, Nakata, Yukio, Otsubo,
Masahide, Angelidakis, Vasileios, Cheng, Yi Pik, Chew, Kevin, Chiaro, Gabriele, Duriez,
J’er^ome, others (2023), Round robin test on angle of repose: DEM simulation re-
sults collected from 16 groups around the world. Soils and Foundations (63), pages
101272.

[Sarkis2022] Sarkis, Marilyn, Abbas, Mohammad, Naillon, Antoine, Emeriault, Fabrice, Geindreau,
Christian, Esnault-Filet, Annette (2022), DEM modeling of biocemented sand: In-
fluence of the cohesive contact surface area distribution and the percentage of
cohesive contacts. Computers and Geotechnics (149), pages 104860.

[Sayeed2011] Sayeed, M.A., Suzuki, K., Rahman, M.M., Mohamad, W.H.W., Razlan, M.A., Ahmad,
Z., Thumrongvut, J., Seangatith, S., Sobhan, MA, Mofiz, SA, others (2011), Strength
and Deformation Characteristics of Granular Materials under Extremely Low to
High Confining Pressures in Triaxial Compression. International Journal of Civil &
Environmental Engineering IJCEE-IJENS (11).

[Scholtes2015a] Scholtès, L., Chareyre, B., Michallet, H., Catalano, E., Marzougui, D. (2015),
Modeling wave-induced pore pressure and effective stress in a granu-
lar seabed. Continuum Mechanics and Thermodynamics (27), pages 305–323. DOI
http://dx.doi.org/10.1007/s00161-014-0377-2

[Scholtes2009a] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), Micromechanics of granular
materials with capillary effects. International Journal of Engineering Science (47), pages
64–75. DOI 10.1016/j.ijengsci.2008.07.002

[Scholtes2009c] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), Discrete modelling of capil-
lary mechanisms in multi-phase granular media. Computer Modeling in Engineering
and Sciences (52), pages 297–318.

[Scholtes2015b] Scholtès, L., Donzé, F., V. (2015), A DEM analysis of step-path failure
in jointed rock slopes. Comptes rendus - Mécanique (343), pages 155–165. DOI
http://dx.doi.org/10.1016/j.crme.2014.11.002

[Scholtes2011] Scholtès, L., Donzé, F.V., Khanal, M. (2011), Scale effects on strength of geoma-
terials, case study: Coal. Journal of the Mechanics and Physics of Solids (59), pages
1131–1146. DOI 10.1016/j.jmps.2011.01.009

[Scholtes2012] Scholtès, L., Donzé, F.V. (2012), Modelling progressive failure in fractured rock
masses using a 3D Discrete Element Method. International Journal of Rock Mechanics
and Mining Sciences (52), pages 18–30. DOI 10.1016/j.ijrmms.2012.02.009

[Scholtes2013] Scholtès, L., Donzé, F.V. (2013), A DEM model for soft and hard rocks: Role
of grain interlocking on strength. Journal of the Mechanics and Physics of Solids (61),
pages 352–369. DOI 10.1016/j.jmps.2012.10.005

[Scholtes2009b] Scholtès, L., Hicher, P.-Y., Chareyre, B., Nicot, F., Darve, F. (2009), On the capil-
lary stress tensor in wet granular materials. International Journal for Numerical and
Analytical Methods in Geomechanics (33), pages 1289–1313. DOI 10.1002/nag.767

[Scholtes2010] Scholtès, L., Hicher, P.-Y., Sibille, L. (2010), Multiscale approaches to describe
mechanical responses induced by particle removal in granular materials. Comptes
Rendus Mécanique (338), pages 627–638. DOI 10.1016/j.crme.2010.10.003

1628 Bibliography

http://dx.doi.org/http://dx.doi.org/10.1007/s00161-014-0377-2
http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.crme.2014.11.002
http://dx.doi.org/10.1016/j.jmps.2011.01.009
http://dx.doi.org/10.1016/j.ijrmms.2012.02.009
http://dx.doi.org/10.1016/j.jmps.2012.10.005
http://dx.doi.org/10.1002/nag.767
http://dx.doi.org/10.1016/j.crme.2010.10.003

Yade Documentation, Release 3rd ed.

[Senanayake2022] Senanayake, SMCU, Haque, A, Bui, HH (2022), An experiment-based cohesive-
frictional constitutive model for cemented materials. Computers and Geotechnics
(149), pages 104862.

[Shafabakhsh2024] Shafabakhsh, Paiman, Le Borgne, Tanguy, Renard, Franccois, Linga, Gaute (2024),
Resolving pore-scale concentration gradients for transverse mixing and reaction
in porous media. Advances in Water Resources, pages 104791.

[Shiu2008] Shiu, W., Donzé, F.V., Daudeville, L. (2008), Compaction process in concrete during
missile impact: a DEM analysis. Computers and Concrete (5), pages 329–342.

[Shiu2009] Shiu, W., Donzé, F.V., Daudeville, L. (2009), Discrete element modelling of missile im-
pacts on a reinforced concrete target. International Journal of Computer Applications
in Technology (34), pages 33–41.

[Sibille2015] Sibille, L., Hadda, N., Nicot, F., Tordesillas, A., Darve, F. (2015), Granular plasticity, a
contribution from discrete mechanics. Journal of the Mechanics and Physics of Solids
(75), pages 119–139. DOI 10.1016/j.jmps.2014.09.010

[Sibille2014] Sibille, L., Lominé, F., Poullain, P., Sail, Y., Marot, D. (2014), Internal erosion in gran-
ular media: direct numerical simulations and energy interpretation. Hydrological
Processes. DOI 10.1002/hyp.10351 (First published online Oct. 2014)

[Singh2024] Singh, Shubjot, Buscarnera, Giuseppe (2024), Examining the adaptive elastic
anisotropy of granular materials. G’eotechnique, pages 1–40.

[Skorov2022] Skorov, Yu, Reshetnyk, V, Bentley, MS, Rezac, Ladislav, Hartogh, Paul, Blum, J (2022),
The effect of hierarchical structure of the surface dust layer on the modelling of
comet gas production. Monthly Notices of the Royal Astronomical Society (510), pages
5520–5534.

[Smilauer2006] Šmilauer Václav (2006), The splendors and miseries of Yade design. Annual Report
of Discrete Element Group for Hazard Mitigation.

[Sobieski2020] Sobieski, Wojciech (2020), Calculating the Binary Tortuosity in DEM-Generated
Granular Beds. Processes (8), pages 1105.

[Soundaranathan2023] Soundaranathan, Mithushan, Al-Sharabi, Mohammed, Sweijen, Thomas,
Bawuah, Prince, Zeitler, J Axel, Hassanizadeh, S Majid, Pitt, Kendal, Johnston, Blair F,
Markl, Daniel (2023), Modelling the evolution of pore structure during the disin-
tegration of pharmaceutical tablets. Pharmaceutics (15), pages 489.

[Suchorzewski2022] Suchorzewski, Jan, Nitka, Michal (2022), Size effect at aggregate level in mi-
croCT scans and DEM simulation–Splitting tensile test of concrete. Engineering
Fracture Mechanics (264), pages 108357.

[Suh2024] Suh, Hyoung Suk (2024), Evolution of anisotropic capillarity in unsaturated granular
media within the pendular regime. International Journal of Geo-Engineering (15), pages
10.

[Suhr2016a] Suhr Bettina, Six Klaus (2016), On the effect of stress dependent interparti-
cle friction in direct shear tests. Powder Technology (294), pages 211–220. DOI
10.1016/j.powtec.2016.02.029

[Suhr2020] Suhr Bettina, Six Klaus (2020), Simple particle shapes for DEM simulations of rail-
way ballast – influence of shape descriptors on packing behaviour. Granular Matter
(22). DOI 10.1007/s10035-020-1009-0

[Suhr2016b] Suhr, Bettina, Six, Klaus (2016), Friction phenomena and their impact on the shear
behaviour of granular material. Computational Particle Mechanics. DOI 10.1007/s40571-
016-0119-2

[Suhr2017] Suhr, Bettina, Six, Klaus (2017), Parametrisation of a DEM model for railway ballast
under different load cases. Granular Matter (19), pages 64. DOI 10.1007/s10035-017-
0740-7

Bibliography 1629

http://dx.doi.org/10.1016/j.jmps.2014.09.010
http://dx.doi.org/10.1002/hyp.10351
http://dx.doi.org/10.1016/j.powtec.2016.02.029
http://dx.doi.org/10.1007/s10035-020-1009-0
http://dx.doi.org/10.1007/s40571-016-0119-2
http://dx.doi.org/10.1007/s40571-016-0119-2
http://dx.doi.org/10.1007/s10035-017-0740-7
http://dx.doi.org/10.1007/s10035-017-0740-7

Yade Documentation, Release 3rd ed.

[Suhr2022] Suhr, Bettina, Skipper, William A, Lewis, Roger, Six, Klaus (2022), DEM modelling of
railway ballast using the Conical Damage Model: a comprehensive parametrisa-
tion strategy. Granular Matter (24), pages 1–25.

[Suhr2022a] Bettina Suhr, Klaus Six (2022), Efficient DEM simulations of railway ballast using
simple particle shapes. Granular Matter (24). DOI https://doi.org/10.1007/s10035-022-
01274-y

[Suhr2024] Bettina Suhr, William A. Skipper, Roger Lewis, Klaus Six (2024), DEM simulation of
single sand grain crushing in sanded wheel-rail contacts. Powder Technology (432),
pages 119150. DOI https://doi.org/10.1016/j.powtec.2023.119150

[Sweijen2017b] Sweijen, T, Aslannejad, H, Hassanizadeh, SM (2017), Capillary pressure-saturation
relationships for porous granular materials: Pore morphology method vs.
pore unit assembly method. Advances in Water Resources (107), pages 22–31. DOI
10.1016/j.advwatres.2017.06.001

[Sweijen2017] Sweijen, T, Chareyre, B, Hassanizadeh, SM, Karadimitriou, NK (2017), Grain-scale
modelling of swelling granular materials; application to super absorbent poly-
mers. Powder Technology (318), pages 411–422. DOI 10.1016/j.powtec.2017.06.015

[Sweijen2016] Sweijen, T, Nikooee, E, Hassanizadeh, S.M, Chareyre, B (2016), The effects of swelling
and porosity change on capillarity: DEM coupled with a pore-unit assembly
method. Transport in porous media (113), pages 207–226. DOI 10.1007/s11242-016-0689-8

[Sweijen2018] Sweijen, Thomas, Hassanizadeh, S Majid, Chareyre, Bruno, Zhuang, Luwen (2018),
Dynamic Pore-Scale Model of Drainage in Granular Porous Media: The
Pore-Unit Assembly Method. Water Resources Research (54), pages 4193–4213. DOI
10.1029/2017WR021769

[Sweijen2020] Sweijen, Thomas, Hassanizadeh, S Majid, Chareyre, Bruno (2020), Unsaturated flow
in a packing of swelling particles; a grain-scale model. Advances in Water Resources,
pages 103642.

[Tamas2024] Tam’as, Korn’el (2024), Modelling the interaction of soil with a passively-vibrating
sweep using the discrete element method. Biosystems Engineering (245), pages 199–
222.

[Tedesco2023] Tedesco, Bruna Mota Mendes Silva, Cord~ao Neto, Manoel Porfirio, Farias, M’arcio Muniz
de, Tarantino, Alessandro (2023), Design of agglomerates using Weibull distribution
to simulate crushable particles in the discrete element method. Soils and Rocks
(46), pages e2023004922.

[Tejada2016] Tejada I. G., L. Sibille, B. Chareyre (2016), Role of blockages in particle transport
through homogeneous granular assemblies. EPL (Europhysics Letters) (115), pages
54005.

[Thoeni2014] Thoeni K., A. Giacomini, C. Lambert, S.W. Sloan, J.P. Carter (2014), A 3D dis-
crete element modelling approach for rockfall analysis with drapery systems.
International Journal of Rock Mechanics and Mining Sciences (68), pages 107–119. DOI
10.1016/j.ijrmms.2014.02.008

[Thoeni2013] Thoeni K., C. Lambert, A. Giacomini, S.W. Sloan (2013),Discrete modelling of hexag-
onal wire meshes with a stochastically distorted contact model. Computers and
Geotechnics (49), pages 158–169. DOI 10.1016/j.compgeo.2012.10.014

[Tian2020] Tian, Yunfu, Yang, Lijun, Zhao, Dejin, Huang, Yiming, Pan, Jiajing (2020), Numerical
analysis of powder bed generation and single track forming for selective laser
melting of SS316L stainless steel. Journal of Manufacturing Processes (58), pages 964–
974.

[Tian2023] Tian, Zhiguo, Zhang, Duzhou, Zhou, Gang, Zhang, Shaohua, Wang, Moran (2023), Com-
paction and sintering effects on scaling law of permeability-porosity relation of
powder materials. International Journal of Mechanical Sciences, pages 108511.

1630 Bibliography

http://dx.doi.org/https://doi.org/10.1007/s10035-022-01274-y
http://dx.doi.org/https://doi.org/10.1007/s10035-022-01274-y
http://dx.doi.org/https://doi.org/10.1016/j.powtec.2023.119150
http://dx.doi.org/10.1016/j.advwatres.2017.06.001
http://dx.doi.org/10.1016/j.powtec.2017.06.015
http://dx.doi.org/10.1007/s11242-016-0689-8
http://dx.doi.org/10.1029/2017WR021769
http://dx.doi.org/10.1016/j.ijrmms.2014.02.008
http://dx.doi.org/10.1016/j.compgeo.2012.10.014

Yade Documentation, Release 3rd ed.

[Tomporowski2022] Tomporowski, D, Nitka, M, Tejchman, J (2022), Application of the 3D DEM
in the modelling of fractures in pre-flawed marble specimens during uniaxial
compression. Engineering Fracture Mechanics, pages 108978.

[Tong2012] Tong, A.-T., Catalano, E., Chareyre, B. (2012), Pore-Scale Flow Simulations: Model
Predictions Compared with Experiments on Bi-Dispersed Granular Assemblies.
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles. DOI 10.2516/ogst/2012032

[Tordesillas2020] Tordesillas, Antoinette, Kahagalage, Sanath, Ras, Charl, Nitka, Michal, Tejchman,
Jacek (2020), Early prediction of macrocrack location in concrete, rocks and other
granular composite materials. Scientific reports (10), pages 1–16.

[Tran2012] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2012), An Algorithm for the Propaga-
tion of Uncertainty in Soils using the Discrete Element Method. The Electronic
Journal of Geotechnical Engineering.

[Tran2012c] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2012), Discrete Element and Experi-
mental Investigations of the Earth Pressure Distribution on Cylindrical Shafts.
International Journal of Geomechanics. DOI 10.1061/(ASCE)GM.1943-5622.0000277

[Tran2013] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2013), A finite–discrete ele-
ment framework for the 3D modeling of geogrid–soil interaction under
pullout loading conditions. Geotextiles and Geomembranes (37), pages 1–9. DOI
10.1016/j.geotexmem.2013.01.003

[Tran2011] Tran, V.T., Donzé, F.V., Marin, P. (2011), A discrete element model of concrete under
high triaxial loading. Cement and Concrete Composites.

[Tran2014] Tran, VDH, Meguid, MA, Chouinard, LE (2014), Three-Dimensional Analysis of
Geogrid-Reinforced Soil Using a Finite-Discrete Element Framework. Interna-
tional Journal of Geomechanics.

[Vaddy2022] Vaddy, Poornachandra, Pandurangan, Venkataraman, Biligiri, Krishna Prapoorna (2022),
Discrete element method to investigate flexural strength of pervious concrete.
Construction and Building Materials (323), pages 126477.

[Valera2015] Valera, Roberto Rosello, Morales, Irvin Perez, Vanmaercke, Simon, Morfa, Carlos Recarey,
Cortes, Lucia Arguelles, Casanas, Harold Diaz-Guzman (2015), Modified algorithm for
generating high volume fraction sphere packings. Computational Particle Mechanics,
pages 1–12. DOI 10.1007/s40571-015-0045-8

[vanderHaven2023] van der Haven, Dingeman L. H., Fragkopoulos, Ioannis S., Elliott, James A. (2023),
A physically consistent Discrete Element Method for arbitrary shapes using
Volume-interacting Level Sets. Computer Methods in Applied Mechanics and Engineering
(414), pages 116165. DOI 10.1016/j.cma.2023.116165

[vanderHaven2024] van der Haven, Dingeman LH, Fragkopoulos, Ioannis S, Elliott, James A (2024),
Volume-interacting level set discrete element method: The porosity and angle of
repose of aspherical, angular, and concave particles. Powder Technology (433), pages
119295.

[vanderLinden2016] van der Linden, Joost H., Narsilio, Guillermo A., Tordesillas, Antoinette (2016),
Machine learning framework for analysis of transport through complex networks
in porous, granular media: A focus on permeability. Phys. Rev. E 2 (94), pages
022904. DOI 10.1103/PhysRevE.94.022904

[Varela2023] Varela-Rosales, Nydia Roxana, Santarossa, Angel, Engel, Michael, P”oschel, Thorsten
(2023), Granular binary mixtures improve energy dissipation efficiency of granu-
lar dampers. Granular Matter (25), pages 49.

[Wan2014] Wan, R, Khosravani, S, Pouragha, M (2014), Micromechanical analysis of force trans-
port in wet granular soils. Vadose Zone Journal (13). DOI 10.2136/vzj2013.06.0113

[Wan2015] Wan R., J. Duriez, F. Darve (2015), A tensorial description of stresses in triphasic
granular materials with interfaces. Geomechanics for Energy and the Environment (4),
pages 73–87. DOI 10.1016/j.gete.2015.11.004

Bibliography 1631

http://dx.doi.org/10.2516/ogst/2012032
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000277
http://dx.doi.org/10.1016/j.geotexmem.2013.01.003
http://dx.doi.org/10.1007/s40571-015-0045-8
http://dx.doi.org/10.1016/j.cma.2023.116165
http://dx.doi.org/10.1103/PhysRevE.94.022904
http://dx.doi.org/10.2136/vzj2013.06.0113
http://dx.doi.org/10.1016/j.gete.2015.11.004

Yade Documentation, Release 3rd ed.

[Wang2014] Wang, XiaoLiang, Li, JiaChun (2014), Simulation of triaxial response of granular
materials by modified DEM. Science China Physics, Mechanics & Astronomy (57),
pages 2297–2308.

[Wang2021] Wang, Tao, Wautier, Antoine, Liu, Sihong, Nicot, Franccois (2021), How fines content
affects granular plasticity of under-filled binary mixtures. Acta Geotechnica, pages
1–15.

[Wang2022] Wang, Xiaoliang, Li, Ge, Liu, Qingquan (2022), An updated critical state model by in-
corporating inertial effects for granular material in solid–fluid transition regime.
Granular Matter (24), pages 1–9.

[WangYu2023] Wang, Yu, Nie, Jia-Yan, Zhao, Shiwei, Wang, Hao (2023), A coupled FEM-DEM
study on mechanical behaviors of granular soils considering particle breakage.
Computers and Geotechnics (160), pages 105529.

[WangTao2023] Wang, Tao, Wautier, Antoine, Zhu, Jungao, Nicot, Franccois (2023), Stabilizing role
of coarse grains in cohesionless overfilled binary mixtures: A DEM investigation.
Computers and Geotechnics (162), pages 105625.

[WangJiannan2023] Wang, Jiannan, Uhlemann, Sebastian, Otto, Shawn, Dozier, Brian, Kuhlman,
Kristopher L, Wu, Yuxin (2023), Joint Geophysical and Numerical Insights of the
Coupled Thermal-Hydro-Mechanical Processes During Heating in Salt. Journal
of Geophysical Research: Solid Earth (128), pages e2023JB026954.

[WangHailin2023] Wang, Hailin, Sun, Hong, Ge, Xiurun, Niu, Fujun (2023), Macro-micro Perfor-
mances of Granular Materials Considering the Influences of Density and Stress
Path under True Triaxial Conditions: A DEM Investigation. KSCE Journal of Civil
Engineering (27), pages 4176–4191.

[Wei2022] Wei, Jiangtao (2022), Particle-void fabric and effective stress reduction in cyclic
liquefaction of granular soils. Soil Dynamics and Earthquake Engineering (153), pages
107081.

[Wei2024] Wei, Jiangtao, Xu, Tiejie, He, Jianxian (2024), Effect of static shear stress and cyclic
loading direction on cyclic behaviors of granular soils by DEM analysis. Computers
and Geotechnics (167), pages 106112.

[Widulinski2011] Widuliński, J. Kozicki, J. Tejchman, D. Leśniewska (2011), Discrete simulations
of shear zone patterning in sand in earth pressure problems of a retain-
ing wall.. International Journal of Solids and Structures (48), pages 1191–1209. DOI
10.1016/j.ijsolstr.2011.01.005

[Wu2023] Wu, Huanran, Wu, Wei, Liang, Weijian, Dai, Feng, Liu, Hanlong, Xiao, Yang (2023), 3D
DEM modeling of biocemented sand with fines as cementing agents. International
Journal for Numerical and Analytical Methods in Geomechanics (47), pages 212–240.

[Xiao2023] Xiao, Junhua, Xue, Lihua, Zhang, De, Sun, Siqi, Bai, Yingqi, Shi, Jin (2023), Coupled
DEM-FEM methods for analyzing contact stress between railway ballast and
subgrade considering real particle shape characteristic. Computers and Geotechnics
(155), pages 105192.

[Xiong2021] Xiong, Hao, Yin, Zhen-Yu, Zhao, Jidong, Yang, Yi (2021), Investigating the effect of
flow direction on suffusion and its impacts on gap-graded granular soils. Acta
Geotechnica (16), pages 399–419.

[Xu2022] Xu, Wen-Jie, Wang, Lin, Cheng, Kai (2022), The Failure and River Blocking Mecha-
nism of Large-Scale Anti-dip Rock Landslide Induced by Earthquake. Rock Me-
chanics and Rock Engineering, pages 1–21.

[Yang2022] Yang, Siyuan, Huang, Duruo, Wang, Gang, Jin, Feng (2022), Probing Fabric Evolu-
tion and Reliquefaction Resistance of Sands Using Discrete-Element Modeling.
Journal of Engineering Mechanics (148), pages 04022023.

1632 Bibliography

http://dx.doi.org/10.1016/j.ijsolstr.2011.01.005

Yade Documentation, Release 3rd ed.

[Yang2023a] Yang, Siyuan, Huang, Duruo (2023), Understanding fabric evolution and multiple
liquefaction resistance of sands in the presence of initial static shear stress. Soil
Dynamics and Earthquake Engineering (171), pages 107962.

[Yang2023b] Yang, Siyuan, Huang, Duruo (2023), Investigating the influence of inherent soil fab-
rics on reliquefaction resistance of sands using DEM-clump simulation. Computers
and Geotechnics (164), pages 105817.

[Yim2022] Yim, Seungkyun, Bian, Huakang, Aoyagi, Kenta, Yamanaka, Kenta, Chiba, Akihiko (2022),
Spreading behavior of Ti48Al2Cr2Nb powders in powder bed fusion additive
manufacturing process: Experimental and discrete element method study. Addi-
tive Manufacturing (49), pages 102489.

[Yim2023] Yim, Seungkyun, Aoyagi, Kenta, Yanagihara, Keiji, Bian, Huakang, Chiba, Akihiko (2023),
Effect of mechanical ball milling on the electrical and powder bed properties of
gas-atomized Ti–48Al–2Cr–2Nb and elucidation of the smoke mechanism in the
powder bed fusion electron beam melting process. Journal of Materials Science &
Technology (137), pages 36–55.

[Yousefpour2022] Yousefpour, Negin, Pouragha, Mehdi (2022), Prediction of the post-failure be-
havior of rocks: Combining artificial intelligence and acoustic emission sensing.
International Journal for Numerical and Analytical Methods in Geomechanics.

[Yuan2016] Yuan C., B. Chareyre, F. Darve (2016), Pore-scale simulations of drainage in granular
materials: finite size effects and the representative elementary volume. Adv. in
Water Ressources (95), pages 109–124.

[Yuan2017] Yuan C., B. Chareyre (2017), A pore-scale method for hydromechanical coupling in
deformable granular media. Computer Methods in Applied Mechanics and Engineering.
DOI 10.1016/j.cma.2017.02.024

[Yuan2018] Yuan, Chao, Chareyre, Bruno, Darve, Félix (2018), Deformation and stresses
upon drainage of an idealized granular material. Acta Geotechnica (13). DOI
10.1016/j.cma.2017.02.024

[Yuan2019] Yuan, Chao, Moscariello, Mariagiovanna, Cuomo, Sabatino, Chareyre, Bruno (2019), Nu-
merical simulation of wetting-induced collapse in partially saturated granular
soils. Granular Matter (21), pages 64.

[Zhang2021] Zhang, Lingran, Scholtès, Luc, Donzé, Frédéric Victor (2021), Discrete Element Model-
ing of Permeability Evolution During Progressive Failure of a Low-Permeable
Rock Under Triaxial Compression. Rock Mechanis and Rock Engineering. DOI
10.1007/s00603-021-02622-9

[Zhang2023] Zhang, Aoxi, Dieudonn’e, Anne-Catherine (2023), Effects of carbonate distribution
pattern on the mechanical behaviour of bio-cemented sands: A DEM study.
Computers and Geotechnics (154), pages 105152.

[ZhangAoxi2024] Zhang, Aoxi, Dieudonn’e, Anne-Catherine (2024), Cementor: A toolbox to gener-
ate bio-cemented soils with specific microstructures. Biogeotechnics, pages 100081.

[ZhangShihao2024] Zhang, Shihao, Zhang, Yingbin, Wei, Jiangtao, Jiang, Minxuan, Qin, Yiqiao (2024),
Effects of initial static shear on liquefaction behaviour of Toyoura sand in
undrained multi direction dynamic cyclic simple shear tests and DEM. Japanese
Geotechnical Society Special Publication (10), pages 1521–1526.

[Zhao2015] Zhao J., N. Guo (2015), The interplay between anisotropy and strain localisation
in granular soils: a multiscale insight. Géotechnique. (under review)

[Zhao2017] Zhao, Shiwei, Zhang, Nan, Zhou, Xiaowen, Zhang, Lei (2017), Particle shape effects on
fabric of granular random packing. Powder Technology (310), pages 175–186.

[Zhao2019] Zhao, Benzhong, MacMinn, Christopher W, Primkulov, Bauyrzhan K, Chen, Yu, Valocchi,
Albert J, Zhao, Jianlin, Kang, Qinjun, Bruning, Kelsey, McClure, James E, Miller, Cass
T, others (2019), Comprehensive comparison of pore-scale models for multiphase

Bibliography 1633

http://dx.doi.org/10.1016/j.cma.2017.02.024
http://dx.doi.org/10.1016/j.cma.2017.02.024
http://dx.doi.org/10.1007/s00603-021-02622-9

Yade Documentation, Release 3rd ed.

flow in porous media. Proceedings of the National Academy of Sciences (116), pages
13799–13806.

[Zhao2021a] Zhao, Shiwei, Zhao, Jidong (2021), SudoDEM: Unleashing the predictive power of
the discrete element method on simulation for non-spherical granular particles.
Computer Physics Communications (259), pages 107670.

[Zhao2021b] Zhao, Yufan, Koizumi, Yuichiro, Aoyagi, Kenta, Yamanaka, Kenta, Chiba, Akihiko (2021),
Thermal properties of powder beds in energy absorption and heat transfer during
additive manufacturing with electron beam. Powder Technology (381), pages 44–54.

[Zhao2022] Zhao, Chaofa, Kruyt, Niels P, Pouragha, Mehdi, Wan, Richard (2022), Fabric response
to stress probing in granular materials: Two-dimensional, anisotropic systems.
Computers and Geotechnics (146), pages 104695.

[Zhao2023a] Zhao, Yufan, Aoyagi, Kenta, Cui, Yujie, Yamanaka, Kenta, Chiba, Akihiko (2023), Mul-
tiscale heat transfer affected by powder characteristics during electron beam
powder-bed fusion. Powder Technology (421), pages 118438.

[Zhao2023b] Zhao, Yufan, Aoyagi, Kenta, Yamanaka, Kenta, Chiba, Akihiko (2023), Processing con-
dition dependency of increased layer thickness on surface quality during electron
beam powder bed fusion. Journal of Materials Research and Technology (26), pages 5264–
5279.

[Zhi2024] Zhi, Peng, Wu, Yu-Ching, Bai, Meiyan (2024), Determining the effect of geometric and
dynamic properties of screws on fiber orientation during FRC 3D printing based
on discrete element simulation. Automation in Construction (165), pages 105513.

[Zhong2021] Zhong, Xinran, Sun, WaiChing, Dai, Ying (2021), A reduced-dimensional explicit
discrete element solver for simulating granular mixing problems. Granular Matter
(23), pages 1–13.

[1stYadeWorkshop] B. Chareyre (ed.), Booklet of presentations of the 1st Yade Workshop (2014).

[2ndYadeWorkshop] J. Duriez (ed.), 2nd YADE Workshop: Discrete-based modeling of multi-
scale coupled problems. Booklet of Abstracts (2018).

[Aboul2016b] Aboul Hosn, R, Sibille, L, Benahmed, N, Chareyre, B (2016), A discrete numerical
description of the mechanical response of soils subjected to degradation by suf-
fusion. In Scour and Erosion: Proceedings of the 8th International Conference on Scour and
Erosion (Oxford, UK, 12-15 September 2016).

[Aboul2017] Aboul Hosn, Rodaina, Nguyen, Cong Doan, Sibille, Luc, Benahmed, Nadia, Chareyre,
Bruno (2017), Microscale Analysis of the Effect of Suffusion on Soil Mechanical
Properties. In International Workshop on Bifurcation and Degradation in Geomaterials.

[Albaba2015b] Albaba, Adel, Lambert, Stéphane, Nicot, François, Chareyre, Bruno (2015), Modeling
the Impact of Granular Flow against an Obstacle. In Recent Advances in Modeling
Landslides and Debris Flows.

[Bonilla2014] Bonilla-Sierra, V, Donzé, FV, Scholtès, L, Elmouttie, M (2014), Coupling photogram-
metric data with a discrete element model for rock slope stability assessment. In
Rock Engineering and Rock Mechanics: Structures in and on Rock Masses.

[Bourrier2015b] Bourrier, Franck, Baroth, Julien, Lambert, Stéphane (2015), How Can Reliability-
Based Approaches Improve the Design of Rockfall Protection Fences?. In Engi-
neering Geology for Society and Territory-Volume 2.

[Catalano2011a] Catalano E., B. Chareyre, A. Cortis, E. Barthélémy (2011), A Pore-Scale Hydro-
Mechanical coupled model for geomaterials. In II International Conference on Particle-
based Methods - Fundamentals and Applications.

[Catalano2010b] Catalano E., B. Chareyre, E. Barthélémy (2010), Pore scale modelling of Stokes
flow. In GdR MeGe.

[Catalano2013b] Catalano E., Chareyre B., Barthélémy E. (2013), DEM-PFV analysis of solid-fluid
transition in granular sediments under the action of waves. In Powders and Grains

1634 Bibliography

Yade Documentation, Release 3rd ed.

2013: Proceedings of the 6th International Conference on Micromechanics of Granular Media.
AIP Conference Proceedings. DOI 10.1063/1.4812118

[Catalano2009] Catalano E., B. Chareyre, E. Barthélémy (2009), Fluid-solid coupling in discrete
models. In Alert Geomaterials Workshop 2009.

[Catalano2010a] Catalano E., B. Chareyre, E. Barthélémy (2010), A coupled model for fluid-solid
interaction analysis in geomaterials. In Alert Geomaterials Workshop 2010.

[Caulk2019a] Caulk, R.A., Chareyre, B. (2019), An open framework for the simulation of cou-
pled Thermo-Hydro-Mechanical processes in Discrete Element Systems. In 8th
International Conference on Discrete Element Methods.

[Caulk2019b] Caulk, R.A.„ Kozicki, J., Kunhappan, D.„ Maurin, R.„ Montellà, E.P.„ Sweijen, T.„ Yuan,
C.„ Chareyre, B. (2019), Yade’s (undeniable) transformation into a model project
of optimzation, multi-physics couplings, and user support. In 8th International Con-
ference on Discrete Element Methods.

[Caulk2019c] Caulk, Robert A, Kozicki, Janek, Kunhappan, Deepak, Maurin, Rapha”el (2019), Yade’s
(undeniable) transformation into a model project of optimization, multi-physics
couplings, and user support. In 8th International Conference on Discrete Element Meth-
ods (DEM8).

[Chareyre2011] Chareyre B., E. Catalano, E. Barthélémy (2011),Numerical simulation of hydrome-
chanical couplings by combined discrete element method and finite-volumes. In
International Conference on Flows and Mechanics in Natural Porous Media from Pore to
Field Scale - Pore2Field.

[Chareyre2017b] Chareyre B., E. Nikooee , C. Chalak , C. Yuan (2017), Micromechanical Insights
into the Effective Stresses. In Poromechanics VI. DOI 10.1061/9780784480779.051

[Chareyre2012b] Chareyre B., L. Scholtès, F. Darve (2012), The properties of some stress tensors
investigated by DEM simulations. In Euromech Colloquium 539; Mechanics of Unsat-
urated Porous Media: Effective Stress principle; from micromechanics to thermodynamics

[Chareyre2009] Chareyre B., Scholtès L. (2009), Micro-statics and micro-kinematics of capillary
phenomena in dense granular materials. In POWDERS AND GRAINS 2009: Pro-
ceedings of the 6th International Conference on Micromechanics of Granular Media. AIP
Conference Proceedings. DOI 10.1063/1.3180083

[Chareyre2019] Chareyre B.„ Montellà, E.P.„ Yuan, C.„ Gens, A. (2019), A hybrid pore network -
LBMmethod for integrating flow of immiscible phases in DEM. In 8th International
Conference on Discrete Element Methods.

[Chareyre2012c] Chareyre B. (2012), Micro-poromechanics: recent advances in numerical mod-
els and perspectives. In ICACM symposium 2012, The role of structure on emerging
material properties

[Chareyre2017] Chareyre, Bruno, Yuan, Chao, Montella, Eduard P, Salager, Simon (2017), Toward
multiscale modelings of grain-fluid systems. In EPJ Web of Conferences.

[Chen2008a] Chen, F., Drumm, E.C., Guiochon, G., Suzuki, K. (2008), Discrete Element Simulation
of 1D Upward Seepage Flow with Particle-Fluid Interaction Using Coupled Open
Source Software. In Proceedings of The 12th International Conference of the International
Association for Computer Methods and Advances in Geomechanics (IACMAG) Goa, India.

[Chen2009b] Chen, F., Drumm, E.C., Guiochon, G. (2009), 3D DEM Analysis Of Graded Rock
Fill Sinkhole Repair: Particle Size Effects On The Probability Of Stability. In
Transportation Research Board Conference (Washington DC).

[Dang2008a] Dang, H.K., Mohamed, M.A. (2008), An algorithm to generate a specimen for Dis-
crete Element simulations with a predefined grain size distribution.. In 61th Cana-
dian Geotechnical Conference, Edmonton, Alberta.

Bibliography 1635

http://dx.doi.org/10.1063/1.4812118
http://dx.doi.org/10.1061/9780784480779.051
http://dx.doi.org/10.1063/1.3180083

Yade Documentation, Release 3rd ed.

[Dang2008b] Dang, H.K., Mohamed, M.A. (2008), 3D simulation of the trap door problem using
the Discrete Element Method.. In 61th Canadian Geotechnical Conference, Edmonton,
Alberta.

[Darve2016] Darve F., J. Duriez, R. Wan (2016), DEM modelling in Geomechanics: some recent
breakthroughs. In Proceedings of the 7th International Conference on Discrete Element
Methods.

[Duriez2020] Duriez J., C. Galusinski (2020), Level Set Representation on Octree for Granu-
lar Material with Arbitrary Grain Shape. In Proceedings Topical Problems of Fluid
Mechanics 2020. DOI 10.14311/TPFM.2020.009

[Duriez2017e] Duriez J., R. Wan, F. Darve (2017), Microstructural Views of Stresses in Three-
Phase Granular Materials. In From Microstructure Investigations to Multiscale Modeling:
Bridging the Gap (D. Brancherie, P. Feissel, S. Bouvier and A. Ibrahimbegovic, ed.), John
Wiley & Sons, Inc. , DOI 10.1002/9781119476757.ch6

[Duriez2017d] Duriez J., R. Wan, M. Pouragha (2017), Partially Saturated Granular Materials:
Insights FromMicro-Mechanical Modelling. In 6th Biot Conference on Poromechanics.

[Duriez2015] Duriez J., R. Wan (2015), Effective stress in unsaturated granular materials:
micro-mechanical insights. In Coupled Problems in Science and Engineering VI.

[Duriez2019] Duriez J., S. Duverger, R. Wan (2019), A micromechanical, �UNSAT, approach for
wet granular soils. In 8th International Conference on Discrete Element Methods.

[Duriez2022a] Duriez, J., Galusinski, C., Golay, F., Bonelli, S. (2022), Modélisations numériques
discrètes de matériaux granulaires à partir d’une description Level Set des par-
ticules. In 25e Congr‘es Franccais de M’ecanique (CFM 2022).

[Duriez2022b] Duriez, J., Galusinski, C., Golay, F., Bonelli, S. (2022),A discrete element method for
granular solids with a level set shape description. In The 8th European Congress on
Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022).

[Duriez2023] Duriez, J., Golay, F., Bonelli, S., Galusinski, C. (2023), A Level Set approach for non-
spherical DEM in YADE. In DEM9: 9th International Conference on Discrete Element
Methods.

[Effeindzourou2015] Effeindzourou A., K. Thoeni, A. Giacomini, S.W. Sloan (2015), A discrete model
for rock impacts on muckpiles. In Computer Methods and Recent Advances in Geome-
chanics.

[Effeindzourou2015a] Effeindzourou, A., Thoeni, K., Chareyre, B., Giacomini, A. (2015), A general
method for modelling deformable structures in DEM. In Particle-Based Methods
IV: Fundamentals and Applications.

[Elias2013] Eliáš, J. (2013), Dem simulation of railway ballast using polyhedral elemental
shapes. In Particle-Based Methods III: Fundamentals and Applications - Proceedings of
the 3rd International Conference on Particle-based MethodsFundamentals and Applications,
Particles 2013.

[Farahnak2022] Farahnak, Mojtaba, Wan, Richard, Pouragha, Mehdi, Nicot, Franccois (2022), Per-
turbations in Granular Materials: Subtleties in DEM Modeling. In International
Workshop on Bifurcation and Degradation in Geomaterials.

[Favier2009b] Favier L., D. Daudon, F. Donzé, J. Mazars (2009), Validation of a DEM granular flow
model aimed at forecasting snow avalanche pressure. In AIP Conference Proceedings.
DOI 10.1063/1.3180002

[Frey2017] Frey P., R. Maurin, L. Morchid-Alaoui, S. Gupta, J. Chauchat (2017), Vertical size seg-
regation numerical experiments in bedload sediment transport with a coupled
fluid-discrete element model. In Proceedings of Powder and Grains 2017.

[Gillibert2009] Gillibert L., Flin F., Rolland du Roscoat S., Chareyre B., Philip A., Lesaffre B.,
Meyssonier J. (2009), Curvature-driven grain segmentation: application to snow

1636 Bibliography

http://dx.doi.org/10.14311/TPFM.2020.009
http://dx.doi.org/10.1002/9781119476757.ch6
http://dx.doi.org/10.1063/1.3180002

Yade Documentation, Release 3rd ed.

images from X-ray microtomography. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (Miami, USA).

[Gladky2015a] Gladky, Anton, Lieberwirth, Holger, Schwarze, Ruediger (2015), DEM simulation of
the dry and weakly wetted bulk flow on a pelletizing table. In 13th U.S. National
Congress on Computational Mechanics.

[Gladky2015b] Gladky, Anton, Roy, Sudeshna, Weinhart, Thomas, Luding, Stefan, Schwarze, Ruediger
(2015), DEM simulations of weakly wetted granular materials: implementation of
capillary bridge models. In Fourth Conference on Particle-Based Methods (PARTICLES
2015).

[Guo2013] Guo Ning, Jidong Zhao (2013), A hierarchical model for cross-scale simulation of
granular media. In Powders and Grains 2013: Proceedings of the 6th International
Conference on Micromechanics of Granular Media. AIP Conference Proceedings. DOI
10.1063/1.4812158

[Guo2014b] Guo, Ning, Zhao, Jidong (2015), A Multiscale Investigation of Strain Localization in
Cohesionless Sand. In Bifurcation and Degradation of Geomaterials in the New Millennium
(Chau, Kam-Tim and Zhao, Jidong, ed.), DOI 10.1007/978-3-319-13506-9_18

[Hadda2013b] Hadda Nejib, François Nicot, Luc Sibille, Farhang Radjai, Antoinette Tordesillas, Félix
Darve (2013), A multiscale description of failure in granular materials. In Powders
and Grains 2013: Proceedings of the 6th International Conference on Micromechanics of
Granular Media. AIP Conference Proceedings. DOI 10.1063/1.4811999

[Hadda2015b] Hadda, N, Bourrier, F, Sibille, L, Nicot, F, Wan, R, Darve, F (2015), A microstructural
cluster-based description of diffuse and localized failures. In Geomechanics from
Micro to Macro: Proceedings of the International Symposium on Geomechanics from Micro
and Macro (IS-Cambridge 2014).

[Harthong2013] Harthong Barthélémy, Richard G Wan (2009), Directional plastic flow and fab-
ric dependencies in granular materials. In Powders and Grains 2013: Proceedings of
the 6th International Conference on Micromechanics of Granular Media. AIP Conference
Proceedings. DOI http://dx.doi.org/10.1063/1.4811900

[Hasan2010b] Hasan A., B. Chareyre, J. Kozicki, F. Flin, F. Darve, J. Meyssonnier (2010),
Microtomography-based Discrete Element Modeling to Simulate Snow Mi-
crostructure Deformation. In AGU Fall Meeting Abstracts

[Hicher2009] Hicher P.-Y., Scholtès L., Chareyre B., Nicot F., Darve F. (2008), On the capillary
stress tensor in wet granular materials. In Inaugural International Conference of the
Engineering Mechanics Institute (EM08) - (Minneapolis, USA).

[Hicher2011] Hicher, P.Y, Scholtès, L., Sibille, L. (2011), Multiscale Modeling of Particle Removal
Impact on Granular Material Behavior. In Engineering Mechanics Institute, EMI 2011.

[Hilton2013b] Hilton J. E., P. W. Cleary, A. Tordesillas (2013),Unitary stick-slip motion in granular
beds. In Powders and Grains 2013: Proceedings of the 6th International Conference on
Micromechanics of Granular Media. AIP Conference Proceedings. DOI 10.1063/1.4812063

[Huang2022] Huang, Duruo, Yuan, Zhengxin, Yang, Siyuan, Amini, Pedram Fardad, Wang, Gang,
Jin, Feng (2022), Multiple Liquefaction of Granular Soils: A New Stacked Ring
Torsional Shear Apparatus and Discrete Element Modeling. In Conference on
Performance-based Design in Earthquake. Geotechnical Engineering.

[Kalogeropoulos2023] Kalogeropoulos, A, Michalakopoulos, T (2023), Numerical simulation of the
rock cutting process using the discrete element method. In Expanding Underground-
Knowledge and Passion to Make a Positive Impact on the World CRC Press ,

[Kozicki2007c] Kozicki J., J. Tejchman (2007), Simulations of fracture processes in concrete using
a 3D lattice model. In Int. Conf. on Computational Fracture and Failure of Materials and
Structures (CFRAC 2007), Nantes.

Bibliography 1637

http://dx.doi.org/10.1063/1.4812158
http://dx.doi.org/10.1007/978-3-319-13506-9_18
http://dx.doi.org/10.1063/1.4811999
http://dx.doi.org/http://dx.doi.org/10.1063/1.4811900
http://dx.doi.org/10.1063/1.4812063

Yade Documentation, Release 3rd ed.

[Kozicki2007d] Kozicki J., J. Tejchman (2007), Effect of aggregate density on fracture process
in concrete using 2D discrete lattice model. In Proc. Conf. Computer Methods in
Mechanics (CMM 2007), Lodz-Spala.

[Kozicki2007e] Kozicki J., J. Tejchman (2007), Modelling of a direct shear test in granular bodies
with a continuum and a discrete approach. In Proc. Conf. Computer Methods in
Mechanics (CMM 2007), Lodz-Spala.

[Kozicki2007f] Kozicki J., J. Tejchman (2007), Investigations of size effect in tensile fracture of
concrete using a lattice model. In Proc. Conf. Modelling of Heterogeneous Materials with
Applications in Construction and Biomedical Engineering (MHM 2007), Prague.

[Kozicki2006b] Kozicki J., J. Tejchman (2006), Modelling of fracture process in brittle materials
using a lattice model. In Computational Modelling of Concrete Structures, EURO-C (eds.:
G. Meschke, R. de Borst, H. Mang and N. Bicanic), Taylor anf Francis.

[Kozicki2006c] Kozicki J., J. Tejchman (2006), Lattice type fracture model for brittle materials.
In 35th Solid Mechanics Conference (SOLMECH 2006), Krakow.

[Kozicki2005b] Kozicki J., J. Tejchman (2005), Simulations of fracture in concrete elements using
a discrete lattice model. In Proc. Conf. Computer Methods in Mechanics (CMM 2005),
Czestochowa, Poland.

[Kozicki2005c] Kozicki J., J. Tejchman (2005), Simulation of the crack propagation in concrete
with a discrete lattice model. In Proc. Conf. Analytical Models and New Concepts in
Concrete and Masonry Structures (AMCM 2005), Gliwice, Poland.

[Kozicki2004a] Kozicki J., J. Tejchman (2004), Study of Fracture Process in Concrete using a
Discrete Lattice Model. In CURE Workshop, Simulations in Urban Engineering, Gdansk.

[Kozicki2003a] Kozicki J., J. Tejchman (2003), Discrete methods to describe the behaviour of
quasi-brittle and granular materials. In 16th Engineering Mechanics Conference, Uni-
versity of Washington, Seattle, CD–ROM.

[Kozicki2003c] Kozicki J., J. Tejchman (2003), Lattice method to describe the behaviour of quasi-
brittle materials. In CURE Workshop, Effective use of building materials, Sopot.

[Kozicki2011] Kozicki J., J. Tejchman (2011),Numerical simulation of sand behaviour using DEM
with two different descriptions of grain roughness. In II International Conference on
Particle-based Methods - Fundamentals and Applications.

[Kozicki2013] Kozicki Jan, Jacek Tejchman, Danuta Lesniewska (2013), Study of some micro-
structural phenomena in granular shear zones. In Powders and Grains 2013: Pro-
ceedings of the 6th International Conference on Micromechanics of Granular Media. AIP
Conference Proceedings. DOI 10.1063/1.4811976

[Kozicki2005a] Kozicki, J. (2005), Discrete lattice model used to describe the fracture process
of concrete. In Discrete Element Group for Risk Mitigation Annual Report 1, Grenoble
University of Joseph Fourier, France.

[Krzaczek2022a] Krzaczek, M, Nitka, M, Tejchman, J (2022), Modeling of capillary fluid flow in
concrete using a DEM-CFD approach. In Computational Modelling of Concrete and
Concrete Structures CRC Press ,

[Krzaczek2022b] Krzaczek, M, Nitka, M, Tejchman, J (2022), A novel DEM based pore-scale
thermo-hydro-mechanical model. In Computational Modelling of Concrete and Con-
crete Structures CRC Press ,

[Li2014] Li, W, Vincens, E, Reboul, N, Chareyre, B (2014), Constrictions and filtration of fine
particles in numerical granular filters: Influence of the fabric within the material.
In Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion,
Perth, Australia, 2-4 December 2014.

[Lomine2010b] Lominé, F., Poullain, P., Sibille, L. (2010), Modelling of fluid-solid interaction in
granular media with coupled LB/DE methods: application to solid particle de-

1638 Bibliography

http://dx.doi.org/10.1063/1.4811976

Yade Documentation, Release 3rd ed.

tachment under hydraulic loading. In 19th Discrete Simulation of Fluid Dynamics,
DSFD 2010.

[Lomine2010a] Lominé, F., Scholtès, L., Poullain, P., Sibille, L. (2010), Soil microstructure changes
induced by internal fluid flow: investigations with coupled DE/LB methods. In
Proc. of 3rd Euromediterranean Symposium on Advances in Geomaterials and Structures,
AGS’10.

[Lomine2011] Lominé, F., Sibille, L., Marot, D. (2011), A coupled discrete element - lattice Botz-
mann method to investigate internal erosion in soil. In Proc. 2nd Int. Symposium on
Computational Geomechanics (ComGeo II).

[Maurin2013] Maurin R., B. Chareyre, J. Chauchat, P. Frey (2013), Discrete element modelling of
bedload transport. In Proceedings of THESIS 2013, Two-pHase modElling for Sediment
dynamIcS in Geophysical Flows.

[Maurin2015] Maurin R., B. Chareyre, J. Chauchat, P. Frey (2015),On granular rheology in bedload
transport. In CFM-2015.

[Maurin2016b] Maurin R., J. Chauchat, P. Frey (2016), Dense granular flow rheology in turbulent
bedload transport. In Proceedings of THESIS 2017, Two-pHase modElling for Sediment
dynamIcS in Geophysical Flows.

[Michallet2012] Michallet H., E. Catalano, C. Berni, V. Rameliarison, E. Barthélémy (2012), Physical
and numerical modelling of sand liquefaction in waves interacting with a vertical
wall. In ICSE6 - 6th International conference on Scour and Erosion

[Modenese2012] Modenese C., S. Utili, G.T. Houlsby (2012), DEM Modelling of Elastic Adhesive
Particles with Application to Lunar Soil. In Earth and Space 2012: Engineering,
Science, Construction, and Operations in Challenging Environments ¬© 2012 ASCE. DOI
10.1061/9780784412190.006

[Modenese2012a] Modenese, C, Utili, S, Houlsby, G T (2012), A study of the influence of surface
energy on the mechanical properties of lunar soil using DEM. In Discrete Element
Modelling of Particulate Media (Wu, Chuan-Yu, ed.), Royal Society of Chemistry , DOI
10.1039/9781849735032-00069

[Modenese2012b] Modenese, C, Utili, S, Houlsby, G T (2012), A numerical investigation of quasi-
static conditions for granular media. In Discrete Element Modelling of Particulate Media
(Wu, Chuan-Yu, ed.), Royal Society of Chemistry , DOI 10.1039/9781849735032-00187

[Montella2017] Montellà, Eduard Puig, Toraldo, Marcella, Chareyre, Bruno, Sibille, Luc (2017), From
continuum analytical description to discrete numerical modelling of localized
fluidization in granular media. In EPJ Web of Conferences.

[Nicot2015] Nicot, F, Hadda, N, Bourrier, F, Sibille, L, Tordesillas, A, Darve, F (2015), Microme-
chanical Analysis of Second Order Work in Granular Media. In Bifurcation and
Degradation of Geomaterials in the New Millennium.

[Nicot2011b] Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F. (2011), A discrete element
analysis of collapse mechanisms in granular materials. In Proc. 2nd Int. Symposium
on Computational Geomechanics (ComGeo II).

[Nicot2010] Nicot, F., Sibille, L., Daouadji, A., Hicher, P.Y., Darve, F. (2010), Multiscale modeling
of instability in granular materials. In Engineering Mechanics Institute, EMI 2010.

[Nikooee2017] Nikooee, E, Habibagahi, G, Daneshian, B, Sweijen, T, Hassanizadeh, SM (2017), A grain
scale model to predict retention properties of unsaturated soils. In Proceedings of
the 19th International COnference on Soil Mechanics and Geotechnical Engineering.

[Nikooee2016] Nikooee, E, Sweijen, T, Hassanizadeh, SM (2016), Determination of the relationship
among capillary pressure, saturation and interfacial area: a pore unit assembly
approach. In E3S Web of Conferences. DOI 10.1051/e3sconf/20160902002

Bibliography 1639

http://dx.doi.org/10.1061/9780784412190.006
http://dx.doi.org/10.1039/9781849735032-00069
http://dx.doi.org/10.1039/9781849735032-00187
http://dx.doi.org/10.1051/e3sconf/20160902002

Yade Documentation, Release 3rd ed.

[Nitka2014c] Nitka, M, Tejchman, J, Kozicki, J, Lesniewska, D (2014), Effect of mean grain diameter
on vortices, force chains and local volume changes in granular shear zones. In
Digital Humanitarians: How Big Data Is Changing the Face of Humanitarian Response.

[Nitka2014] Nitka, M, Tejchman, J (2014), Discrete modeling of micro-structure evolution dur-
ing concrete fracture using DEM. In Computational Modelling of Concrete Structures.

[Nitka2014b] Nitka, M, Tejchman, J (2014), Discrete modeling of micro-structure evolution dur-
ing concrete fracture using DEM. In Computational Modelling of Concrete Structures.

[Nitka2015c] Nitka, Michal, Tejchman, Jacek, Kozicki, Jan (2015), Discrete Modelling of Micro-
structural Phenomena in Granular Shear Zones. In Bifurcation and Degradation of
Geomaterials in the New Millennium.

[Romanova2020] Romanova, Daria, Strijhak, Sergei, Kraposhin, Matvey (2020), Development of
snowYadeFoam solver for snow particles simulation. In 2020 Ivannikov Ispras Open
Conference (ISPRAS).

[Sari2011] Sari H., B. Chareyre, E. Catalano, P. Philippe, E. Vincens (2011), Investigation of In-
ternal Erosion Processes using a Coupled DEM-Fluid Method. In II International
Conference on Particle-based Methods - Fundamentals and Applications.

[Sayeed2014] Sayeed, Md Abu, Sazzad, Md Mahmud, Suzuki, Kiichi (2014), Mechanical Behavior of
Granular Materials Considering Confining Pressure Dependency. In GeoCongress
2012.

[Scholtes2009e] Scholtes L, Chareyre B, Darve F (2009), Micromechanics of partialy saturated
granular material. In Int. Conf. on Particle Based Methods, ECCOMAS-Particles.

[Scholtes2008a] Scholtès L., B. Chareyre, F. Nicot, F. Darve (2008), Capillary Effects Modelling in
Unsaturated Granular Materials. In 8th World Congress on Computational Mechanics
- 5th European Congress on Computational Methods in Applied Sciences and Engineering,
Venice.

[Scholtes2007a] Scholtès L., B. Chareyre, F. Nicot, F. Darve (2007), Micromechanical Modelling of
Unsaturated Granular Media. In Proceedings ECCOMAS-MHM07, Prague.

[Scholtes2011b] Scholtès L., F. Donzé (2011), Progressive failure mechanisms in jointed rock: in-
sight from 3D DEM modelling. In II International Conference on Particle-based Methods
- Fundamentals and Applications.

[Scholtes2008b] Scholtès L., P.-Y. Hicher, F.Nicot, B. Chareyre, F. Darve (2008), On the Capillary
Stress Tensor in unsaturated granular materials. In EM08: Inaugural International
Conference of the Engineering Mechanics Institute, Minneapolis.

[Scholtes2011c] Scholtès, L., Hicher, P.Y., Sibille, L. (2011), A micromechanical approach to de-
scribe internal erosion effects in soils. In Proc. of Geomechanics and Geotechnics: from
micro to macro, IS-Shanghai 2011.

[Shiu2007a] Shiu W., F.V. Donze, L. Daudeville (2007), Discrete element modelling of missile
impacts on a reinforced concrete target. In Int. Conf. on Computational Fracture and
Failure of Materials and Structures (CFRAC 2007), Nantes.

[Shoemaker2024] Shoemaker, Travis A, Tanissa, Carine, Hashash, Youssef MA (2024), Comparison of
DEM Software with Polyhedral Particle Shapes. In Geo-Congress 2024.

[Sibille2009] Sibille, L., Scholtès, L. (2009), Effects of internal erosion on mechanical behaviour of
soils: a dem approach. In Proc. of International Conference on Particle-Based Methods,
Particles 2009.

[Skarzynski2014] Skarżynski, M. Nitka, J. Tejchman (2014), Two-scale model for concrete beams
subjected to three point bending—numerical analyses and experiments. In Com-
putational Modelling of Concrete Structures.

[Smilauer2007a] Šmilauer V. (2007),Discrete and hybrid models: Applications to concrete dam-
age. In Unpublished.

1640 Bibliography

Yade Documentation, Release 3rd ed.

[Smilauer2008] Šmilauer Václav (2008), Commanding c++ with Python. In ALERT Doctoral school
talk.

[Smilauer2010a] Šmilauer Václav (2010), Yade: past, present, future. In Internal seminary in Labo-
ratoire 3S-R, Grenoble. (LaTeX sources)

[Stransky2011] Stransky J., M. Jirasek (2011), Calibration of particle-based models using cells
with periodic boundary conditions. In II International Conference on Particle-based
Methods - Fundamentals and Applications.

[Stransky2015a] Stránský Jan, Martin Doškář (2015), Comparison of DEM-based Wang tilings
and PUC. In Nano and Macro Mechanics 2015.

[Stransky2015b] Stránský Jan, Martin Doškář (2015), Stochastic Wang tiles generation using the
discrete element method. In Engineering Mechanics 2015.

[Stransky2010] Stránský Jan, Milan Jirásek, Václav Šmilauer (2010), Macroscopic elastic proper-
ties of particle models. In Proceedings of the International Conference on Modelling and
Simulation 2010, Prague.

[Stransky2010b] Stránský Jan, Milan Jirásek, Václav Šmilauer (2010), Macroscopic Properties of
Particle Models: Uniaxial Tension. In Nano and Macro Mechanics 2010.

[Stransky2011b] Stránský Jan, Milan Jirásek (2011), Inelastic Calibration of Particle Models using
Cells with Periodic Boundary Conditions. In Nano and Macro Mechanics 2011.

[Stransky2012a] Stránský Jan, Milan Jirásek (2012), Review on evaluation fo equivalent stress
tensor in the discrete element method. In Nano and Macro Mechanics 2012.

[Stransky2013a] Stránský Jan, Milan Jirásek (2013), Localization Analysis of a Discrete Element
Periodic Cell. In Nano and Macro Mechanics 2013.

[Stransky2012b] Stránský Jan, Milan Jirásek (2012), Open Source FEM-DEM Coupling. In Engi-
neering Mechanics 2012.

[Stransky2014a] Stránský Jan (2014), Stochastic Wang tiles generation using DEM and YADE
software. In Nano and Macro Mechanics 2014.

[Stransky2013b] Stránský Jan (2013), FEM - DEM Coupling and MuPIF Framework. In Engi-
neering Mechanics 2013.

[Stransky2014b] Stránský Jan (2014), Combination of FEM and DEM with Application to Rail-
way Ballast-Sleeper Interaction. In Engineering Mechanics 2014.

[Stransky2014c] Stránský Jan (2014), Kombinace MDP a MKP pro modelování interakce mezi
železničním pražcem a podložím. In Juniorstav 2014.

[Stransky2013c] Stránský Jan (2013), Open Source DEM-FEM Coupling. In Particles 2013.

[Suhr2015] Suhr, Bettina, Six, Klaus (2015), Tribological effects in granular materials and their
impact on the macroscopic material behaviour. In Proceedings of the IV International
Conference on Particle-based Methods (PARTICLES 2015).

[Sweijen2014] Sweijen Thomas, Majid Hassanizadeh, Bruno Chareyre (2014), Pore-Scale modeling of
swelling porous media; application to super absorbent polymers. In XX . Interna-
tional Conference on Computational Methods in Water Resources.

[Sweijen2017c] Sweijen, T, Hassanizadeh, SM, Aslannejad, H, Leszczynski, S (2017),Grain-Scale Mod-
elling of Swelling Granular Materials Using the Discrete Element Method and
the Multi-Sphere Approximation. In Sixth Biot Conference on Poromechanics. DOI
10.1061/9780784480779.040

[Tejada2016b] Tejada, IG, Sibille, L, Chareyre, B, Vincens, E (2016),Numerical modeling of particle
migration in granular soils. In Scour and Erosion: Proceedings of the 8th International
Conference on Scour and Erosion (Oxford, UK, 12-15 September 2016).

Bibliography 1641

http://bazaar.launchpad.net/~eudoxos/yade/pres-grenoble2010/files
http://dx.doi.org/10.1061/9780784480779.040

Yade Documentation, Release 3rd ed.

[Tejada2017] Tejada, Ignacio G, Sibille, Luc, Chareyre, Bruno, Zhong, Chuheng, Marot, Didier (2017),
Multiscale modeling of transport of grains through granular assemblies. In EPJ
Web of Conferences.

[Tejchman2011] Tejchman, J. (2011), Comparative Modelling of Shear Zone Patterns in Gran-
ular Bodies with Finite and Discrete Element Model. Advances in Bifurcation and
Degradation in Geomaterials, pages 255–260.

[Thoeni2015] Thoeni K., A. Giacomini, C. Lambert, S.W. Sloan (2015), Rockfall Trajectory Analysis
with Drapery Systems. In Engineering Geology for Society and Territory - Volume 2 (G.
Lollino and D. Giordan and G.B. Crosta and J. Corominas and R. Azzam and J. Wasowski
and N. Sciarra, ed.), Springer , DOI 10.1007/978-3-319-09057-3_356

[Thoeni2011] Thoeni K., C. Lambert, A. Giacomini, S.W. Sloan (2011), Discrete Modelling of a
Rockfall Protective System. In Particles 2011: Fundamentals and Applications.

[Toraldo2015] Toraldo, Marcella, Chareyre, Bruno, Sibille, Luc (2015), Numerical modelling of the
localized fluidization in a saturated granular medium using the coupled method
DEM-PFV. In Annual Report 1 (Grenoble Geomechanics Group, ed.),

[Tran2012b] Tran, V.D.H, Meguid, M.A, Chouinard, L.E (2012), Coupling of Random Field Theory
and the Discrete Element Method in the Reliability Analysis of Geotechnical
Problems. In Canadian Society for Civil Engineering (CSCE) Annual Conference 2012,
Edmonton

[Tran2012d] Tran, V.D.H, Meguid, M.A, Chouinard, L.E (2012), A Discrete Element Study of
the Earth Pressure Distribution on Cylindrical Shafts. In Tunnelling Association of
Canada (TAC) Conference 2012, Montreal

[Uhlmann2014] Uhlmann, Eckart, Dethlefs, Arne, Eulitz, Alexander (2014), Investigation of material
removal and surface topography formation in vibratory finishing. In Procedia CIRP.

[Wagner2023] W’agner, ’Arp’ad, Szab’o, Bence, Kov’acs, L’aszl’o, Tam’as, Korn’el, Grad-Gyenge,
L’aszl’o (2023), The development of a soil-movement measurement system to cre-
ate more precise numeric soil models. In 1st Workshop on Intelligent Infocommunication
Networks, Systems and Services (WI2NS2).

[Wan2015b] Wan, Richard, Hadda, Nejib (2015), Plastic Deformations in Granular Materials with
Rotation of Principal Stress Axes. In Bifurcation and Degradation of Geomaterials in
the New Millennium.

[Yuan2014] Yuan Chao, Bruno Chareyre, Félix Darve (2014), Pore-Scale Simulations of Drainage
for Two-phase Flow in Dense Sphere Packings. In XX . International Conference on
Computational Methods in Water Resources.

[Yuan2017b] Yuan, Chao, Chareyre, Bruno, Darve, Felix (2017), Coupled flow and deformations in
granular systems beyond the pendular regime. In EPJ Web of Conferences.

[Zimbrod2022] Zimbrod, Patrick, Schreter, Magdalena, Schilp, Johannes (2022), Efficient Simulation
of Complex Capillary Effects in Advanced Manufacturing Processes using the
Finite Volume Method. In 2022 International Conference on Electrical, Computer, Com-
munications and Mechatronics Engineering (ICECCME).

[Abdallah2023] Abdallah, Ali (2023), Filtration in granular materials with non-spherical particle
shapes. PhD thesis at Ecole Centrale de Lyon.

[Angelidakis2022] Angelidakis, Vasileios (2022), Image-informed numerical modelling of particu-
late systems with irregular grains.. PhD thesis at Newcastle University.

[Audry2023] Audry, Nils (2023), Mod’elisation microm’ecanique de la densification d’un mi-
lieu granulaire coh’esif constitu’e de particules ductiles. PhD thesis at Universit’e
Grenoble Alpes.

[Benniou2016] Benniou Hicham (2016), Modélisation par éléments discrets du comportement
des matériaux cimentaires sous impact sévère : prise en compte du taux de

1642 Bibliography

http://dx.doi.org/10.1007/978-3-319-09057-3_356

Yade Documentation, Release 3rd ed.

saturation. PhD thesis at École doctorale Ingénierie - matériaux mécanique énergétique
environnement procédés production (Grenoble).

[Boon2013b] Boon C.W. (2013), Distinct Element Modelling of Jointed Rock Masses: Algo-
rithms and Their Verification. PhD thesis at University of Oxford.

[Borrmann2014] Borrmann Sebastian (2014), DEM-CFD Simulation: Erprobung neuer Kop-
plungsansätze in ausgewählten Softwarepaketen (in german). Master thesis at In-
stitute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg.

[Boschi2022] Boschi, Katia (2022), Permeation grouting in granular materials. From micro to
macro, from experimental to numerical and viceversa. PhD thesis at Politecnico di
Milano.

[Catalano2008a] Catalano E. (2008), Infiltration effects on a partially saturated slope - An
application of the Discrete Element Method and its implementation in the open-
source software YADE. Master thesis at UJF-Grenoble.

[Catalano2012] Catalano Emanuele (2012), A pore-scale coupled hydromechanical model for
biphasic granular media. PhD thesis at Université de Grenoble.

[Caulk2022] Caulk, Robert Alexander (2022), Mod’elisation micro-macro par la m’ethode des
’el’ements discrets (DEM) du comportement ‘a long terme des scellements de
puits sous sollicitation hydraulique-gaz. PhD thesis at Universit’e Grenoble Alpes.

[Charlas2013] Charlas Benoit (2013), Etude du comportement mécanique d’un hydrure inter-
métallique utilisé pour le stockage d’hydrogène. PhD thesis at Université de Grenoble.

[Chen2009a] Chen, F. (2009), Coupled Flow Discrete Element Method Application in Granu-
lar Porous Media using Open Source Codes. PhD thesis at University of Tennessee,
Knoxville.

[Chen2011b] Chen, J. (2011), Discrete Element Method (DEM) Analyses for Hot-Mix Asphalt
(HMA) Mixture Compaction. PhD thesis at University of Tennessee, Knoxville.

[Cusmano2023] Cusmano, Valeria (2023), Out-of-plane seismic response of Unreinforced Ma-
sonry structures: a Discrete Macro-Element Approach including P-Delta effects.
PhD thesis at Universit‘a degli studi di Catania.

[delValle2023] Carlos Andr’es del Valle (2023), Development of a DEM-Based Model for the
Simulation of Fractures in Brittle Materials. Master thesis at National University of
Colombia. DOI https://doi.org/10.5281/zenodo.10070737

[Deng2022] Deng, Na (2022), Microm’ecanique de l’’etat critique et son ’emergence dans la
mod’elisation multi-’echelle de la rupture des sols. PhD thesis at Universit’e Grenoble
Alpes.

[DePue2019c] De Pue, Jan (2019), Advances in modelling vehicle-induced stress transmission
in relation to soil compaction. PhD thesis at Ghent University.

[Duriez2009a] Duriez J. (2009), Stabilité des massifs rocheux : une approche mécanique. PhD
thesis at Institut polytechnique de Grenoble.

[Duverger2023] Duverger, Sacha (2023), A multi-scale, MPMxDEM, numerical modelling ap-
proach for geotechnical structures under severe loading. PhD thesis at Aix-Marseille
Universit’e (AMU).

[Favier2009c] Favier, L. (2009),Approche numérique par éléments discrets 3D de la sollicitation
d’un écoulement granulaire sur un obstacle. PhD thesis at Université Grenoble I –
Joseph Fourier.

[GaeblerMedack2013] Gäbler, Nils, Medack, Jörg (2013), Experimental and simulative study of
particle dynamics on a chute. Project work at Institute of Mechanics and Fluid Dynamics,
TU Bergakademie Freiberg.

[GentzAverhausVilbusch2014] Gentz, Julia, Averhaus, Jan, Vilbusch, Stephan (2014), Numerical sim-
ulation of particle movement on a pelletizing disc – set-up and validation

Bibliography 1643

http://dx.doi.org/https://doi.org/10.5281/zenodo.10070737

Yade Documentation, Release 3rd ed.

of a DEM model. Project work at Institute of Mechanics and Fluid Dynamics, TU
Bergakademie Freiberg.

[Gladky2019] Gladky, Anton (2019), Numerische Untersuchung der Beanspruchung in Gut-
bettwalzenmühlen mit idealisierten Materialien (in german). PhD thesis at Institute
of Mineral Processing Machines, TU Bergakademie Freiberg.

[Guo2014c] Guo N. (2014),Multiscale characterization of the shear behavior of granular media.
PhD thesis at The Hong Kong University of Science and Technology.

[Haustein2021a] Haustein, Martin (2021), Beitrag zur Untersuchung von Partikelinteraktionen
in Suspensionen am Beispiel von Stahl und Beton (in german). PhD thesis at
Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg.

[Jakob2016] Jakob Christian (2016), Numerische Modellierung des Verflüssigungsverhaltens
von Kippen des Braunkohlenbergbaus beim und nach dem Wiederaufgang von
Grundwasser (in german with extended summary in english). PhD thesis at TU
Bergakademie Freiberg.

[Jerier2009b] Jerier, J.F. (2009), Modélisation de la compression haute densité des poudres
métalliques ductiles par la méthode des éléments discrets (in french). PhD thesis
at Université Grenoble I – Joseph Fourier.

[Khosravani2014] Khosravani S. (2014), An Effective Stress Equation for Unsaturated Granular
Media in Pendular Regime. Master thesis at Department of Civil Engineering, University
of Calgary.

[Klichowicz2021a] Klichowicz, Michael (2021), Modeling of realistic microstructures on the basis
of quantitative mineralogical analyses. PhD thesis at Institute for Mineral Processing
Machines and Recycling Systems Technology, TU Bergakademie Freiberg.

[Kozicki2007b] Kozicki J. (2007), Application of Discrete Models to Describe the Fracture Pro-
cess in Brittle Materials. PhD thesis at Gdansk University of Technology.

[Kunhappan2018] Kunhappan, Deepak (2018), Numerical modeling of long flexible fibers in in-
ertial flows.. PhD thesis at Université Grenoble Alpes.

[Marzougui2011] Marzougui, D. (2011), Hydromechanical modeling of the transport and defor-
mation in bed load sediment with discrete elements and finite volume. Master
thesis at Ecole Nationale d’Ingénieur de Tunis.

[Maurin2015PhD] Maurin Raphael (2015), Investigation of granular behavior in bedload trans-
port using an Eulerian-Lagrangian model. PhD thesis at Université Grenoble Alpes.

[Medack2014] Medack, Jörg (2014), Untersuchungen zur Beeinflussung der örtlichen Aufgabe-
gutverteilung auf der Schurre eines Hammerbrechers (in german). Master thesis
at Institute for Mineral Processing Machines, TU Bergakademie Freiberg.

[Morales2012a] Morales D. (2012), Cave Back Estimation Through Discrete Element Method,
Based on Production Information. Master thesis at Universidad de Chile.

[Pircher2021] Pircher Paul (2021), A DEM model for elastic sleepers to study dy-
namic railway track behaviour. Master thesis at Montanuniversität Leoben. DOI
10.34901/mul.pub.2021.5

[Scholtes2009d] Scholtès Luc (2009), Modélisation micromécanique des milieux granulaires par-
tiellement saturés. PhD thesis at Institut National Polytechnique de Grenoble.

[Smilauer2010] vSmilauer, V’aclav (2010), Cohesive particle model using discrete element
method on the Yade platform. PhD thesis at Czech Technical University in Prague,
Faculty of Civil Engineering & Université Grenoble I – Joseph Fourier, École doctorale
I-MEP2. (LaTeX sources)

[Smilauer2010c] Šmilauer Václav (2010), Doctoral thesis statement. (PhD thesis summary). (LaTeX
sources)

1644 Bibliography

http://dx.doi.org/10.34901/mul.pub.2021.5
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files

Yade Documentation, Release 3rd ed.

[Stein2017] Stein Gerhard Wolfgang (2017), Design und Implementierung einer modularisierten
Diskrete Elemente Methode Software. PhD thesis at Ruhr-Universität Bochum.

[Stransky2018] Stránský Jan (2018), Mesoscale Discrete Element Model for Concrete and Its
Combination with FEM. PhD thesis at Czech Technical University in Prague.

[Tran2011b] TRAN Van Tieng (2011), Structures en béton soumises à des chargements mé-
caniques extrêmes: modélisation de la réponse locale par la méthode des élé-
ments discrets (in french). PhD thesis at Université Grenoble I – Joseph Fourier.

[Torres2024] Torres Rodr’iguez, Ginna Marcela (2024), Efecto del uso de barreras flexibles en el
comportamiento de un flujo de detritos aplicado a la cuenca alta de la quebrada
Taruca, municipio de Mocoa, utilizando DEM. PhD thesis at Universidad Nacional
de Colombia.

[Maurin2018a] Maurin, R. (2018), YADE 1D vertical VANS fluid resolution: Numerical reso-
lution details. Yade Technical Archive.

[Maurin2018b] Maurin, R. (2018), YADE 1D vertical VANS fluid resolution: Theoretical basis.
Yade Technical Archive.

[Maurin2018c] Maurin, R. (2018), YADE 1D vertical VANS fluid resolution: validations. Yade
Technical Archive.

[Chareyre2019b] Chareyre, B., Caulk, R.A., Chèvremont, W., Guntz, T., Kneib, F., Kunhappen, D.,
Pourroy, J. (2019), Calcul distribué MPI pour la dynamique de systèmes particu-
laires. Yade Technical Archive.

[Pirnia2019] Pirnia, P. (2019), COMSOL-Yade Interface (ICY) instruction guide. Yade Technical
Archive.

[Caulk2018] Caulk, R. (2018), Stochastic Augmentation of the Discrete Element Method
for the Investigation of Tensile Rupture in Heterogeneous Rock. Yade Technical
Archive. DOI 10.5281/zenodo.1202039

[Bertrand2008] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2008), **Discrete element method
(DEM) numerical modeling of double-twisted hexagonal mesh **. Canadian Geotechnical
Journal (45), pages 1104–1117.

[Bertrand2005] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2005), Modelling a geo-composite
cell using discrete analysis. Computers and Geotechnics (32), pages 564–577.

[Chan2011] D. Chan, E. Klaseboer, R. Manica (2011), Film drainage and coalescence between
deformable drops and bubbles.. Soft Matter (7), pages 2235-2264.

[Chareyre2002a] B. Chareyre, L. Briancon, P. Villard (2002), Theoretical versus experimental
modeling of the anchorage capacity of geotextiles in trenches.. Geosynthet. Int.
(9), pages 97–123.

[Chareyre2005] Bruno Chareyre, Pascal Villard (2005), Dynamic Spar Elements and Discrete El-
ement Methods in Two Dimensions for the Modeling of Soil-Inclusion Prob-
lems. Journal of Engineering Mechanics (131), pages 689–698. DOI 10.1061/(ASCE)0733-
9399(2005)131:7(689)

[Chareyre2003] Bruno Chareyre (2003), Modélisation du comportement d’ouvrages composites
sol-géosynthétique par éléments discrets - Application aux tranchées d’ancrage
en tête de talus.. PhD thesis at Grenoble University.

[Chareyre2002b] B. Chareyre, P. Villard (2002), Discrete element modeling of curved geosyn-
thetic anchorages with known macro-properties.. In Proc., First Int. PFC Symposium,
Gelsenkirchen, Germany.

[Chevremont2019] Chèvremont, William, Chareyre, Bruno, Bodiguel, Hugues (2019), Quantitative
study of the rheology of frictional suspensions: Influence of friction coefficient
in a large range of viscous numbers. Phys. Rev. Fluids 6 (4), pages 064302. DOI
10.1103/PhysRevFluids.4.064302

Bibliography 1645

http://dx.doi.org/10.5281/zenodo.1202039
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(689)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(689)
http://dx.doi.org/10.1103/PhysRevFluids.4.064302

Yade Documentation, Release 3rd ed.

[Chevremont2020] William Chèvremont, Hugues Bodiguel, Bruno Chareyre (2020), Lubricated con-
tact model for numerical simulations of suspensions. Powder Technology (372), pages
600 - 610. DOI https://doi.org/10.1016/j.powtec.2020.06.001

[Villard2004a] P. Villard, B. Chareyre (2004), Design methods for geosynthetic anchor trenches
on the basis of true scale experiments and discrete element modelling. Canadian
Geotechnical Journal (41), pages 1193–1205.

[Lu1998] Ya Yan Lu (1998), Computing the Logarithm of a Symmetric Positive Definite
Matrix. Appl. Numer. Math (26), pages 483–496. DOI 10.1016/S0168-9274(97)00103-7

[Alonso2004] F. Alonso-Marroquin, R. Garcia-Rojo, H.J. Herrmann (2004), Micro-mechanical in-
vestigation of the granular ratcheting. In Cyclic Behaviour of Soils and Liquefaction
Phenomena.

[McNamara2008] S. McNamara, R. García-Rojo, H. J. Herrmann (2008), Microscopic origin of gran-
ular ratcheting. Physical Review E (77). DOI 10.1103/PhysRevE.77.031304

[GarciaRojo2004] R. García-Rojo, S. McNamara, H. J. Herrmann (2004), Discrete element meth-
ods for the micro-mechanical investigation of granular ratcheting. In Proceedings
ECCOMAS 2004.

[Allen1989] M. P. Allen, D. J. Tildesley (1989), Computer simulation of liquids. Clarendon Press.

[DeghmReport2006] F. V. Donzé (ed.), Annual Report 2006 (2006). Discrete Element Group for
Hazard Mitigation. Université Joseph Fourier, Grenoble

[Pournin2001] L. Pournin, Th. M. Liebling, A. Mocellin (2001), Molecular-dynamics force models
for better control of energy dissipation in numerical simulations of dense granular
media. Phys. Rev. E (65), pages 011302. DOI 10.1103/PhysRevE.65.011302

[Jung1997] Derek Jung, Kamal K. Gupta (1997), Octree-based hierarchical distance maps for col-
lision detection. Journal of Robotic Systems (14), pages 789–806. DOI 10.1002/(SICI)1097-
4563(199711)14:11<789::AID-ROB3>3.0.CO;2-Q

[Hubbard1996] Philip M. Hubbard (1996), Approximating polyhedra with spheres for
time-critical collision detection. ACM Trans. Graph. (15), pages 179–210. DOI
10.1145/231731.231732

[Klosowski1998] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, Karel Zikan
(1998), Efficient Collision Detection Using Bounding Volume Hierarchies of k-
DOPs. IEEE Transactions on Visualization and Computer Graphics (4), pages 21–36.

[Munjiza2006] A. Munjiza, E. Rougier, N. W. M. John (2006), MR linear contact detection algo-
rithm. International Journal for Numerical Methods in Engineering (66), pages 46–71. DOI
10.1002/nme.1538

[Munjiza1998] A. Munjiza, K. R. F. Andrews (1998), NBS contact detection algorithm for bodies
of similar size. International Journal for Numerical Methods in Engineering (43), pages
131–149. DOI 10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S

[Verlet1967] Loup Verlet (1967), Computer ‘‘Experiments’’ on Classical Fluids. I. Thermody-
namical Properties of Lennard-Jones Molecules. Phys. Rev. (159), pages 98. DOI
10.1103/PhysRev.159.98

[Luding2008] Stefan Luding (2008), Introduction to discrete element methods. In European Jour-
nal of Environmental and Civil Engineering.

[Wang2009] Yucang Wang (2009), A new algorithm to model the dynamics of 3-D bonded rigid
bodies with rotations. Acta Geotechnica (4), pages 117–127. DOI 10.1007/s11440-008-
0072-1

[Omelyan1999] Igor P. Omelyan (1999), A New Leapfrog Integrator of Rotational Mo-
tion. The Revised Angular-Momentum Approach. Molecular Simulation (22). DOI
10.1080/08927029908022097

1646 Bibliography

http://dx.doi.org/https://doi.org/10.1016/j.powtec.2020.06.001
http://dx.doi.org/10.1016/S0168-9274(97)00103-7
http://dx.doi.org/10.1103/PhysRevE.77.031304
http://dx.doi.org/10.1103/PhysRevE.65.011302
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://dx.doi.org/10.1145/231731.231732
http://dx.doi.org/10.1002/nme.1538
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1%3c131::AID-NME447%3e3.0.CO;2-S
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1007/s11440-008-0072-1
http://dx.doi.org/10.1007/s11440-008-0072-1
http://dx.doi.org/10.1080/08927029908022097

Yade Documentation, Release 3rd ed.

[Omelyan1998] Igor P. Omelyan (1998), Algorithm for numerical integration of the rigid-body
equations of motion. Physical Review E (58), pages 1169–1172. DOI 10.1103/phys-
reve.58.1169

[Fincham1992] David Fincham (1992), Leapfrog Rotational Algorithms. Molecular Simulation (8),
pages 165-178. DOI 10.1080/08927029208022474

[Neto2006] Natale Neto, Luca Bellucci (2006), A new algorithm for rigid body molecular dynam-
ics. Chemical Physics (328), pages 259–268. DOI 10.1016/j.chemphys.2006.07.009

[Johnson2008] Scott M. Johnson, John R. Williams, Benjamin K. Cook (2008), Quaternion-based
rigid body rotation integration algorithms for use in particle methods. In-
ternational Journal for Numerical Methods in Engineering (74), pages 1303–1313. DOI
10.1002/nme.2210

[Addetta2001] G.A. D’Addetta, F. Kun, E. Ramm, H.J. Herrmann (2001), From solids to granulates
- Discrete element simulations of fracture and fragmentation processes in geo-
materials.. In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials.

[Pfc3dManual30] ICG (2003), PFC3D (Particle Flow Code in 3D) Theory and Background
Manual, version 3.0. Itasca Consulting Group.

[Hentz2003] Séebastien Hentz (2003), Modélisation d’une Structure en Béton Armé Soumise à
un Choc par la méthode des Eléments Discrets. PhD thesis at Université Grenoble 1
– Joseph Fourier.

[Price2007] Mathew Price, Vasile Murariu, Garry Morrison (2007), Sphere clump generation and
trajectory comparison for real particles. In Proceedings of Discrete Element Modelling
2007.

[Kuhl2001] E. Kuhl, G. A. D’Addetta, M. Leukart, E. Ramm (2001), Microplane modelling and
particle modelling of cohesive-frictional materials. In Continuous and Discontinuous
Modelling of Cohesive-Frictional Materials. DOI 10.1007/3-540-44424-6_3

[Thornton1991] Colin Thornton, K. K. Yin (1991), Impact of elastic spheres with and without
adhesion. Powder technology (65), pages 153–166. DOI 10.1016/0032-5910(91)80178-L

[Thornton2000] Colin Thornton (2000), Numerical simulations of deviatoric shear deformation
of granular media. Géotechnique (50), pages 43–53. DOI 10.1680/geot.2000.50.1.43

[Thornton2013] Colin Thornton, Sharen J. Cummins, Paul W. Cleary (2013), An investigation of
the comparative behaviour of alternative contact force models during inelastic
collisions. Powder Technology (233), pages 30-46. DOI 10.1016/j.powtec.2012.08.012

[Thornton2015] Thornton, Colin (2015), Granular dynamics, contact mechanics and particle
system simulations. A DEM study. Particle Technology Series (24). DOI 10.1007/978-3-
319-18711-2

[CundallStrack1979] P.A. Cundall, O.D.L. Strack (1979), A discrete numerical model for granular
assemblies. Geotechnique (), pages 47–65. DOI 10.1680/geot.1979.29.1.47

[cgal] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, Mariette Yvinec
(2002), Triangulations in CGAL. Computational Geometry: Theory and Applications
(22), pages 5–19.

[Satake1982] M. Satake (1982), Fabric tensor in granular materials.. In Proc., IUTAM Symp. on
Deformation and Failure of Granular materials, Delft, The Netherlands.

[Hentz2004a] S. Hentz, F.V. Donzé, L.Daudeville (2004), Discrete element modelling of
concrete submitted to dynamic loading at high strain rates. Comput-
ers and Structures (82), pages 2509–2524. DOI ‘10.1016/j.compstruc.2004.05.016
<http://dx.doi.org/10.1016/j.compstruc.2004.05.016 >‘_

[Hentz2004b] S. Hentz, L. Daudeville, F.V. Donzé (2004), Identification and Validation of a Dis-
crete Element Model for Concrete. ASCE Journal of Engineering Mechanics (130),
pages 709–719. DOI 10.1061/(ASCE)0733-9399(2004)130:6(709)

Bibliography 1647

http://dx.doi.org/10.1103/physreve.58.1169
http://dx.doi.org/10.1103/physreve.58.1169
http://dx.doi.org/10.1080/08927029208022474
http://dx.doi.org/10.1016/j.chemphys.2006.07.009
http://dx.doi.org/10.1002/nme.2210
http://dx.doi.org/10.1007/3-540-44424-6_3
http://dx.doi.org/10.1016/0032-5910(91)80178-L
http://dx.doi.org/10.1680/geot.2000.50.1.43
http://dx.doi.org/10.1016/j.powtec.2012.08.012
http://dx.doi.org/10.1007/978-3-319-18711-2
http://dx.doi.org/10.1007/978-3-319-18711-2
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)

Yade Documentation, Release 3rd ed.

[Camborde2000a] F. Camborde, C. Mariotti, F.V. Donzé (2000), Numerical study of rock and Con-
crete behaviour by discrete element modelling. Computers and Geotechnics (27), pages
225–247.

[Donze1999a] F.V. Donzé, S.A. Magnier, L. Daudeville, C. Mariotti, L. Davenne (1999), Study of
the behavior of concrete at high strain rate compressions by a discrete el-
ement method. ASCE J. of Eng. Mech (125), pages 1154–1163. DOI 10.1016/S0266-
352X(00)00013-6

[Magnier1998a] S.A. Magnier, F.V. Donzé (1998), Numerical simulation of impacts using
a discrete element method. Mech. Cohes.-frict. Mater. (3), pages 257–276. DOI
10.1002/(SICI)1099-1484(199807)3:3<257::AID-CFM50>3.0.CO;2-Z

[Donze1995a] F.V. Donzé, S.A. Magnier (1995), Formulation of a three-dimensional numerical
model of brittle behavior. Geophys. J. Int. (122), pages 790–802.

[Donze1994a] F.V. Donzé, P. Mora, S.A. Magnier (1994), Numerical simulation of faults and shear
zones. Geophys. J. Int. (116), pages 46–52.

[Hentz2005a] S. Hentz, F.V. Donzé, L.Daudeville (2005), Discrete elements modeling of a rein-
forced concrete structure submitted to a rock impact. Italian Geotechnical Journal
(XXXIX), pages 83–94.

[Donze2004a] F.V. Donzé, P. Bernasconi (2004), Simulation of the Blasting Patterns in Shaft
Sinking Using a Discrete Element Method. Electronic Journal of Geotechnical Engi-
neering (9), pages 1–44.

[Kettner2011] Lutz Kettner, Andreas Meyer, Afra Zomorodian (2011), Intersecting Sequences of dD
Iso-oriented Boxes. In CGAL User and Reference Manual.

[Pion2011] Sylvain Pion, Monique Teillaud (2011), 3D Triangulations. In CGAL User and Reference
Manual.

[Calvetti1997] Calvetti, F., Combe, G., Lanier, J. (1997), Experimental micromechanical analysis
of a 2D granular material: relation between structure evolution and loading path.
Mechanics of Cohesive-frictional Materials (2), pages 121–163.

[Bagi2006] Katalin Bagi (2006), Analysis of microstructural strain tensors for granular as-
semblies. International Journal of Solids and Structures (43), pages 3166 - 3184. DOI
10.1016/j.ijsolstr.2005.07.016

[Brilliantov1996] Brilliantov, Nikolai V, Spahn, Frank, Hertzsch, Jan-Martin, P”oschel, Thorsten (1996),
Model for collisions in granular gases. Physical review E (53), pages 5382.

[Weigert1999] Weigert, Tom, Ripperger, Siegfried (1999), Calculation of the Liquid Bridge Volume
and Bulk Saturation from the Half-filling Angle. Particle & Particle Systems Char-
acterization (16), pages 238–242. DOI 10.1002/(SICI)1521-4117(199910)16:5<238::AID-
PPSC238>3.0.CO;2-E

[Willett2000] Willett, Christopher D., Adams, Michael J., Johnson, Simon A., Seville, Jonathan P. K.
(2000), Capillary Bridges between Two Spherical Bodies. Langmuir (16), pages 9396-
9405. DOI 10.1021/la000657y

[Herminghaus2005] Herminghaus, S. (2005), Dynamics of wet granular matter. Advances in Physics
(54), pages 221-261. DOI 10.1080/00018730500167855

[Rabinov2005] RABINOVICH Yakov I., ESAYANUR Madhavan S., MOUDGIL Brij M. (2005), Capil-
lary forces between two spheres with a fixed volume liquid bridge : Theory and
experiment. Langmuir (21), pages 10992–10997. (eng)

[Luding2008b] Luding, Stefan (2008), Cohesive, frictional powders: contact models for tension.
Granular Matter (10), pages 235-246. DOI 10.1007/s10035-008-0099-x

[Zhou1999536] Y.C. Zhou, B.D. Wright, R.Y. Yang, B.H. Xu, A.B. Yu (1999), Rolling friction in the
dynamic simulation of sandpile formation. Physica A: Statistical Mechanics and its
Applications (269), pages 536–553. DOI 10.1016/S0378-4371(99)00183-1

1648 Bibliography

http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.016
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E
http://dx.doi.org/10.1021/la000657y
http://dx.doi.org/10.1080/00018730500167855
http://dx.doi.org/10.1007/s10035-008-0099-x
http://dx.doi.org/10.1016/S0378-4371(99)00183-1

Yade Documentation, Release 3rd ed.

[Antypov2011] D. Antypov, J. A. Elliott (2011), On an analytical solution for the damped
Hertzian spring. EPL (Europhysics Letters) (94), pages 50004.

[Ivars2011] Diego Mas Ivars, Matthew E. Pierce, Caroline Darcel, Juan Reyes-Montes, David O. Po-
tyondy, R. Paul Young, Peter A. Cundall (2011), **The synthetic rock mass approach for
jointed rock mass modelling **. *International Journal of Rock Mechanics and Mining Sci-
ences * (48), pages 219 - 244. DOI 10.1016/j.ijrmms.2010.11.014

[Potyondy2004] D.O. Potyondy, P.A. Cundall (2004), **A bonded-particle model for rock **. *Inter-
national Journal of Rock Mechanics and Mining Sciences * (41), pages 1329 - 1364. DOI
10.1016/j.ijrmms.2004.09.011

[Radjai2011] Radjai, F., Dubois, F. (2011), Discrete-Element Modeling of Granular Materials.
John Wiley & Sons.

[Schwager2007] Schwager, Thomas, Pöschel, Thorsten (2007), Coefficient of restitution and linear–
dashpot model revisited. Granular Matter (9), pages 465-469. DOI 10.1007/s10035-007-
0065-z

[Lambert2008] Lambert, Pierre, Chau, Alexandre, Delchambre, Alain, Régnier, Stéphane (2008), Com-
parison between two capillary forces models. Langmuir (24), pages 3157–3163.

[Mueller2003] Müller, Matthias, Charypar, David, Gross, Markus (2003), Particle-based Fluid
Simulation for Interactive Applications. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

[Mueller2011] M”uller, Patric, P”oschel, Thorsten (2011), Collision of viscoelastic spheres: Com-
pact expressions for the coefficient of normal restitution. Physical Review E (84),
pages 021302.

[Soulie2006] Soulié, F., Cherblanc, F., El Youssoufi, M.S., Saix, C. (2006), Influence of liquid bridges
on the mechanical behaviour of polydisperse granular materials. International
Journal for Numerical and Analytical Methods in Geomechanics (30), pages 213–228. DOI
10.1002/nag.476

[Mani2013] Mani, Roman, Kadau, Dirk, Herrmann, HansJ. (2013), Liquid migration in sheared
unsaturated granular media. Granular Matter (15), pages 447-454. DOI 10.1007/s10035-
012-0387-3

[Richardson1954] Richardson, J. F.„ W. N. Zaki (1954), Sedimentation and fluidization: Part i.
Trans. Instn. Chem. Engrs (32).

[RevilBaudard2013] Revil-Baudard, T., Chauchat, J. (2013), A two-phase model for sheet flow
regime based on dense granular flow rheology. Journal of Geophysical Research:
Oceans (118), pages 619–634.

[RevilBaudard2015] Revil-Baudard, T., Chauchat, J., Hurther, D., Barraud, P-A. (2015), Investi-
gation of sheet-flow processes based on novel acoustic high-resolution velocity
and concentration measurements. Journal of Fluid Mechanics (767), pages 1–30. DOI
10.1017/jfm.2015.23

[Li1995] Li, L., Sawamoto, M. (1995), Multi-phase model on sediment transport in sheet-flow
regime under oscillatory flow. Coastal engineering Japan (38), pages 157-178.

[Schmeeckle2007] Schmeeckle, Mark W., Nelson, Jonathan M., Shreve, Ronald L. (2007), Forces on
stationary particles in near-bed turbulent flows. Journal of Geophysical Research:
Earth Surface (112). DOI 10.1029/2006JF000536

[Wiberg1985] Wiberg, Patricia L., Smith, J. Dungan (1985), A theoretical model for saltating
grains in water. Journal of Geophysical Research: Oceans (90), pages 7341–7354.

[Dallavalle1948] J. M. DallaValle (1948), Micrometrics : The technology of fine particles. Pitman
Pub. Corp.

[Monaghan1992] Monaghan, J.~J. (1992), Smoothed particle hydrodynamics. Annual Review of
Astronomy and Astrophysics (30), pages 543-574. DOI 10.1146/annurev.aa.30.090192.002551

Bibliography 1649

http://dx.doi.org/10.1016/j.ijrmms.2010.11.014
http://dx.doi.org/10.1016/j.ijrmms.2004.09.011
http://dx.doi.org/10.1007/s10035-007-0065-z
http://dx.doi.org/10.1007/s10035-007-0065-z
http://dx.doi.org/10.1002/nag.476
http://dx.doi.org/10.1007/s10035-012-0387-3
http://dx.doi.org/10.1007/s10035-012-0387-3
http://dx.doi.org/10.1017/jfm.2015.23
http://dx.doi.org/10.1029/2006JF000536
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551

Yade Documentation, Release 3rd ed.

[Morris1997] Morris, Joseph P, Fox, Patrick J, Zhu, Yi (1997), Modeling Low Reynolds Number
Incompressible Flows Using SPH. *Journal of Computational Physics * (136), pages
214-226. DOI http://dx.doi.org/10.1006/jcph.1997.5776

[Lucy1977] Lucy, L.~B. (1977), A numerical approach to the testing of the fission hypothesis.
Astronomical Journal (82), pages 1013-1024. DOI 10.1086/112164

[Monaghan1985] Monaghan, J.~J., Lattanzio, J.~C. (1985), A refined particle method for astro-
physical problems. Astronomy and Astrophysics (149), pages 135-143.

[yade:doc] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Documentation.
The Yade Project. (http://yade-dem.org/doc/)

[yade:manual] V. Šmilauer, A. Gladky, J. Kozicki, C. Modenese, J. Stránský (2010), Yade, Using and
Programming. In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed.
(http://yade-dem.org/doc/)

[yade:background] V. Šmilauer, B. Chareyre (2010),Yade DEM Formulation. In Yade Documentation
(V. Šmilauer, ed.), The Yade Project , 1st ed. (http://yade-dem.org/doc/formulation.html)

[yade:reference] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Koz-
icki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Reference
Documentation. In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed.
(http://yade-dem.org/doc/)

[Tonon2005] Tonon, F. (2005), Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor
in Terms of its Vertex Coordinates. Journal of mathematics and statistics (1), pages
135-143.

[Lourenco1994] P B Lourenço 1994Analysis of masonry structures with interface elements. the-
ory and applications (Report No. 03-21-22-0-01, Delft University of Technology, Faculty
of Civil Engineering)

[Hazzard2000] Hazzard, J.F, Young, R.P (2000), Simulating acoustic emissions in bonded-particle
models of rock. International Journal of Rock Mechanics and Mining Sciences (37), pages
867-872. DOI 10.1016/S1365-1609(00)00017-4

[Hazzard2013] Hazzard, J. F., Damjanac, Branko (2013), Further investigations of microseismicity
in bonded particle models. 3rd International FLAC/DEM Symposium , pages 1-11.

[Scholz2003] Scholz, C. H., Harris, R. A. (2003), The Mechanics of Earthquakes and Faulting.
Cambridge University Press.

[Jackson2000] R. Jackson (2000), The dynamics of fluidized particles. Cambridge University Press.

[Maurin2018_VANSbasis] R. Maurin (2018), YADE 1D vertical VANS fluid resolution : Theo-
retical bases. Yade Technical Archive.

[Maurin2018_VANSfluidResol] R. Maurin (2018), YADE 1D vertical VANS fluid resolution :
Fluid resolution details. Yade Technical Archive.

[Maurin2018_VANSvalidations] R. Maurin (2018), YADE 1D vertical VANS fluid resolution :
validations. Yade Technical Archive.

[Berger1987] Berger, M. J., Bokhari, S. H. (1987), A Partitioning Strategy for Nonuni-
form Problems on Multiprocessors. IEEE Trans. Comput. (36), pages 570-580. DOI
10.1109/TC.1987.1676942

[Fleissner2007] Fleissner, Florian, Eberhard, Peter (2007), Parallel Load Balanced Particle Sim-
ulation with Hierarchical Particle Grouping Strategies. In IUTAM Symposium on
Multiscale Problems in Multibody System Contacts.

1650 Bibliography

http://dx.doi.org/http://dx.doi.org/10.1006/jcph.1997.5776
http://dx.doi.org/10.1086/112164
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://yade-dem.org/doc/formulation.html
http://yade-dem.org/doc/
http://dx.doi.org/10.1016/S1365-1609(00)00017-4
http://dx.doi.org/10.1109/TC.1987.1676942

Python Module Index

_
yade._libVersions, 663
yade._log, 665
yade._math, 669
yade._minieigenHP, 710
yade._packObb, 811
yade._packPredicates, 805
yade._packSpheres, 801
yade._polyhedra_utils, 1397
yade._utils, 1417

b
yade.bf, 644
yade.bodiesHandling, 647

e
yade.export, 648

g
yade.geom, 653
yade.gridpfacet, 657

l
yade.libVersions, 661
yade.linterpolation, 664
yade.log, 665

m
yade.math, 667
yade.minieigenHP, 710
yade.mpy, 792

p
yade.pack, 796
yade.plot, 811
yade.polyhedra_utils, 1397
yade.post2d, 1398
yade.potential_utils, 1402

q
yade.qt, 1403
yade.qt._GLViewer, 1403

t
yade.timing, 1406

u
yade.utils, 1407

y
yade.ymport, 1428

1651

	Guided tour
	Introduction
	Getting started
	Starting yade
	Quick inline help
	Creating simulation
	Running simulation
	Saving and loading
	Graphical interface

	Architecture overview
	Data and functions
	Data components
	Bodies
	Interactions
	Generalized forces

	Function components
	Engines
	Dispatchers and functors

	Tutorial
	Introduction
	Hands-on
	Shell basics
	Directory tree
	Shell navigation
	Moving around
	Keys
	Running programs

	Starting yade

	Python basics
	Sequences
	Lists
	Tuples
	Dictionaries

	Functions, conditionals

	Yade basics
	Particles
	Singles
	Packs
	Boundaries

	Look inside
	Engines

	Data mining
	Read
	Local data
	Labels

	Global data
	Energies

	Save
	PyRunner
	Keeping history

	Plot
	Energy plots
	Energy plot example
	Using multiple plots

	Setting up a simulation
	Parametric studies
	Boundary
	Supports
	Periodic

	Advanced & more
	Particle size distribution
	Clumps
	Testing laws
	Visualization
	Convert python 2 scripts to python 3
	Mandatory:
	Should be checked, but not always mandatory:
	Optional:

	Examples with tutorial
	Bouncing sphere
	Gravity deposition
	Oedometric test
	Batch table

	Periodic simple shear
	3d postprocessing
	Periodic triaxial test
	Fluid injection

	More examples
	FluidCouplingLBM
	FluidCouplingPFV
	HydroForceEngine
	PeriodicBoundaries
	PotentialBlocks
	PotentialParticles
	WireMatPM
	Adaptiveintegrator
	Agglomerate
	Baraban
	Bulldozer
	Capillary
	CapillaryLaplaceYoung
	Chained-cylinders
	Clumps
	Clumps-breakage
	Concrete
	Conveyor
	Cylinders
	Deformableelem
	Grids
	Gts-horse
	Hourglass
	Packs
	Pfacet
	Polyhedra
	PolyhedraBreak
	Ring2d
	Rod-penetration
	Simple-scene
	Stl-gts
	Tesselationwrapper
	Test
	Tetra
	ViscoelasticBoundaryCondition

	Yade for users
	DEM formulation
	Collision detection
	Generalities
	Algorithms
	Sweep and prune
	Aperiodic insertion sort
	Optimization with Verlet distances

	Creating interaction between particles
	Stiffnesses
	Normal stiffness

	Other parameters

	Kinematic variables
	Normal deformation
	Constants
	Contact cross-section

	Variables

	Shear deformation

	Contact model (example)
	Motion integration
	Position
	Orientation
	Orientation (spherical)
	Orientation (aspherical)
	SPIRAL Algorithm ([delValle2023])
	Omelyan Algorithm
	Fincham Algorithm

	Clumps (rigid aggregates)
	Numerical damping
	Stability considerations
	Critical timestep
	Single mass-spring system
	General mass-spring system
	DEM simulations

	Estimation of tcr by wave propagation speed
	Non-elastic t constraints

	Periodic boundary conditions
	Deformations handling
	Collision detection in periodic cell
	Approximate collision detection
	Exact collision detection
	Periodic insertion sort algorithm

	Computational aspects
	Cost
	Result indeterminism

	User’s manual
	Scene construction
	Adding particles
	Creating Body objects
	Defining materials
	Adding multiple particles
	Clumping particles together

	Sphere packings
	Volume representation
	Constructive Solid Geometry (CSG)
	Boundary representation (BREP)
	Boolean operations on predicates

	Packing algorithms
	Geometric
	Regular
	Irregular
	Dynamic

	Triangulated surfaces
	Import
	Parametric construction

	Creating interactions
	Individual interactions on demand
	Assigning cohesive bonds (possibly between distant bodies)

	Base engines
	Functors choice
	Bo1 functors
	Ig2 functors
	Ip2 functors
	Law2 functor(s)
	Examples
	Basic DEM model
	Concrete model

	Imposing conditions
	Motion constraints
	Imposing motion and forces
	Imposed velocity
	Imposed force

	Boundary controllers
	Field appliers
	Partial engines

	Convenience features
	Labeling things
	Simulation tags
	Saving python variables

	Controlling simulation
	Tracking variables
	Running python code
	Plotting variables
	Live updates of plots
	Controlling line properties
	Controlling text labels
	Multiple figures
	Split y1 y2 axes
	Exporting

	Stop conditions
	Checkpoints

	Remote control
	Python prompt
	Info provider

	Batch queuing and execution (yade-batch)
	Example
	Separating output files from jobs
	Controlling parallel computation
	Merging gnuplot from individual jobs
	HTTP overview

	Batch execution on Job-based clusters (OAR)

	Postprocessing
	3d rendering & videos
	Paraview
	Saving data during the simulation
	Loading data into Paraview
	Rendering spherical particles. Glyphs
	Rendering spherical particles. PointSprite
	Rendering interactions as force chain
	Facet transparency
	Animation

	Micro-stress and micro-strain
	Micro-strain
	Micro-stress

	Python specialties and tricks
	Importing Yade in other Python applications

	Extending Yade
	Troubleshooting
	Crashes
	Reporting bugs

	Getting in touch with Yade community
	Public questions and answers for getting help
	Mailing lists
	Private and/or paid support
	Wiki
	Discord chat
	Twitter account

	Yade wrapper class reference
	Bodies
	Body
	Shape
	State
	Material
	Bound

	Interactions
	Interaction
	IGeom
	IPhys

	Global engines
	GlobalEngine
	PeriodicEngine
	BoundaryController
	Collider
	FieldApplier

	Partial engines
	Dispatchers
	Functors
	Bounding volume creation
	BoundFunctor
	BoundDispatcher

	Interaction Geometry creation
	IGeomFunctor
	IGeomDispatcher

	Interaction Physics creation
	IPhysFunctor
	IPhysDispatcher

	Constitutive laws
	LawFunctor
	LawDispatcher

	Internal forces
	InternalForceFunctor
	InternalForceDispatcher

	Callbacks
	Preprocessors
	Rendering
	OpenGLRenderer
	GlShapeFunctor
	GlStateFunctor
	GlBoundFunctor
	GlIGeomFunctor
	GlIPhysFunctor

	Simulation data
	Omega
	BodyContainer
	InteractionContainer
	ForceContainer
	MaterialContainer
	Scene
	Cell

	Other classes

	Yade modules reference
	yade.bf module
	Overview
	Clump breakage algorithm

	yade.bodiesHandling module
	yade.export module
	yade.geom module
	yade.gridpfacet module
	yade.libVersions module
	yade.linterpolation module
	yade.log module
	yade.math module
	yade.minieigenHP module
	yade.mpy module
	Logic:
	Rules:
	Hint:

	yade.pack module
	yade.plot module
	Parameters
	Returns

	yade.polyhedra_utils module
	yade.post2d module
	Flatteners
	Extractors
	Example

	yade.potential_utils module
	yade.qt module
	yade.timing module
	yade.utils module
	yade.ymport module

	Installation
	Packages
	Docker
	Source code
	Download
	Prerequisites
	Compilation configuration
	Compilation and usage
	Supported linux releases
	Python 2 backward compatibility

	Speed-up compilation
	Compile with ccache
	Compile with distcc
	Compile with cmake UNITY_BUILD
	Link time

	Cloud Computing
	GPU Acceleration
	Special builds
	AddressSanitizer

	Yubuntu

	Acknowledging Yade

	Yade for programmers
	Programmer’s manual
	Build system
	Building
	Header installation
	Automatic compilation

	Linking

	Development tools
	Integrated Development Environment and other tools
	Hosting and versioning
	Development process
	How to make a release
	Build robot

	Debugging
	Logging
	Log levels
	Setting a filter level
	Debug macros
	Utility debug macros
	Maximum log level

	Regression tests
	Unit regression tests
	Check tests
	GUI Tests

	Conventions
	Using clang-format
	Class naming
	Documentation
	Sphinx documentation
	Bibliographical references
	Separate class/function documentation
	Internal c++ documentation

	Support framework
	Pointers
	Shared pointers
	Typecasting

	Basic numerics
	Run-time type identification (RTTI)
	Serialization
	Attribute registration
	Class factory
	Plugin registration
	Python attribute access

	YADE_CLASS_BASE_DOC_* macro family
	Exposing function-attributes to GUI
	Special python constructors
	Enums
	Static attributes
	Returning attribute by value or by reference

	Multiple dispatch
	Example: IGeomDispatcher
	Dispatch resolution
	Indexing dispatch types
	Inspecting dispatch in python
	OpenGL functors

	Parallel execution
	Timing
	Per-engine timing
	In-engine and in-functor timing
	Timing overhead

	OpenGL Rendering

	Simulation framework
	Scene
	Body container
	Insertion/deletion
	Iteration

	InteractionContainer
	Insert/erase
	Iteration

	ForceContainer
	Handling interactions
	Creating interactions explicitly

	Associating Material and State types

	Runtime structure
	Startup sequence
	Singletons
	Omega

	Engine loop
	Background execution

	Python framework
	Wrapping c++ classes
	Subclassing c++ types in python
	Reference counting
	Custom converters

	Adding a new python/C++ module
	Debugging boundary between python and C++

	Maintaining compatibility
	Renaming class
	Renaming class attribute

	Yade on GitLab
	Fast checkout (read-only)
	Branches on GitLab
	Setup
	Older versions
	Committing and updating
	Inspecting changes
	Pushing changes
	Updating
	Auto rebase
	Pulling a rebased branch

	Merge requests
	Members of yade-dev
	New developers

	Guidelines for pushing

	Theoretical background and extensions
	DEM formulation
	CFD-DEM coupled simulations with Yade and OpenFOAM
	Supported versions and examples
	Background
	Point force coupling (icoFoamYade)
	Volume averaged coupling (pimpleFoamYade)
	Hydrodynamic Force

	Setting up a case
	In Yade
	In OpenFOAM
	Execution

	Post-Processing
	Using blockMeshDict
	Using polyMesh

	FEM-DEM hierarchical multiscale modeling with Yade and Escript
	Introduction
	Finite element formulation
	Multiscale solution procedure
	Work on the YADE side
	Work on the Escript side
	Example tests
	Disclaim

	Simulating Acoustic Emissions in Yade
	Summary
	Model description
	Activating the algorithm within Yade
	Visualizing and post processing acoustic emissions
	Consideration of rock heterogeneity

	Using YADE 1D vertical VANS fluid resolution
	DEM-fluid coupling and fluid resolution in YADE
	Application of drag and buoyancy forces (HydroForceEngine::action)
	Solid phase averaging (HydroForceEngine::averageProfile)
	Fluid resolution\HydroForceEngine::fluidResolution

	Potential Particles and Potential Blocks
	Introduction
	Potential Particles code (PP)
	Potential Blocks code (PB)
	Engines
	Contact Law
	Contact Area
	Overlap distance

	Shape definition of a PP and a PB
	Body definition of a PP and a PB
	Boundary Particles
	Visualization
	Axis-Aligned Bounding Box
	Block Generation algorithm
	Examples
	Disclaimer
	References

	Bayesian Calibration using GrainLearning
	Installation
	Background

	Dynamic Systems
	Bayesian Filtering
	Setting up a case

	In Yade
	In GrainLearning
	Running Bayesian calibration
	Setting the stopping criteria
	Analyzing and visualizing the results
	Exercises

	Particle-particle collision
	Triaxial compression

	Performance enhancements
	Accelerating Yade’s FlowEngine with GPU
	Summary
	Hardware, Software, and Model Requirements
	Install CUDA
	Install OpenBlas, and Lapack
	Install SuiteSparse
	Compile Yade
	Controlling the GPU
	Performance increase

	MPI parallelization
	Concepts
	Walkthrough
	MPI initialization and communications
	Interactive mode
	Explicit initialization from python prompt
	Explicit initialization from python script
	mpirun (automatic initialization)

	Non-interactive execution

	Splitting
	Split by yourself
	Don’t know how to split? Leave it to mpirun
	Initial split
	Updating the decomposition (load balancing)

	Centralized versus distributed scene construction

	Merging
	Hints and problems to expect
	MPI support in engines
	Reduction (partial sums)
	Miscellaneous

	Control variables
	Benchmark

	Using YADE with cloud computing on Amazon EC2
	Summary
	Launching an EC2 instance
	Installing YADE and managing files
	Plotting output in the terminal
	Comments

	High precision calculations
	Installation
	Supported modules
	Double, quadruple, octuple and higher precisions
	Compatibility
	Python
	C++
	Using higher precisions in C++
	String conversions
	Complex types
	Eigen and CGAL
	VTK
	LAPACK

	Debugging

	Short-courses
	THM short-course
	Installing Yade (for Windows and Mac users)
	Easiest way - Use our premade Virtual Machine (Windows)
	Less easy way - Create your own Virtual Machine (MacOS)
	Hard way - Dual Boot (MacOS or Windows)

	Introduction to Bash and Python
	Terminal
	Keys
	Starting yade
	Yade basics
	Particles
	Singles
	Packs
	Boundaries
	Look inside
	Engines

	Day 1 - Yade Hands-on part 1
	Let’s create a bouncing sphere
	Starting the Script

	Day 1 - Yade Hands-on part 2
	Building a rotating-drum
	Visualizing the output files
	Example script

	Day 2 - Fluids Hands-on part 1
	Triaxial Stress Control
	Engine list
	Finding an equilibrated state
	Setting up the FlowEngine

	Remeshing parameters
	Getting the starting permeability
	Starting the oedometer
	Plotting live data
	Example script

	Day 3 - Thermal Hands-on part 1
	Gathering field data
	Example script

	Day 3 - Thermal Hands-on part 2
	Compacting the specimen
	Setting up the FlowEngine()
	Setting up the ThermalEngine()
	Running the coupled simulation
	Example script

	Literature
	Yade Technical Archive
	About
	Contribute
	Contact
	Archive

	Publications on Yade
	Journal articles
	Conference materials and book chapters
	Master and PhD theses
	Yade Technical Archive

	References

	Yade community events
	Yade community events
	1st Yade hackathon
	2nd Yet Another Discrete Element Workshop
	Aix-en-Provence, April 26-27, 2018

	1st Yet Another Discrete Element Workshop
	Grenoble, July 7-9, 2014
	NEW: The booklet of presentations is available
	Objectives
	Download the program
	Check also the access map
	Contact & Registration
	Invited Speakers
	Organizing Comitee
	Acknowledgement

	Indices and tables
	Bibliography
	Python Module Index

